A TOOL FOR STABLE REDUCTION OF CURVES ON
SURFACES

RAVI VAKIL

ABSTRACT. In the study of the geometry of curves on surfaces, the following
question often arises: given a one-parameter family of divisors over a pointed
curve, what does the central fiber look like after stable or nodal reduction?
We present a lemma describing the dual graph of the limit.
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1. INTRODUCTION

In the past decade, tremendous progress has been made in the enumerative
geometry of nodal curves on surfaces. (The references include some of the most
striking results.) Many of the results have been at least indirectly motivated by
Kontsevich’s introduction of stable maps, which was in turn motivated by mirror
symmetry predictions from physics. These methods have been particular successful
on surfaces, especially Fano and K3 surfaces, for many reasons.

The purpose of this expository note is to describe a result (Lemma 2.4.1) useful
in the study of curves on a surface in a variety of contexts, especially in enumerative
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geometry. Although it does not appear to be in the literature, neither the statement
nor its proof will surprise the experts. Nonetheless, the author has found it a useful
tool to have ready at hand.

Suppose one wishes to study a family of curves on a surface S, such as plane
curves with specified singularities, possibly satisfying certain incidence and tan-
gency conditions. They can be studied from two points of view, (i) by considering
the curves as divisors, i.e. as points in the Hilbert scheme, or (ii) by considering
them as maps of nonsingular curves. Both have advantages; dimension counts and
deformation theory have different flavors in the two cases, for example.

Certain questions naturally arise, such as the following.

1. Suppose one is given a morphism of a nodal curve to .S. Can it be smoothed?
In other words, can it be deformed to a map from a nonsingular curve, bira-
tional onto its image?

2. In the moduli space of stable maps, explicitly describe the boundary compo-
nents of the component corresponding to immersions.

3. More generally, given a family of maps of nodal curves, what are the “codi-
mension 1 degenerations”? What are the limit maps?

4. Suppose one is given an explicit family of divisors on S, parametrized by a
pointed curve, whose general fiber is reduced. What does the central fiber
look like after stable reduction?

The method of addressing all of these questions is the same: given a (possibly hy-
pothetical) family of divisors on S, perform stable reduction. This is an explicit if
tedious process (see [HM] Section 3E or [Ba] Section 1), but it is much more con-
venient to extract combinatorial information about the stable reduction by looking
at the d-invariants of the general fiber and central fiber.

2. DEFINITION AND RESULT

In order to state the lemma in reasonable generality, we must generalize the
classical notions of d-invariants and dual graphs slightly.

2.1. Loci of a divisor on a surface. Suppose D is a divisor on a nonsingular
surface S. For the purpose of this note, a locus is defined to be the formal neigh-
borhood of a closed subset L of S, including the data of the restriction of D, such
that D\ L is reduced at D\ LN L. A branch meeting a locus is a branch of D\ L
meeting L. We will (sloppily) denote the locus by L also.

An example of a locus is a (formal neighborhood) of a connected component of
Sing D (in S), which we will call a singular locus.

An example of a singular locus with two branches is given in Figure 1; in the
figure, the “triple line” indicates that the component has multiplicity 3.
2



FIGURE 1. Example of a singular locus of a divisor on a surface

2.2. d-invariant of a locus. To each locus L, we can associate a §-invariant,
specializing to the traditional definition when dim L = 0. Specifically, define the
curve L¢ by normalizing the points of

D\LNL
on D\ L (i.e. the branches).

Then define
0p(L) :=pa(D) — pa(L).
The subscript D will be dropped when it is clear from the context.

2.2.1. Remark. Suppose p € L, S = Bl, S, and D (resp. I~/) is the total transform
of D (resp. the preimage of the locus L). Then clearly §5(L) = 6p(L), as p(D) =
Pa(D) and pa(L°) = pa(L°).

2.2.2. Computing 6(L). One can compute 6(L) in general as follows. Blow up
points of S repeatedly along points of L so that the total transform D of D is a
simple normal crossings divisor (not necessarily reduced!) along the preimage of L.
By the preceding remark, this will not change the d-invariant. Then it is easy to
check that

W= Y mems Y (D) -ma-gm)

n a node of L E irreducible _
component of L

where m; and mo are the multiplicities of D along the branches of n, and m is the
multiplicity of D along E.

FEzample. By applying this procedure to the cusp, we obtain Figure 2, in which
the special locus is indicated by the dashed box, components of the special locus
are thick lines, the branch is a thin line, and multiplicities and self-intersections are
indicated. (Each component has genus 0.) From this, we recover ¢ = 1:

184+12 46 = 36

from the nodes, and

(@H) ) 6) - <®(‘2> - 3) + <<§><—3) - 2) — 35

from the irreducible components.



F1cURE 2. Computing the §-invariant of a cusp

2.2.3. Remark. Suppose D is a divisor that is simple normal crossings on a locus L
(but not necessarily reduced), and contains a one-dimensional component E. Then
it is not hard to check that

op(L) —dp_p(L)=E-D—E?+¢(E) - 1.

In particular, this difference is a numerical invariant (of the data (S, D, E, L)); this
fact will be used in the third reduction step of the proof of Lemma 2.4.1.

2.3. Locus of a map, and its dual graph. Suppose p : C' — S is a morphism
from a nodal curve to a nonsingular surface. Let [C] be the fundamental cycle of
C, and let p,[C] be the image cycle in S. We define the image divisor of the map
as the unique divisor in S whose associated cycle is p.[C]. (Warning: this is not
necessarily the scheme-theoretic image!) More generally, a family of maps of nodal
curves to S over a base induces a morphism from the base to the Hilbert scheme.

To each locus L of D, associate the locus p~1(L) of C; call this a locus of the
map p. It is a formal neighborhood of some union (not necessarily connected) of
points and irreducible components. Define branches of this locus as before.

To each locus L of p, associate a dual graph ', as follows. There is one vertex for
each irreducible dimension one component of L, labelled with the arithmetic genus
of that component, and a single vertex with no label representing all branches (even
if there are no branches). Edges of the dual graph correspond to the nodes of the
locus in the usual way.

An example of a locus of a map, and its corresponding dual graph, is given in
Figure 3.

In analogy with the genus of the dual graph of a nodal curve, define the genus
of dual graph to be

g(Tr):=1—x(Tp) + Zlabels

where x(I') is the Euler characteristic, i.e. h® — h', or the number of edges less
the number of vertices.
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FI1GURE 3. Example of a locus of a map, and its corresponding dual graph

2.4. Statement of result. Suppose

is a family of morphisms of maps of nodal curves to surfaces, where

e 7 is a (proper, flat) family of nodal curves whose general member is singular,
and

e S — B is a (proper, smooth) family of surfaces (which in applications will
usually be taken to be the projection S x B — B).

Let 0 be a closed point of B, and n the generic point. For b € B, we denote
the fiber by py : Cpy — S. Assume p, maps C,, birationally onto its image. (This
hypothesis can be removed, but it makes the proof simpler.)

Suppose L is a locus of the image divisor of Cy, with J-invariant dy. (In practice,
one often takes L to be a singular locus.) Let 6 be the sum of the J-invariants of
the singular loci of the general fiber degenerating to L. Let gg be the genus of the
dual graph of the corresponding locus on Cj.

Lemma 2.4.1. §y — § = gg.

This makes precise the intuitive trade-off between “genus visible on the level
of the Hilbert scheme” (i.e. d-invariants) and “genus invisible on the level of the
Hilbert scheme” (i.e. nodes and collapsed components).

3. MOTIVATION AND EXAMPLES

3.1. Motivation. The following are examples of results in the literature using
stable or nodal reduction.
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H1] Proposition 3.1, and the similar argument in [H2] Lecture 3, Section 3.
CH1] Proposition 2.5.
CH3| Theorem 1.2.
V2] Theorem 3.1.
V3], the boundary divisor list of Section 4.2 (using Lemma 3.14 of [V1]).

|

[
[
[
[
[
[V4], the boundary divisor list of Theorem 4.2.

SRR e

Part of the motivation was to give a uniform treatment of these arguments, and
indeed they can all be replaced by easy applications of Lemma 2.4.1. Examples 1,
5, and 6 use the case where the locus in the central fiber is a point, while examples
2, 3, 4, and 6 use the case where the central locus is a curve.

In each case, the question is roughly one of describing the boundary components
of a certain space of maps. Lemma 2.4.1 gives a geometric restriction on the maps
that can appear, and a dimension bound ensures that the subvarieties satisfying
the geometric restriction have codimension at least 1, with equality holding only
for the desired boundary components.

A second motivation comes from a programme to prove Gottsche’s conjecture,
[G], following the approach of [Va] and [KP], except using stable maps in the place
of the Hilbert scheme. A key step involves verifying that certain boundary divisors
on a moduli space of stable maps are not “numerically relevant” | which in turns re-
quires verifying that the dimension of the space of various sorts of smoothable maps
can be explicitly bounded. (Note: A.-K. Liu has announced a proof of Gottsche’s
conjecture.)

The third motivation was to have a convenient computational tool, see the ex-
amples below.

3.2. Examples.

3.2.1. Nonsingular curves degenerating to a cusp. If a family of nonsingular divisors
on a surface degenerates to a curve with a cusp, it is well-known that the semistable
limit has an elliptic tail, which is also immediate from Lemma 2.4.1. (However,
explicit stable reduction shows that the elliptic tail must have j-invariant 0, which
does not follow from Lemma 2.4.1.)

3.2.2. Nonsingular curves degenerating to an arbitrary singularity. More generally,
if a family of nonsingular divisors degenerates to a curve with a singularity with
d-invariant dy and b branches, the stable limit will have a contracted genus 6 —b+1
component meeting all b branches. (This is not hard to show directly; it uses only
the final step of the proof.) For the connectedness statement, an argument similar
to that of the worked example (Section 4.1) can be used.
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3.2.3. Smoothability criterion. The theorem also gives a criterion for smoothability.
For example, a contracted curve of genus g attached to a branch of a curve mapping
to a singularity with § < g cannot be smoothed.

3.2.4. Smoothing a contracted elliptic curve. If a map from a contracted elliptic
curve meeting two branches, whose images are tangent (i.e. the image has a tac-
node), is smoothed (as a map), then nearby images will have a node. Thus the
example of Section 4.1 is typical.

4. PROOF OF LEMMA 2.4.1

The family induces a map from B to the Hilbert scheme; let

p: D — S

!
B

be the corresponding universal closed immersion. Let Ly be the locus of interest in
the central fiber, and let £ be the set of singular loci of the general fiber meeting
(i.e. tending to) Lg.

The proof is by a series of reductions. For the convenience of the reader, a
worked example follows the proof (Section 4.1). Throughout, we will pass to smaller
neighborhoods of 0 in B, usually without comment. For example, we immediately
discard the points of B (other than 0) whose fibers exhibit “nongeneric” singularities
(i.e. that have combinatorially worse singularities than the general fiber). After
our reductions, we will recover the family C over B \ 0, and the result will follow
from examination of the central fiber.

First note that we can blow up sections (taking total transforms of the divisor
D and the loci in question) without changing d-invariants, by Remark 2.2.1.

Reduction 1. By blowing up sections that miss D away from the central fiber
(shrinking B if necessary), and that meet Dy at singularities contained in L, we
can assume that Dy is simple normal crossings along Lj, and that no two branches
meet (i.e. all branches meet one-dimensional components of Dy).

Reduction 2. We next blow up sections contained in D so that the general
fiber is simple normal crossings along the loci in £, and so that no two branches
meet in any locus in £. To do this, note that we can do this on the generic
fiber D,, by a series of blow-ups. By taking the closure in D, this series can be
interpreted as a series of blow-ups along multisections. After base-change, the
multisections become sections (for example, after base change the components and
zero-dimensional singularities of the loci in £ in the general fiber are distinguished,
i.e. not exchanged by monodromy), and then the series is now a sequence of blow-
ups of sections of D. Hence we can assume that all of the fibers of D are simple
normal crossings along the loci in £. Shrink B further by discarding fibers (other
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than 0) that are “combinatorially different” from the general fiber along the loci in

L.

Reduction 3. At this point, D, may have multiple components (corresponding
to exceptional divisors of the blowups of the previous reduction). Discard these
components (one at a time). At each stage, this will change ¢ and dy by the same
amount by Remark 2.2.3. Thus we may assume that the fibers away from 0 are
reduced, and that £ is empty.

Final step. Thus we have reduced to the case § = 0, so we need only check that
0o = g. Perform the stable (or nodal) reduction recipe on the locus Lg; this will
involve base changing, as well as blow-ups and normalizations along (the preimage
of) Lo. Let D} be the resulting central fiber, and let L} be the preimage of Lo
(which consists of nodal curves meeting branches of D} \ L, with dual graph T'z).
Then a calculation of the arithmetic genus of the central fiber gives

o (1) = pa (BEVT5) + 1D
from which
P(L) = pa (Dh) = pa (D3 \L3) = 65 (L)
as desired. O

4.1. Worked example. The following example may make the proof clearer. Con-
sider the family

y2 — t($2 _1_1:3) 4 :L‘6
parametrized by ¢, with special locus (0,0) above t = 0. (Technically, we should
take the closure in P2, but our constructions are all local.) Then the singularity in

the central fiber is tacnode (69 = 2), and in the general fiber, there is one singularity
(a node, 6 = 1) degenerating to the tacnode.

The results of the recipe given in the proof are shown in Figure 4. The location
of the new exceptional divisor appearing after Reduction 2 depends on the choice
of the section used in Reduction 1; for concreteness, we made a specific choice in
the example.

Remark. Technically, we must also exclude the possibility that the dual graph
is as given in Figure 5, i.e. that the image of the locus isn’t connected, and a
contracted genus 2 curve is attached to one of the branches, which is immersed.
This can be shown in two ways. First, a genus 2 curve attached to an immersed
branch can’t be smoothed (see Section 3.2.3). Or second, if formally or étale-
locally, there are two branches meeting with local intersection multiplicity two,
nearby deformations will also have J-invariant at least 2, contradicting § = 1.

4.2. Acknowledgements. The author is grateful to J. Harris, B. Hassett, and J.
Starr for enlightening conversations.
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FIGURE 4. The worked example, after each step.
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FIGURE 5. Not the dual graph of the locus on the central fiber in
the worked example
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