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Recap of last time.

The times have changed to Wednesdays and Fridays 2:10–3:25. We will likely meet on
a couple of Mondays as well for 50 minutes to catch up if need be; if that happens, I’ll
warn you in advance.

We’ve been discussing line bundles, a.k.a. invertible sheaves; they form a group called
Pic(X), a.k.a. H1(X,O∗X).

We related invertible sheaves and divisors. In particular, for a smooth variety, we
showed that Pic(X) ∼= Div(X) modulo linear equivalence. The divisors linearly equiv-
alent to 0 were the divisors of rational functions. This involved the construction of the
invertible sheaf O(D), where D is a divisor.

If X is a (proper, nonsingular) curve, then there is a degree map Pic(X)→ Z.

As examples, we showed that Pic(A1) ∼= {1}, by showing directly that any point was
rationally equivalent to 0. Secondly, we showed that Pic(P1) ∼= Z by showing that any two
points were rationally equivalent, so Pic(P1) was generated by O(pt). Using the degree
map, for example, we showed that O(n(pt)) 6= O.

1. ANOTHER EXTENDED EXAMPLE: Pn

This actually generalizes.

Date: Wednesday, October 9.
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First, Pic(An) = {1}. Reason: Let An = Spec[x1, . . . , xn]. Then the irreducible divisors
correspond to irreducible polynomials (up to scalars). This requires the fact that all codi-
mension one loci are the zero sets of polynomials in the n variables. (This isn’t hard, but
involves the algebraic theory of dimension, so we won’t go into it here.) Thus any divisor
is the divisor of a rational function, e.g. (y − x2)− 3x− 2y = div((y − x2)/(x3y2)).

Next: on to Pn = Proj k[x0, . . . , xn]. (Should I say something about Proj notation? The
xi are projective coordinates.) The irreducible divisors correspond to irreducible homoge-
neous polynomials in the xi of positive degree. Reason: For future use, let U0, . . . , Un be
the basic affine open sets; Ui is where xi 6= 0. Note that Pn − U0 = (x0 = 0) = (x0), so the
only irreducible divisor missing U0 is the hyperplane x0 = 0. Given an irreducible divisor
meeting U0, it is irreducible in U0, and hence corresponds to an irreducible polynomial
p(u1, . . . , un) in the coordinates of U0 (where ui = xi/x0), the full divisor is the closure of
its restriction to U0. In confusing math-ese: D = D|U0 . Then check that D is the vanishing
set of the polynomial xdeg p

0 p(u1, . . . , un), and that this is an irreducible homogeneous in
the xi.

Finally, Theorem. Pic(Pn) ∼= Z.

Remark. The generator is the class of the hyperplane H . As with P1, we use the notation
OPn(d) for OPn(dH). (Hence we have a degree map here too.)

Proof. We need to show (i) that any divisor is linearly equivalent to a multiple of H , and
(ii) that O(dH) 6= 0.

(i) Given an irreducible divisor p(~x) = 0, note that p/xd:=deg p
0 is a rational function, and

its divisor is (p)− d(x0), so (p) = dH in the Picard group.

(ii) Interpret H as OPn((x0)). Consider the immersion of a line in projective space P1 ↪→
Pn, [x; y] 7→ [x; y; 0; ...; 0]. Pullback gives a map Pic(Pn) → Pic(P1). Take a hyperplane
meeting the line at a point, e.g. (x0). Check that OPn(H) pulls back to OP1(pt), which has
infinite order.

I next want to give you a way of interpreting sections of OPn over any open set.

1.1. Useful interpretation of rational sections ofOPn(d). Rational sections ofOPn(d) cor-
respond to rational homogeneous functions P (x0, . . . , xn)/Q(x0, . . . , xn) with degree d.
This behaves well with respect to multiplication, i.e. if you have a rational sections s resp.
t ofOPn(d) resp. OPn(e), then st is a rational section ofOPn(d+ e), and if t 6= 0 then s/t is a
rational section ofOPn(d−e), and this interpretation respects multiplication and division.

If you want to see actual sections over an open set U , you allow poles away from U .
For example, global sections correspond to the vector space of degree d in the n + 1 pro-
jective co-ordinates x0, . . . , xn. (As a corollary, h0(Pn,OPn(d)) =

(
n+d
d

)
.) For example,

OP2(2) is a 6-dimensional vector space, with generators x2
0, . . . , x1x2. What’s the divisor

corresponding to global section x0x1 + x0x2? Ans: (x0) + (x1 + x2).

2



Proof: Exercise.

I’ll do it for global sections of P2, so you can see the bijection.

Let me pick coordinates on the three open sets:

• U0 = {x0 6= 0}. Coordinates (u1, u2) where (x0; x1; x2) = (1;u1;u2), so u1 = x1/x0.
• U1 = {x1 6= 0}. Coordinates (v0, v2) where (x0;x1;x2) = (v0; 1; v2).
• U2 = {x2 6= 0}. Coordinates (w0, w1) where (x0; x1; x2) = (w0;w1; 1).

Then on the overlap, you can check things like w0 = v0w1 etc.

Let’s consider OP2(2) in its guise of OP2((x0)2).

• Restrict first to U0. We’re allowed to have polynomials in u1 and u2.
• Restrict to U1. We’re allowed to have polynomials in v0 and v2, and poles of order up

to 2 in v0.
• Restrict to U2. We’re allowed to have polynomials in w0 and w1, and poles of order

up to 2 in w0.

Then we have gluing data. Now you do the algebra, and when the dust settles, what
this corresponds to are polynomials in u1 and u2 of degree up to 2:

?+?u1+?u2+?u2
1+?u1u2+?u2

2 =
1

x2
0

(x2
0+?x0x1+?x0x2+?x2

1+?x1x2+?x2
2).

So we made a choice of manifestation of OP2(2) by picking the divisor x2
0, and we got

homogeneous polynomials with denominator x2
0. Now you check that if you picked a

different manifestation OP2(2) ∼= OP2((p)) where p is degree 2, then the last line would
have been

1

p
(x2

0+?x0x1+?x0x2+?x2
1+?x1x2+?x2

2),

and in fact the isomorphism between the two would preserve the degree 2 polynomial.
Hence this correspondence between the vector space of global sections and the vector
space of degree 2 polynomials is well-defined.

This argument extends to (i) rational sections and (ii) Pn without change.

Let me make this very explicit. Suppose I have a section of OP2(2) that I’m calling
x2

0 − x1x2. You would like to see it as an element of OP2(D), where D has degree 2, for
example OP2(x0x2). Then the corresponding element of OP2(D) is (x2

0 − x1x2)/(x0x2). The
content of this “theorem” is that this is a well-defined bijection, independent of your
choice of D.

1.2. The canonical sheaf of Pn. Now let’s find the canonical sheaf of Pn. My goal here is
(i) to show you that the canonical sheaf isn’t scary, and (ii) to actually get the number.

Theorem. KPn ∼= OPn(−n− 1). Remember this!
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Proof. I’ll just do the case n = 2 for notational convenience. The sections of K over U0 are
p(u1, u2)du1 ∧ du2. Let’s take the section du1du2 over this open set, and see what its poles
and zeroes are over all of P2. There’s only one divisor away from U0, x0 = 0, so we need
only check this divisor.

Let’s look over U1, with coordinates v0 and v2. Remember that (1;u1;u2) = (v0; 1; v2), so
u1 = 1/v0 and u2 = v2/v0.

Thus in terms of the coordinates of U1 the section transforms into:

du1 ∧ du2 =

(
− 1

v2
0

dv0

)
∧
(
v0dv2 − v2dv0

v2
0

)
= − 1

v3
0

dv0 ∧ dv2.

So we see a pole along v0 = 0 of order 3, as desired.

1.3. Sections ofOPn(d) and maps to projective space; more generally, invertible sheaves
and maps to projective space. One of the central facts about invertible sheaves on proper
schemes X is loosely that global sections give maps to projective space. I want to show
this to you first in the case of OP2(d) to show you that this isn’t hard, and then I’ll return
to a general discussion of varieties.

First, let me take 4 sections of OP2(2). For convenience, let me take the projective coor-
dinates to be x, y, z, rather than x0, x1, x2. I’ll choose the 4 sections: x2, y2, z2, xy. Then
for any point of P2, the point [x2, y2, z2, xy] is a well-defined point of P3. (Explain: (i) even
though x etc. isn’t well-defined, this is a well-defined point of projective space, and (ii)
these are never all zero.)

More generally: Definition. For an arbitrary schemeX with invertible sheaf L, a vector
space of global sections with basis s0, . . . , sn is said to be base-point free if they have no
common zeros on X . Then a basepoint free vector space V of n + 1 global sections gives
a map to Pn. If you unwind the definition carefully, you’ll see that this gives X → PV ∗.

I should also then define base points: Definition. given a vector space of global sec-
tions, their locus of common zeros is called the base locus, or base points. (Normally you
take the scheme-theoretic intersection.)

Important fact: there is a converse to this construction. If X is proper (not necessarily
nonsingular): there is a bijection between π : X → Pn and (X,L, (s0, . . . , sn)/k∗) where
si ∈ Γ(X,L). The bijection from right to left was described before. In the other direction:
L = π∗O(1), and si = π∗xi.

To see if you understand this fact, here’s an immediate consequence: Exercise. The
only morphisms from Pn to Pm if m < n are the constant maps.

Back to the example of P2 and OP2(2): The sheaf OP2(2). Six sections.

[x; y; z]→ [x2; y2; z2; xy; yz; zx].

(Draw a picture.) Hyperplane sections correspond to conics. The degree of a subvarietyX
of Pn can be defined as the number of intersection points of X with a general linear space
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of complementary dimension. Hence the degree of this embedded P2 is 4. (Common
terminology that won’t come up in this course: This is an example of the famous Veronese
embedding of P2. In general, use Pn and its space of global sections OPn(d) to get a map
to a big projective space PN , where N =

(
d+n+1

d

)
− 1 (I think!). Exercise. The degree of the

Veronese-embedded space is dn by a similar argument.

Definition. An invertible sheaf L is very ample if the global sections of L gives a closed
immersion into projective space.

Fact. equivalent to: “separates points and tangent vectors”. (Explain why, loosely.
Separating points means there is a hyperplane passing through one point but not the
other; that means that they don’t map to the same point in projective space. Separating
tangent vectors loosely means that by the implicit function theorem, you have a local
isomorphism. Complex geometers might buy this.)

Again, hyperplane sections correspond to H0(X,L).

Definition. The corresponding map to projective space is called a linear system. (I’m not
sure if I’ll use this terminology, but I want to play it safe.)

|L| : X → Pn = PH0(X,L)∗.

Definition. An invertible sheaf is ample if some power of it is very ample.

Note: A very ample sheaf on a curve has positive degree. Hence an ample sheaf on a
curve has positive degree. We’ll soon see that this is an “if and only if”.

Fact (Serre vanishing). Suppose M is any coherent sheaf e.g. an invertible sheaf, or
more generally a locally free sheaf (essentially, a vector bundle), and L is ample. Then for
n >> 0, H i(X,M⊗Ln) = 0 for i > 0.

Next day: Serre duality; Riemann-Roch; lots of applications to curves. Then on to sur-
faces!
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