.DDC BACK-UP SETTINGS FOR:

5. Initiate VAD Pumping – Push the PUMP ON button

Regular inspection of blood pump

Inspection of the pump areas with blood contact Diagram of blood pump

Noted areas.

- 1. Transition inflow cannula inflow connector
- 2. Inflow stub in front of the inflow valve
- 3a. Inflow valve left leaflet
- 3b. Inflow valve center leaflet
- 3c. Inflow valve right leaflet
- 4. Inflow stub behind inflow valve
- 5. Area between inflow and outflow stubs
- 6. Remaining area of blood chamber
- 7. Transition blood chamber Membrane
- 8. Outflow stub in front of the outflow valve
- 9a. Outflow valve left leaflet
- 9b. Outflow valve center leaflet
- 9c. Outflow valve right leaflet
- 10. Outflow stub behind outflow valve
- 11. Transition outflow connector outflow cannula

Explanations on the pump log

Numbering of the checkpoints

To briefly describe the findings, we recommend the following letter codes: **Example: Plotting of the deposits**

Example: Notation with letter code

p = small speck-like deposits	a = small laminar deposits
P = large speck-like deposits	A = large laminar deposits
f = small suture	t = small thrombus
F = large suture	T = large thrombus
~ = above the respective letter i	ndicates floating deposits

Recommendation

• When performing the inspection, illuminate the blood chamber of the pump with a flashlight. This makes it easier to detect deposits.

- 1. Transition inflow cannula inflow connector
- 2. Inflow stub in front of the inflow valve
- 3a. Inflow valve left leaflet
- 3b. Inflow valve center leaflet
- 3c. Inflow valve right leaflet
- 4. Inflow stub behind inflow valve
- 5. Area between inflow and outflow stubs
- 6. Remaining area of blood chamber
- 7. Transition blood chamber Membrane
- 8. Outflow stub in front of the outflow valve
- 9a. Outflow valve left leaflet
- 9b. Outflow valve center leaflet
- 9c. Outflow valve right leaflet
- 10. Outflow stub behind outflow valve
- 11. Transition outflow connector outflow cannula

Using the Heart-Touch Computer

- 1. Verify communication
 - a. Vad rate
 - b. Battery source
 - 2. No Response form TLC
 - a. No communication message
 - Note 6 tabs
 - a. Main
 - b. Plots
 - c. List
 - d. Vad Settings
 - e. General
 - f. Technical
 - 4. Touch Vad settings
 - To reset and erase the last patient parameters press: "Initialize parameters" – YES

Default Values

VAD Mode: **BiVAD** Accumulator press: 250 mmHg Control Mode: Front panel select -- Fixed rate LVAD beat rate: 80 bpm LVAD Low rate: 50 bpm LVAD Eject time: 300 msec RVAD beat rate: 70 bpm RVAD low rate: 50 bpm RVAD eject time: 300 msec Patient Name: -blank-Patient ID: -blank-

L 93 Å 6.0 R 72 Å 4.0	0 6	
R A 72 A U A (6	
	BīVAD	03-17:01:33 E>
Main Plots List	C ^T T	eneral Technic
VAD Mode BiVAD Front Panel	Acc. Pressure 250 mmHg	Initialize Paramet
VAD Parameters Beat Rate 80 bpm 300 ms	RVAD Parameters- Beat Rate 70 bpm	Eject Time 300 ms
Low Rate Eject Mode 50 bpm Manual	Lew Rate 60 bpm	Eject Mode Manual

- 6. Vad Mode button to change BiVAD to L or R Vad
- 7. Control mode will allow selection of "front panel selectable" this will allow changes from TLC
- 8. Beat rate button- to set different rate alarm will occur if Rate is < 40 bpm
 - a. This is the rate used for fixed rate mode.
 - b. If switching patient from DDC, typically the beat rate values on the TLC should be approximately equal to the actual pumping rate being use on the DDC,
- 9. Low rate button- to set default rate- usually 20 below beat rate.
 - a. This the lowest rate that is used in the auto rate mode while waiting for a full signal for the VAD.
 - b. If no full signal is detected at this rate, the TLC switches to the fixed rate mode.
 - c. Usually set at a default of 50. Or 20-30 below the beat rate.
- 10. Eject time to change time usually 300 sec.
- 11. Eject mode should be "manual mode"
- 12. Accumulator pressure usually 250 mmHg
 - a. Increase Accum. pressure or increase Eject time to assure complete emptying of VAD
- 13. General tab Change patient info enter new patient data
- 14. Verify Alarms in alarm window

- a. Occlusion Hi pressure when occluders are in place
- b. LO pressure when occluders are removed
- c. No L full Signal No R full signal

15. TLC is ready for the patient.

Switch patient from DDC to TLC

- 1. DDC will have extensions on the Electric and pneumatic lines
- 2. First move the LVAD
 - a. Remove occluder or set-up plugs on TLC
 - b. Disconnect extension pneumatic lead and plug single pneumatic lead from VAD to TLC.
 - FOR Single VAD –
 - *** Occluder plug must be in the other VAD position NOT the set-up plug***
 - Set-up plug has a hole in the top.
 - c. Disconnect the electrical extension and plug electrical cord from VAD to TLC
- 3. Repeat for RVAD
- 4. Verify Fill signals and L and R fill lights
- 5. Adjust vacuum source to get full filling of VAD(s)
 - a. Vacuum is on bottom side of TLC
 - b. Start with minimum vacuum (fully counterclockwise)
 - c. Use only enough vacuum to achieve filling
- 6. Press MODE button and select AUTO rate mode.
 - a. Vad rate is set by filling of VAD
 - b. Verify AUTO on main screen of TLC