
COMPLEX ALGEBRAIC SURFACES CLASS 6

RAVI VAKIL

CONTENTS

1. The intersection form 2
1.1. The Neron-Severi group 3
1.2. Aside: The Hodge diamond of a complex projective surface 3
2. Riemann-Roch for surfaces 3
3. Blow-ups: an example of a birational morphism 4

I realize now that I am starting to be sloppy about notation for divisors and their cor-
responding invertible sheaves. For example, roman characters usually refer to divisors,
e.g. D, and calligraphic characters usually refer to sheaves. The main cause of confusion
is that we use additive notation for divisors, and multiplicative notation for sheaves. I’ll
likely continue this confusion, so please bear with me. Divisors will normally be consid-
ered up to linear equivalence, so it makes sense to talk about a divisor K in the class of
K.

Recap of last time. We began intersection theory on a surface S. We constructed DivS ×
DivS → Z which in fact descended to PicS × PicS → Z.

In the case of two curves with no common components, we had a local intersection
number: if the local equations at x ∈ S of the two curves are given by f and g,

mx(C ∩ C ′) = dimkOx/(f, g).

The intersection number C · C ′ is defined by

C · C ′ =
∑

x∈C∩C′
mx(C ∩ C ′).

We did some examples. Exercise. (a) Calculate the local intersection number (at (0, 0))
of y = 0 and y = xn. (b) y = xn and y2 = x2, where n > 1. (c) Verify that the local
intersection number is 1 if f = 0 and g = 0 are smooth at (0, 0) and have distinct tangent
directions.

For L,L′ ∈ PicS, we defined define

L · L′ = χ(OS)− χ(L∗)− χ(L′∗) + χ(L∗ ⊗ L′∗).
Date: Friday, October 18.
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Theorem. IfC andC ′ are two distinct irreducible curves on S thenOS(C)·OS(C ′) = C ·C ′.

Proof was by exactness of

0→ OS(−C − C ′) (s′,−s)→ OS(−C)⊕OS(−C ′) (s,s′)→ OS → OC∩C′ → 0

and taking Euler characteristics. Here C ∩ C ′ is taken scheme-theoretically.

I was fuzzier than I would have liked in describing these morphisms. (Describe them.)

Proposition. IfC is a non-singular irreducible curve on S, andL ∈ PicS, thenOS(C)·L =
degL|C . For example, C · C is the degree of the normal bundle.

We’ll use this in a minute.

1. THE INTERSECTION FORM

We’ll use the result of Serre that I mentioned before: if D is any divisor, and H is very
ample, then then D + nH is very ample for sufficiently large n. (Proof available upon
request.) In particular, D can be written as (D+nH)− (nH), the difference of two smooth
curves on S. (Here we use Bertini’s theorem.) You should think of this as a moving
lemma.

Theorem. · is symmetric bilinear.

Proof. Symmetry is obvious. Now let’s prove bilinearity. Consider s(L1,L2,L3) := (L1 ·
(L2 ⊗ L3)) − (L1 · L2) − (L1 · L3). (i) This is 0 when L1 is the class of a smooth curve, by
our proposition.

(ii) This is symmetric in Li: plug into the formula.

(iii) Next, suppose L and L′ are any two invertible sheaves. By Serre’s result I men-
tioned last day, L′ = O(A−B) whereA andB are two smooth curves. s(L,L′,OS(B)) = 0
by (i). Expanding, we get 0 = L · OS(A)− L · L′ − L · OS(B) from which

L · L′ = L · OS(A)− L · OS(B).

The right side is linear in L, so the left side is too.

Examples. (i) If C is a smooth curve, and f : S → C is a surjective morphism, F is a fiber
of f . Then F 2 = 0.

(Topologically, this is believable.) F = f ∗[x] for some x ∈ C. There is a divisor A on C,
linearly equivalent to x, such that x /∈ A, and F ≡ f ∗A. Since f ∗A is a linear combination
of fibers of f all distinct from F , we have F 2 = F · f ∗A = 0.

(ii) Let S ′ be a surface, g : S ′ → S a generically finite morphism of degree d, and D and
D′ divisors on S. Then g∗D · g∗D′ = dD ·D′.
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Using Serre’s result, it suffices to prove the formula when D and D′ are hyperplane
sections of S. There’s a big open set U of S ′ over which g is etale (i.e. local isomorphism
over C) Move D and D′ so that they meet transversely, and their intersection lies in U .
Then g∗D and g∗D′ also meet transversely, and g∗D ∩ g∗D′ = g−1(D ∩D′). (This is dodgy
in positive characteristic, but the result is true.)

(iii) Example: P2. We get Bezout’s theorem. A degree d curve meets a degree d′ curve in
dd′ points, counted correctly.

1.1. The Neron-Severi group. Now I want to go to the complex analytic topology. Con-
sider

0→ Z→ OS → O∗S → 0.

Look at the long exact sequence in cohomology. Strip off the H0’s to get

0→ H1(S,Z)→ H1(S,OS)→ Pic(S)→ H2(S,Z)→ H2(S,OS).

0 → T → PicS → NS(S) → 0. Hodge theory shows that T is a complex torus, denoted
Pic0(S); in fact this is an algebraic variety. The Neron-Severi group NS(S) is a finitely
generated group. This all holds true over an arbitrary field, but is quite hard.

The map PicS → H2(S,Z) is what you think it is topologically. The bilinear form on
PicS turns into the intersection form H2 ×H2 → H4 = Z.

1.2. Aside: The Hodge diamond of a complex projective surface.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

H i(S,C) = ⊕p+q=iHp,q(S).

Hp,q(S) = Hq(S,∧pΩS). (Often written Ωp
S .)

Hence: put 1’s ; irregularity q = h1,1; genus h2,0. h0,0 = 1 of course; h2,2 = h2(S,KS),
which I said earlier as part of Serre duality.

Pairing in cohomology agrees with pairing of description in terms of forms. Duality
holds.

Our map Pic(S)→ H2(S,Z) actually lies in H1,1(S).

Lefschetz (1,1)-theorem. The Neron-Severi group, i.e. the image of Pic, is all ofH2(S,Z)∩
H1,1(S).
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2. RIEMANN-ROCH FOR SURFACES

Riemann-Roch theorem for surfaces. For all L ∈ PicS,

χ(L) = χ(OS) +
1

2
L · (L −K).

Proof.

L∗ · (L ⊗K∗) = χ(OS)− χ(L)− χ(K ⊗ L∗) + χ(KS) (by def’n)
= χ(OS)− χ(L)− χ(L) + χ(OS) (by Serre duality, twice)
= 2(χ(OS)− χ(L))

and we’re done after rearranging.

A typical way of using it is:

h0(D) + h0(K −D)− h1(D) = χ(OS) +
D · (D −K)

2
⇒

h0(D) + h0(K −D) ≥ χ(OS) +
D · (D −K)

2
.

Example: If H is any divisor, then

χ(S, nH) =
1

2
(nH) · (nH −K) + χ(OS) = (H2/2)n2 + (−HK/2)n+ (χ(OS)),

so we have quadratic growth of the Euler characteristic. In particular, if H is ample, then
for n� 0, h0(S, nH) = · · · .

Another useful consequence:

The genus formula. Let C be an irreducible curve on a surface S. The genus of C,
defined by g(C) = h1(C,OC), is given by g(C) = 1 + 1

2
(C2 + C ·K).

Proof. Use 0→ OS(−C)→ OS → OC → 0. Take Euler characteristics to get

1− g(C) = χ(OC) = χ(OS)− χ(OS(−C)) = · · · .

(Exercise: finish this.) But we already knew this, using the adjunction formula.

Proof using the adjunction formula. degKC = deg(K + C)|C .

Remark: Arithmetic genus of a singular curve.

The modern form of the Riemann-Roch form has a second part, proved long ago:

Noether’s formula (fact). χ(OS) = 1
12

(K2 +c2(TS)) = 1
12

(K2 +χtop(S)). The latter equality
is only in the complex case.
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3. BLOW-UPS: AN EXAMPLE OF A BIRATIONAL MORPHISM

The key example of a birational morphism is blowing up at a point, also sometimes called
a monoidal transformation. In fact, we’ll see that all birational morphisms are series of
monoidal transformations.

Fact. Given p ∈ S, there is a surface S ′ = BlpS and a morphism π : S ′ → S, unique up
to isomorphism, such that (i) the restriction of π to π−1(S − {p}) is an isomorphism onto
S − {p}, and (ii) π−1(p) is isomorphic to P1.

π−1(p) is called the exceptional divisor p, and is called the exceptional divisor.

Example: blowing up S = A2 at the origin. S ′ = {(x, l) : l line through (0, 0), x ∈ l}. Clearly
we have π : S ′ → S, and S ′ is smooth (smooth choice of line, then smooth choice of point
on line).

Algebraically: l is parametrized by P1, parametrize by [u; 1] and [1; v]. Patch 1: [1; v] =
[x0; y0], i.e. y0 = x0v. The exceptional divisor is x0 = 0. Patch 2: [u; 1] = [x1; y1], i.e.
x0 = y0u. The exceptional divisor is y0 = 0.

Note that the map A2 − (0, 0) → P1 given by (x, y) 7→ [x; y] couldn’t be extended over
the origin. But it can be extended to S ′ → P1; this blow-up “resolves the indeterminacy of
the map”. This is a feature, as we’ll see.

Defining the blow-up in general. Complex analytically, you can take the same construction.
Then you need to think a little bit about uniqueness.

There is a more intrinsic definition that works algebraically, let I be the ideal sheaf of
the point. Then S ′ = Proj⊕d≥0Id.

Definition. If C is a curve on S, define the strict transform Cstrict of C to the the closure of
the pullback on S − p, i.e. π|∗S′−E(C ∩ S − p). The proper transform Cproper is given by the
pullback of the defining equation, so for example π∗OS(C) = OS′(C ′).

Next day, we will investigate the relationship between S and S ′, and between curves
on the two surfaces. In particular:

Lemma. If C has multiplicity m at p, then Cproper = Cstrict +mE.

Theorem. (a) There is an isomorphism PicS⊕Z ∼→ PicS ′ defined by (D,n) 7→ π∗D+nE.
(b) The same with Pic replaced by NS.

Theorem. KS′ = π∗KS + E.

and more...
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