

Stanford University Medical Center

Objective

•To define serum levels of B-cell activation factor (BAFF) and specific B-cell phenotypes in remitting multiple sclerosis (RRMS) patients treated with either glatiramer acetate (GA) or interferon- β $(IFN\beta).$

•To establish the link between BAFF, IFNβ, and Bcells in humans.

•To determine whether B cells are necessary for effective treatment with IFNB in experimental autoimmune encephalomyelitis (EAE).

Background

•There are currently no serologic tests that aid in the selection or monitoring of therapy in RRMS. Modulation of B cells by IFN β has been proposed, yet knowledge of the specific subtypes affected remains lacking. Monitoring of these subtypes may provide a biomarker for treatment effect.

•IFNβ increases both BAFF and the number of circulating B cells in RRMS, but exactly which subtypes and the mechanism whereby IFNB affects B cells remains unknown.

	Healthy	Glatiramer Acetate	Interferon-β
Number of patients	5	13	8
Average Age (Range)	28.7 (24-36)	37.2 (26-46)	37.2 (24-44)
Sex	100% Male	77% Female	83% Female
Diagnosis	-	RRMS	RRMS
Years since diagnosis (Range)	-	4.2 (1-8)	5.8 (1-8)
EDSS (Range)	-	I.5 (0-4)	1.3 (0-2.5)

Patients

Transitional B cells are a signature of interferon-β treatment in MS Ryan D. Schubert, Alexandra L. Goodyear, MD, Peter Abraham, Caitlin Dunn, Kipp Weiskopf, Lawrence Steinman, MD, Jeffrey Dunn, MD, FAAN and Robert C. Axtell, PhD

IFNβ treated MS and EAE

IFNβ therapy in MS

C 60 -IFNB PBS

40 IFNβ PBS

Conclusions

•Transitional B cells are a signature of RRMS patients on IFNB therapy but not GA. These cells are a more reliable biomarker of treatment than serum BAFF, raising the possibility these cells could useful in treatment monitoring.

•IFNβ treatment induces proliferation of human transitional B cells through a BAFF dependent mechanism.

•IFNβ synergizes with B cell activation to produce IL-10, IL-6, and IFN γ . IL-10 has well-documented anti-inflammatory effects, and may be a critical link between B cells and the successful treatment of RRMS with IFN β . These cytokines, along with BAFF, are a signature of the splenic marginal zone.

In EAE, IFNβ preferentially expands marginal zone B cells in the spleen.

•Treatment of EAE with IFNβ requires the presence of B cells. Taken together, these data provide direct evidence that the regulatory effect of IFNβ may be through marginal zone B cell stimulation.

Acknowledgements

The authors would like to acknowledge and thank the staff and patients of the Stanford MS Clinic, the Clinical Neuroimmunology division, members of the Steinman Lab.

National **Multiple Sclerosis** Society