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On board beforehand:

• Useful trick. |D| 6= ∅ (i.e. h0(D) > 0), C irreducible, C2 ≥ 0 implies DC ≥ 0.
• Genus formula. 2g(C)− 2 = C · (KS + C).
• Riemann-Roch: χ(D) = χ(O) + 1

2
D · (D −K).

• Riemann-Roch: In the case when h1(O) = 0 and h0(K − D) = 0, we have h0(D) ≥
1 + 1

2
D · (D −K) (with equality iff h1(D) = h2(O) = 0).

1. CASTELNUOVO’S THEOREM

We saw how tricky it was to show that a surface is rational.

Theorem: Castelnuovo’s Rationality Criterion. Let S be a surface with q = P2 = 0. Then
S is rational.

Reminder. q = h1(S,OS) = h0(S,ΩS) = h2(S,ΩS) = h1(S,KS) (draw Hodge diamond).
This is called the irregularity of a surface.

P2 = h0(S,K⊗2
S ).

It was once believed that this could be weakened to q = P1 = 0, which is somehow
more attractive (as P1 is an entry in the Hodge diamond), but this false, and we may see
examples before the end of the course (Enriques surfaces, Godeaux surfaces).

1.1. Motivation: Minimal rational surfaces. We know lots of rational surfaces now: P2,
Fn, and blow-ups of these. At this point, we may suspect that we’ve found them all. How
can we show this? We’ll use Castelnuovo’s criterion.
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1.2. Motivation Luroth’s theorem (in characteristic 0). A variety V of dimension n is
unirational if there is a dominant map (i.e. one with dense image) Pn 99K V .

Lüroth’s Theorem. Every unirational curve is rational.

Proof. This is true in arbitrary characteristic, but here’s a proof that works only in charac-
teristic 0. Suppose P1 99K C, where C is a curve, possibly singular and not proper. Then
we also get a rational map P1 99K C ′, where C ′ is a smooth compactification of a smooth-
ing of C. By our lemma from long ago, any rational map from a smooth curve to anything
projective extends to a morphism, so we have P1 → C ′. Dominant implies surjective. So
we can apply the Riemann-Hurwitz formula, to see that

2− 2g(P1) = d(2− 2g(C ′))− ramification contribution.

The left side is 2, but if g(C ′) > 0 the right side can’t be positive.

Theorem. In characteristic 0, every unirational surface is rational.

In positive characteristic, the theorem is false! Ask Ted Hwa for an example.

Question: where does the following argument break down in positive characteristic?

Proof. Suppose S is a unirational surface. If there was any doubt, let’s say that it is smooth
and compact. (Otherwise, there is a way of producing a smooth and compact birational
model.) So we have P2 99K S. By the elimination of indeterminacy, we can blow up
P2 and get a morphism BlP2 → S. This morphism is dominant and hence surjective.
Interpret q(S) as H0(S,ΩS), and recall P2(S) = H0(S,K⊗2

S ). If q > 0 or P2 > 0, then
pullback the nonzero form (i.e. section of either ΩS or K⊗2

S ) to get a non-zero section of
the corresponding bundle on Bl(P2). This would give q(Bl(P2)) > 0 or P2(Bl(P2)) > 0.

Hence q(S) = P2(S) = 0. Then by Castelnuovo, S is rational.

Remark. Even in characteristic 0, there are 3-folds that are unirational but not rational,
and they are not even that exotic! It is not hard to show that smooth cubic threefolds
in P4 are all unirational; Clemens and Griffiths showed that none of them are rational!
Iskovskih and Manin did the same for quartic threefolds as well.

2. PROOF OF CASTELNUOVO’S CRITERION (PART 1)

We’ll make a couple of reduction steps.

Castelnuovo’. Let S be a minimal surface with q = P2 = 0. Then there exists a smooth
rational curve C on S such that C2 ≥ 0. Keep on board.

Proof that Castelnuovo’ implies Castelnuovo’s criterion.

OS(C) clearly has a section, one whose zero set isC. We’ll see that in fact h0(S,OS(C)) ≥
2, so “the curve moves”. Consider 0→ OS → OS(C)→ OC(C)→ 0. Now q = h1(S,OS) =

2



0, so when we take global sections, the sequence remains exact, so

h0(S,OS(C)) = h0(S,OS) + h0(C,OC(C)))

= 1 + C2 − g(C) + 1 + h1(C,OC(C))

= 2 + C2 (as C ∼= P1, and OC(C) has positive degree)
≥ 2

So taking 2 sections, C and one other, we get a rational map S 99K P1. After blowing
up, this becomes a morphism S̃ 99K P1. One of its fibers is isomorphic to C. By the
Noether-Enriques theorem, it follows that S is rational.

So now we want to prove Castelnuovo’. Instead we’ll prove

Castelnuovo”. q = P2 = 0 implies that there is an effective divisor E on S such that
K · E < 0 and |K + E| = ∅. Keep on board: We seek |E| 6=, |E +K| = ∅, K · E < 0.

Castelnuovo” implies Castelnuovo’. For then some componentC ofE satisfiesK·C < 0,
and any component satisfies h0(S,K +C) = 0. Applying Riemann-Roch to K +C we get

0 = h0(K + C)

≥ h0(K + C)− h1(K + C) + h0(−C)

= χ(K + C)

= χ(OX) +
1

2
((K + C)−K) · (K + C)

> h0(OX)− h1(OX) + h2(OX) +
1

2
(C +K) · C

≥ 1 +
1

2
(C +K) · C

= g(C).

Hence g(C) = 0. (C + K) · C = −2, hence C2 ≥ −1. If C2 = −1, then C is an exceptional
curve, and we hypothesized that there weren’t any. So Castelnuovo’ follows.

Proof of Castelnuovo” in the case K2 = 0.

How can we possibly use P2 = 0? Only one reasonable way: Our hypothesis P2 = 0
gives h2(−K) = 0 (Serre duality). Hence by Riemann-Roch (and q = 0):

h0(−K) ≥ h0(−K)− h1(−K) + h2(−K) = h0(O)− h1(O) + h2(O) +K2 ≥ 1 +K2.

(We’ll use this in the K2 > 0 case too.)

So | −K| 6= ∅. Let H be a hyperplane section of S. Then H ·K < 0. Note:

• If n = 0, then |H + nK| 6= ∅.
• If n� 0 then |H + nK| = ∅ (as (H + nK) ·H < 0)
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Thus there is an n ≥ 0 such that |H + nK| 6= ∅, but |H + (n + 1)K| = ∅ as |H| 6= ∅, and
(H +nK) ·H < 0 for n� 0). Let D be an element. |K +D| = ∅, and K ·D = −(−K) ·H <
0.

Proof of Castelnuovo” in the case K2 > 0.

Recall h0(−K) = 1 +K2, so h0(−K) ≥ −2. Suppose D ∈ | −K|.

Three cases:

(1) There is a reducible choice of D, i.e. A,B effective with A+B ∈ | −K|.
(2) Pic(C) = ZK. (This implies that there is no reducible choice of D (why?), but we

don’t care.)
(3) All divisors in | −K| irreducible, and Pic(C) 6= ZK.

Case 1: There is a reducible choice of D, i.e. A,B effective with A + B ∈ | −K|. Then A ·K or
B · K < 0, say the former. Then A is an effective divisor on S such that A · K < 0, and
|A+K| = | −B| = ∅.

Case 2: Pic(C) = ZK. This is the only case where characteristic 0 comes up! From the
exact sequence

H1(S,OS)→ PicS → H2(S,Z)→ H2(S,OS)

we have H2(S,Z) ∼= PicS = ZK. Thus b2 = 1. By Poincare duality, the intersection form
on H2(S,Z) is unimodular, so K2 = 1. By Noether’s formula,

1 = χ(OS) =
1

12
(K2 + 2− 2b1 + b2)

from which b1 = −4, contradiction.

Case 3: All divisors D in | −K| irreducible and Pic(C) 6= ZK. Suppose H were an effective
divisor. As | −K| 6= ∅, there exists n > 0 such that |H + nK| 6= ∅ and |H + (n+ 1)K| = ∅.
If (H + nK) ·K < 0, we’d be done.

Take an H such that H +nK 6= 0. Let E ∈ |H +nK|, E =
∑
niCi. Then K ·E = −D ·E,

and by the useful remark D ·E ≥ 0 since D is irreducible. We are painfully close to being
done: we have K · E ≤ 0, and we want K · E < 0!

Thus K · Ci ≤ 0 for some C = Ci. Hence |K + C| = ∅, from which 0 = h0(K + C) ≥
1 + 1

2
(C2 +CK) = g(C). g(C) = 0, and C2 = −2−K ·C (genus formula). We have gained

exactly one thing in this paragraph: our divisor C is irreducible, whereas our divisor E
was not necessarily. We know that |C| 6= ∅, |K + C| = ∅, and K · C ≤ 0, and we want to
show that K · C < 0.

So we’ll assume K ·C = 0, and find a contradiction. From the genus formula, C2 = −2.
We’ll calculate h0(−K − C). Note that h0(2K + C) = h0(2K + (−D)) ≤ h0(K + C) = 0.
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Thus

h0(−K − C) ≥ χ(−K − C) = χ(OX) +
1

2
((K + C)2 +K(K + C))

= 1 +
1

2
(C2 + 3KC + 2K2)

≥ K2

≥ 1

Since C2 = −2, we have C 6= −K, so there exists a nonzero effective divisor A such that
A+ C ∈ | −K|. This contradicts our hypothesis that | −K| has no reducible divisors.

All that’s left is:

Proof of Castelnuovo” in the case K2 < 0.
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