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Abstract—Almost all computer models of the musculoskeletal
system represent muscle geometry using a series of line segments.
This simplification (i) limits the ability of models to accurately
represent the paths of muscles with complex geometry and (ii)
assumes that moment arms are equivalent for all fibers within a
muscle (or muscle compartment). The goal of this work was to
develop and evaluate a new method for creating three-dimensional
(3D) finite-element models that represent complex muscle geome-
try and the variation in moment arms across fibers within a muscle.
We created 3D models of the psoas, iliacus, gluteus maximus, and
gluteus medius muscles from magnetic resonance (MR) images.
Peak fiber moment arms varied substantially among fibers within
each muscle (e.g., for the psoas the peak fiber hip flexion moment
arms varied from 2 to 3 cm, and for the gluteus maximus the peak
fiber hip extension moment arms varied from 1 to 7 cm). Moment
arms from the literature were generally within the range of fiber
moment arms predicted by the 3D models. The models accurately
predicted changes in muscle surface geometry over a 55◦ range of
hip flexion, as compared to changes in shape predicted from MR
images (average errors between the model and measured surfaces
were between 1.7 and 5.2 mm). This new framework for repre-
senting muscle will enhance the accuracy of computer models of
the musculoskeletal system.

Keywords—Skeletal muscle, Finite-element modeling, Muscu-
loskeletal geometry, Moment arms, Lower limb.

INTRODUCTION

Accurate descriptions of muscle geometry are needed to
characterize muscle function. The length and moment arm
of a muscle affect the muscle’s ability to generate force, pro-
duce joint moments, and actuate movement. However, the
geometrical arrangement of skeletal muscles is complex.
Each joint is spanned by several muscles that are closely
packed together and have a variety of shapes and sizes.
As joints move, muscles change shape and interact with
each other and with underlying bones. Computer models
of the musculoskeletal system generally simplify muscles
by representing them as a series of line segments12,16,27
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that pass through the approximate centroidal path of
the muscle and represent the muscle’s effective line of
action.29

Using a series of line segments to represent the path
of a muscle with complex geometry is difficult because
it requires knowledge of how the muscle changes shape
and interacts with underlying muscles, bones, and other
structures as joints move. For example, it is challenging to
represent muscles that wrap and bend around underlying
structures, like the psoas muscle (Fig. 1(A)). “Via points”
and “wrapping surfaces” are commonly defined to geomet-
rically constrain the path from penetrating underlying bones
and muscles15,22,45; however, it is frequently unclear how
to specify these constraints, and the muscle moment arms
can be highly sensitive to how the constraints are defined.
It also is challenging to use a series of line segments to
represent muscles with broad attachments, like the gluteus
maximus (Fig. 1(B)). Models generally separate these types
of muscles into compartments and use multiple paths to
represent the muscle.44 However, it is often unclear how
many paths to define, where the paths should be located,
and how to define via points (and/or wrapping surfaces) so
that the models accurately represent the anatomy.

Modeling muscle using a series of line segments allows
only one length and moment arm to be estimated for each
muscle path. Therefore, “lumped-parameter” models,49

which assume that all fibers within a muscle have the same
length and moment arm, are used to estimate muscle force.
However, variation in moment arms (and therefore changes
in length) among fibers within a muscle could greatly in-
fluence the muscle’s capacity to generate force. Indeed,
previous studies (e.g., Herzog and ter Keurs26) have demon-
strated that lumped-parameter models do not accurately
predict in vivo force–joint angle behaviors, especially for
muscles with complex geometries and architectures. Mod-
els that represent the three-dimensional (3D) arrangement
of muscle fibers and allow for variations in fiber lengths
and moment arms are needed to more closely represent
in vivo muscle behavior.

The goal of this work was to create and evaluate a new
representation for muscle that can characterize a range of

661

0090-6964/05/0500-0661/1 C© 2005 Biomedical Engineering Society



662 S. S. BLEMKER and S. L. DELP

FIGURE 1. Series-of-line-segments simplification generally used in musculoskeletal modeling.6,16 The psoas muscle (A) has a
complex path that bends, or wraps, around the pelvic brim, hip joint capsule, and the femoral neck. With the 1D techniques, “via
points” (blue) and “wrapping surfaces” (wireframe) are used to prevent the muscle from penetrating these structures. However,
it is difficult to define via points and wrapping surfaces that work robustly for multiple degrees of freedom. The gluteus maximus
muscle (B) is also difficult to model because it has broad areas of attachment and the fibers have a complex geometric arrangement.

fiber lengths and moment arms in muscles with complex
geometry. This new representation addresses two major
limitations of models that characterize muscles with a series
of line segments: (i) their limited capacity for representing
muscles with complex geometry and (ii) their assumption
that all fibers within each muscle compartment have the
same length and moment arm. The representations incor-
porate the 3D geometry of the muscles, the 3D arrangement
of the muscle fibers, the constitutive properties of muscle

and tendon, and the mechanics of the interactions with
neighboring structures. We evaluated the utility and accu-
racy of this method by creating models of four muscles that
cross the hip (gluteus maximus, gluteus medius, psoas, and
iliacus). These muscles wrap around underlying structures,
have broad attachments, and have a variety of architectures.
The 3D models of these muscles highlight the diverse be-
haviors among the fibers within muscles and illustrate the
value of this new approach.

FIGURE 2. Segmentation of MR images to create surface models. In the extended position (A) and flexed (B) positions, the gluteus
maximus, gluteus medius, iliacus, psoas, pelvis, and femur were outlined in each axial image, and surface models were created.
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METHODS

We created 3D finite-element models of the muscles
of interest and their underlying bones from magnetic res-
onance (MR) images of a live subject. Finite-element
meshes and geometric descriptions of the fibers were
created for each muscle. A transversely-isotropic, quasi-
incompressible, hyperelastic constitutive model was used to
represent the stress–strain behavior of muscle and tendon.
The origin and insertion regions of each muscle mesh were
defined to rigidly attach to their corresponding bones, and
finite-element simulations through ranges of hip flexion–
extension, adduction–abduction, and internal–external ro-
tation were performed. Fibers were tracked throughout the
simulations, and ranges of fiber lengths and moment arms
were calculated for each muscle. We evaluated the models
by (i) comparing the predicted fiber moment arms with
muscle moment arms determined from previous experi-
mental measurements and models from the literature, and
(ii) comparing the change in shape predicted by models
with 3D surfaces measured from MR images.

Construction of Finite-Element Meshes from Image Data

The goal of the imaging session was to capture the de-
tailed hip and thigh anatomy at approximately 0 and 60◦

of hip flexion. The subject (female; height 160 cm; age
27 years) was positioned supine on the table of a 1.5-T
GE scanner (GE Medical Systems, Milwaukee, Wiscon-
sin). The lower limb was first situated with the hip extended
(approximately 0◦ of hip flexion) and the knee extended.
In this position, we acquired two sets of proton-density
(repetition time = 4000 ms; echo time = 11.3 ms; echo
train length = 8) axial images. The first series (30 cm ×
30 cm field of view; 4 mm slice thickness, 1 mm space be-
tween slices; 256 pixel × 256 pixel matrix) traveled from
just below the iliac crest to just below the lesser trochanter
of the femur. The second series (24 cm × 24 cm field of
view; 7 mm slice thickness, 3 mm space between slices;
256 pixel × 256 pixel matrix) traveled from the femoral
head to the distal femur. Another series of proton-density
images (24 cm × 24 cm field of view; 7 mm slice thick-
ness; 3 mm space between slices; 256 pixel × 256 pixel
matrix) was collected with the hip flexed (approximately
60◦ of flexion) and traveled from just below the iliac crest
to just below the lesser trochanter of the femur. In all sets
of images, the subject was relaxed with all muscles in the
passive condition. The MR imaging protocol was approved
by the Institutional Review Board of Stanford University.

We reconstructed the surface geometry of the muscles
and bones from the MR images (Fig. 2). On each axial-
plane image, we manually outlined the boundaries of the
muscles and bones of interest. The 3D polygonal surface
models were generated for each structure from the set of
2D outlines (Nuages, INRIA, France).

We created solid hexahedral meshes of the muscles from
the segmented surface models by using a mapping process
in the finite-element mesh generator, TrueGrid (XYZ Sci-
entific Applications, Livermore, CA). In this procedure, a
“template mesh” that is in the shape of a cube (Fig. 3(A))
undergoes a mapping process (Fig. 3(B)) to create the “tar-
get mesh” (Fig. 3(C)) that represents the geometry of a
specific muscle. The mapping (ϕ) has a one-to-one corre-
spondence so that each material coordinate in the template
mesh (Xtemplate) has a corresponding coordinate in the target
mesh (Xtarget):

Xtarget = ϕ(Xtemplate). (1)

The mapping function (ϕ) was defined as follows. The tem-
plate mesh has many “slices,” each of which corresponds to
an outline in the segmentation. The edges of each slice were
projected on to the corresponding outline curve, and the in-
ternal nodes were smoothed to result in uniform element
sizes within the slice.

For each muscle mesh, we identified the regions that
corresponded to tendon (internal and/or external) and the re-
gions that corresponded to origin and insertion areas, using
a combination of the MR images, the reconstructed muscle
and surface geometry, and knowledge of the anatomy. The
origin of the psoas muscle was approximated as the area
of the muscle in the most proximal image slice, therefore
making the assumption (also made by others6,16,41) that the
action of the psoas muscle in the lumbar region does not
affect the action of the muscle at the hip joint.

Specification of Fiber Geometries

We developed a method to prescribe the geometry of
fibers within the mesh for a variety of muscle architec-
tures. Our method is based on defining a set of “template
fiber geometries” which we then morph to create each mus-
cle’s “target fiber geometry.” We created four template fiber
geometries that were motivated by common classification
schemes for muscle architecture (Fig. 4)2,49 and describe
the trajectory of many fibers within a regularly-shaped cube.
The basis for each template fiber geometry is interpolation
between multiple rational Bezier spline curves. We first de-
scribe our method for interpolating between spline curves
and defining the analytical form for the fiber geometry.

Each fiber geometry template is created by linearly in-
terpolating between at least two sets of control points in 3D
space, ba

i and bb
i , by the parameter, s, to define the control

points for the intermediate spline, bi:

bi(s) = ba
i +

(
1 − s

numfibs

) (
bb

i − ba
i

)
;

0 ≤ s ≤ numfibs. (2a)

bi(s) = ba
i ; numfibs < s < ∞. (2b)
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FIGURE 3. Creation of volumetric meshes of each muscle from segmented surface models. Hexahedral meshes were created by
mapping a “template” hexahedral mesh (A) through a series of projections (B) to the “target” mesh (C). Each slice of the mesh
corresponds to an outline of an anatomical structure created during segmentation (see Fig. 2).

We introduced weights for each control point so that the
curvature of the splines varied continuously between the
interpolated control points:

w0 = 1.0; w1(s) = s + 1.0; w2 = 1.0. (3)

The parameter, numfibs, defines the number of representa-
tive fibers in the region and is specified by the user. The
expression for the template fiber geometry (fibtemplate) is a
function of t (the fiber direction) and s (transverse to the
fiber direction):

fibtemplate(t, s) =
∑2

i=0 wi (s) bi(s)Bi (t)∑2
i=0 wi (s)Bi (t)

, (4)

where Bi (t) are the quadratic Bernstein Basis Functions:

Bi (t) = 2

(2 − i)!
(1 − t)2−i t i . (5)

The fiber direction (fibdirtemplate) is the derivative of the
fiber function along the parameter, t:

fibdirtemplate(t, s) = ∂fibtemplate

∂t
(t, s). (6)

We used this basic interpolation scheme to create a vari-
ety of template fiber geometries (Fig. 4), including parallel
“simple” fibers, parallel “curved” fibers, “pennate” fibers,
and “fanned” fibers. The “simple” fibers were a set of par-
allel lines traveling between opposite ends of the template
mesh and consist of one set of control points, Iba

i and Ibb
i .

The “pennate” fibers have attachments on either side of the

template mesh and consist of two sets of control points,
Iba

i and Ibb
i , and IIba

i and IIbb
i . The “curved” fibers have

the attachments on the same side of the template cube and
consist of two sets of control points, Iba

i and Ibb
i , and IIba

i
and IIbb

i . The “fanned” fibers have attachments on all four
sides of the mesh and consist of four sets of control points,
Iba

i and Ibb
i , IIba

i and IIbb
i , IIIba

i and IIIbb
i , and IVba

i and
IVbb

i . While we present these four examples of fiber geome-
tries, more complex fiber arrangements can be represented
with this framework by adding more interpolating spline
curves.

We sampled the template fiber function (fib) at various
values of the parameters t and s to create representative
template fibers (Fig. 4). The corresponding representative
target fibers (Fig. 5) were then determined by applying the
mapping function:

fibtarget = ϕ(fibtemplate). (7)

We also used the fiber function to define the fiber direc-
tion for each element in the mesh, which served as the
fiber direction input to the transversely-isotropic consti-
tutive model (described later). For each integration point
(i.e., point within an element for which the constitutive
model is evaluated) in the finite-element mesh (Xtarget

pnt ), we
first determined the coordinate in the template geometry by
applying the inverse mapping:

Xtemplate
pnt = ϕ−1

(
Xtarget

pnt

)
. (8)
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FIGURE 4. Fiber geometry templates used for parallel muscles (A), pennate muscles (B), curved muscles (C), and fanned muscles
(D). The templates consist of interpolated rational Bezier spline curves. In the simplest case (A), only one set of spline curves are
the basis for the interpolation. In the most complex case (D), four sets of spline curves are the basis for the interpolation.

We then used a least-squares method to determine corre-
sponding coordinates (t, s) in the fiber function, calculated
the fiber direction at those coordinates (using Eq. (6)), and
applied the mapping function to find the resulting fiber
direction in the target geometry:

fibdirtarget = ϕ(fibdirtemplate). (9)

Constitutive Model

We modeled muscle as a fiber-reinforced composite
with transversely-isotropic material symmetry, similar to
the approach previously used to represent ligament material
behavior.46 The model uses an uncoupled form of the strain
energy42,46 to simulate the nearly-incompressible behavior

of muscle tissue. This uncoupled form additively separates
the dilational and deviatoric responses of the tissue, giving
rise to the following strain energy function (�):

�(B1, B2, λ, α, J ) = W1(B1) + W2(B2)

+ W3(λ, α) + K

2
ln (J )2, (10)

where α is the activation level in the muscle, K is the bulk
modulus, and B1, B2, λ, and J represent the along-fiber
shear strain, cross-fiber shear strain, along-fiber stretch,
and volume strain, respectively. The parameters for shear
strains (B1 and B2) were based on a new strain invariant set
for transverse isotropy proposed by Criscione et al.13 The
functional forms for W1 and W2 adopted for our model are
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FIGURE 5. Examples of fiber geometries mapped to the psoas (A), gluteus maximus (B), iliacus (C), and gluteus medius (D) muscles.

as follows:

W1 = G1 B2
1 and W2 = G2 B2

2 , (11)

where G1 and G2 represent the effective along-fiber shear
modulus and cross-fiber shear modulus, respectively. Equa-
tions (11) were used to represent both muscle and tendon,
with different values for constants G1 (5.0E2 Pa for muscle
and 5.0E4 Pa for tendon) and G2 (5.0E2 Pa for muscle and
5.0E4 Pa for tendon). The functional form for W3 adopted

for our model was as follows:

λ
∂W muscle

3

∂λ
= σmax

(
α f fiber

active(λ) + f fiber
passive(λ)

)
λ/λofl, (12)

where σ max is the maximum isometric stress, λofl is the fiber
stretch at which the sarcomeres reach optimum length, and
f fiber
active and f fiber

passive correspond to normalized active and pas-
sive (respectively) force–length relationships of a muscle
fiber.49 The activation level (α) can be any value between 0
(no activation) and 1 (maximal activation).
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We also defined W3 for tendinous tissue using a func-
tion that characterized the relationship between the Cauchy
stress in the tendon (σ tendon) and the fiber stretch (λ):

λ
∂W tendon

3

∂λ
= σ tendon(λ). (13)

The expression for σ tendon and the associated material con-
stants were defined to be consistent with the published
stress–strain relationship for tendon.49 Further description
of the constitutive model can be found in Blemker et al.10

Simulation Procedure

Coordinate systems were specified for the pelvis and
femur based on anatomical landmarks, similar to Arnold
et al.6 The medial–lateral axis of the pelvis was defined
by the vector from the right anterior superior iliac spine
(ASIS) to the left ASIS. The frontal plane was defined by
the ASIS vector and a point on the pubic tubercle. The
hip joint was represented as a ball-and-socket joint, and
the center of the hip was determined by fitting a sphere to
the surface of the femoral head. The nodes in the origin
and insertion areas of the muscles were specified to attach
rigidly to their corresponding bone (pelvis or femur). As
a result, the displacement boundary conditions for each
muscle mesh were defined by specifying a set of hip joint
angles. The bones were considered as rigid bodies, and a
no-friction penalty contact formulation24 was used to pre-
vent penetration between muscles and bones and between
neighboring muscles. The simulations were performed in
NIKE3D,39 a nonlinear implicit finite-element solver. The
solutions were quasi-static and solved incrementally. Sim-
ulation times were on the order of 5–10 CPU hours on a
Silicon Graphics Origin 3800 shared memory supercom-
puter (Silicon Graphics, Mountain View, CA). The results
of each simulation were imported into a graphics-based
musculoskeletal modeling environment.15

Evaluations of the Models

We first evaluated the models by comparing the mus-
cle fiber moment arms for hip flexion–extension, internal–
external rotation, and abduction–adduction with published
experiments and/or models. To do this, we performed sim-
ulations in which we specified a range of hip flexion, ad-
duction, or internal rotation angles. We then tracked se-
lected fibers within the finite-element solution to obtain
fiber lengths (lfiber) as a function of joint angle (θ ) and fit
a fourth-order polynomial to each function, lfiber(θ ). Indi-
vidual fiber moment arms (mafiber) were calculated accord-
ing to the principal of virtual work,3 mafiber = ∂lfiber/∂θ .
We compared the fiber moment arms predicted by the
models with moment arms determined from anatomical
measurements6,14,20,36 and published models of the lower
extremity (with series-of-line-segment representations of
muscle).6,16

We also evaluated the models by comparing the changes
in shape of the 3D muscle models with changes in shape
measured from the MR images we acquired with the hip
extended and flexed positions. We used an iterative closest-
point algorithm9 to register the surface reconstructions of
the pelvis and femur in the extended position to the pelvis
and femur surfaces in the flexed position. Based on these
registrations, we calculated the relative position of the fe-
mur with respect to the pelvis, which corresponded to
55◦ of hip flexion, 6◦ of hip abduction, and 7◦ of exter-
nal rotation (rotations defined in that order). We applied
this hip position to the finite-element model (through 50
increments), which calculated the muscle shape changes
resulting from the change in hip position. To estimate the
distance between the model surfaces and the surfaces seg-
mented from the MR images, we projected each point of
the segmented surface onto the surface of the 3D mus-
cle model. These projections gave us a distance error for
each point on the segmented surface; we then calculated
the average and root mean square (RMS) errors across all
the points. Since the segmented surface points were evenly
distributed across the segmented surface, the resulting error
measures were not highly sensitive to the number of points
used.

RESULTS

The peak hip flexion moment arms for the psoas fibers
(Fig. 6(C)) ranged from 2.0 to 3.0 cm and for the iliacus
fibers (Fig. 6(D)) ranged from 2.5 to 5.2 cm. The larger
variation in peak hip flexion moment arms across iliacus
fibers reflects the fact that the iliacus has a broad origin on
the pelvic fossa. The average of the psoas fiber hip flexion
moment arms were similar to hip flexion moment arms
determined experimentally6 and the largest of iliacus fiber
hip flexion moment arms were similar to moment arms
estimated from a model of the lower extremity that used a
series of line segments.16 The peak hip adduction moment
arms for the psoas fibers (Fig. 6(G)) ranged from 1.5 to
2.0 cm and for the iliacus fibers (Fig. 6(H)) ranged from 0.0
to 1.5 cm. The peak hip internal rotation moment arms for
the psoas fibers (Fig. 6(K)) ranged from 0.2 to 0.8 cm and
for the iliacus fibers (Fig. 6(L)) ranged from 0.2 to 0.9 cm.

The peak hip extension moment arms for the gluteus
maximus fibers ranged from 1.0 to 7.0 cm (Fig. 7(C)). Pre-
vious experiments,20 which represented gluteus maximus
with a single line of action, had a single peak moment
arm that was slightly larger than the largest 3D model
fiber moment arm. The peak hip extension moment arms
for the gluteus medius fibers (Fig. 7(D)) ranged from
−2.0 to 2.0 cm. For both of the gluteal muscles, the hip
flexion moment arms determined experimentally20 varied
more with hip flexion than the moment arms computed
with the 3D models. The peak hip adduction moment
arms for the gluteus maximus fibers (Fig. 7(G)) ranged
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FIGURE 6. The psoas (green) and iliacus (purple) muscle models with the hip extended/flexed (A/B), adducted/abducted (E/F),
internally/externally rotated (I/J). Hip flexion (C,D), adduction (G,H), and internal rotation (K,L) moment arms predicted by the models
are compared to previously reported data. Psoas hip flexion moment arms (C) are compared to experimental measurements,6 and
the iliacus hip flexion moment arms (D) are compared to a series-of-line-segments model.16 Psoas (G) and iliacus (H) hip adduction
moment arms are compared to experimental measurements in the neutral position, which considered the two muscles as one
unit.20 Psoas (K) and iliacus (L) hip internal rotation moment arms are compared to a previously-published model which was
validated by experimental measurements and also considered the two muscles as one unit.14

from 0.1 to 7.0 cm, and for the gluteus medius fibers
(Fig. 7(H)) ranged from −3.0 to 1.5 cm. The peak hip
internal rotation moment arms for the gluteus maximus
fibers (Fig. 7(K)) ranged from −3.5 to −0.2 cm, and for
the gluteus medius fibers (Fig. 7(L)) ranged from −2.3
to 2.1 cm.

There was generally good agreement between the shape
changes predicted by the models and the MRI data (Fig.
8, Table 1). The average error between the psoas sur-
faces was 1.7 mm, and the average error between the ili-
acus surfaces was 2.0 mm. The average error between the

gluteus maximus surfaces was 5.2 mm, and the average
error between the gluteus medius surfaces was 2.3 mm.
As a comparison, the average error between the registered
pelvis surfaces was 1.3 mm, and the average error between
the registered femur surfaces was 1.2 mm. The larger er-
ror between the gluteus maximus surfaces was possibly
due to differences in boundary conditions between the im-
ages and the models. The posterior surface of the muscle
was in contact with the table of the scanner during im-
age acquisition; this external force was not included in the
model.
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FIGURE 7. The gluteus maximus (cyan) and gluteus medius (red) muscle models with the hip extended/flexed (A/B), ad-
ducted/abducted (E/F), internally/externally rotated (I/J). Hip extension (C,D), adduction (G,H), and internal rotation (K,L) moment
arms predicted by the models are compared to previously reported data. Gluteus maximus (C) and medius (D) hip extension
moment arms are compared to experimental measurements.20,37 Gluteus maximus (G) and medius (H) hip adduction moment arms
are compared to experimental measurements in the neutral position.20 Gluteus maximus (K) and medius (L) hip internal rotation
moment arms are compared to a previously-published model which separated the muscles into multiple compartments and was
validated by experimental measurements.14

DISCUSSION

This new 3D formulation for representing muscle can
characterize muscles with complex geometry and represent
the variation in moment arms among fibers in a muscle. In
contrast to line-segments path representations, 3D models
can represent complex path motion through multiple de-
grees of freedom without the need for defining via points

or wrapping surfaces. The predictions of change in shapes
for the 3D models compared well with shape changes es-
timated from static MR image data in two positions. We
found that fiber moment arms have a considerable variation
within each muscle, indicating that the common assumption
that all fiber lengths and excursions within muscle are the
same may not be valid, at least for the muscles examined
here.
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FIGURE 8. Comparison of segmented MR surface data acquired from the hip in two positions (top row) with changes in shape
predicted by the 3D models (bottom row). The two different shades/colors in the 3D models distinguish between muscle tissue
elements (darker/red) and tendon tissue elements (lighter/taupe).

Previous studies have described continuum representa-
tions of muscle23,30,31,43 and used them, for example, to
investigate intramuscular pressures28 and understand my-
ofascial force transmission.48 These models represent the
complex nonlinear behavior of muscle tissue; however, they
have not incorporated realistic geometric arrangements of
muscle fibers or muscle–bone and muscle–muscle surface
contact. Agur et al.1 developed methods to capture and
model the 3D arrangement of muscle fibers from anatomi-
cal dissection, which can provide insight into the 3D com-
plexity of muscle architecture; however, these models do
not predict the changes in shape or fiber geometry as joints
move. The formulation presented here advances these meth-
ods by combining 3D representations of fiber arrangements

with representations of the nonlinear constitutive behavior
of muscle and representations of muscle–bone and muscle–
muscle interactions to predict muscle shape, lengths, and
moment arms through a range of joint positions.

We found that representation of muscles as 3D bodies
that interact with other muscles and underlying structures
resulted in different variations in moment arms with joint
angles than predicted by previous experimental measure-
ments and series-of-line-segments models. For example,
the gluteus maximus and medius muscle moment arms pre-
dicted by the 3D models varied less with hip flexion than
predicted by experiments. In our models, the path motion
was constrained by interactions between the entire bound-
ary of the muscles and the underlying bones. Furthermore,

TABLE 1. Distances between muscle surfaces.

Maximum Average Root-mean squared Number of
error (mm) error (mm) error (mm) points

Psoas 8.1 1.7 2.2 791
Iliacus 7.0 2.0 2.5 795
Gluteus maximus 25.1 5.2 7.5 845
Gluteus medius 9.4 2.3 3.1 394
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because the muscle is considered as a 3D continuum, these
external constraints also restrict the movement of the rest
of the muscle tissue, based on the transverse mechanical
properties and the volume preservation constraint. Exper-
imental measurements of moment arms generally require
removal of some surrounding structures, and line-segment
representations do not generally represent the interactions
between muscles. Moreover, because experiments and pre-
vious models only represent the muscle using a line or wire,
the resulting internal constraints would not be imposed. As
a result, the muscles in previous experiments and models
are, in some cases, less constrained than they are in vivo.
In contrast, the mechanics-based approach presented in this
paper explicitly represents the constraints that external and
internal structures place on each muscle.

This mechanics-based approach for representing muscle
could also be applied to characterizing the effects of muscle
activation on muscle geometry. As muscles develop force,
they bulge and interact with each other and other structures.
Models have generally assumed that muscle moment arms
are independent of muscle force. The models presented
here can be used to test this assumption by applying vari-
ous muscle activation levels to the constitutive model. The
effects of muscle activation will likely depend on the mus-
cle’s architecture and geometry as well as the surrounding
structures.

The 3D muscle models have more input parameters than
the line-segments path models. While some of the material
properties have been measured (e.g., force–length behavior
of a fiber), data on which to base other parameters have
not been determined experimentally (e.g., the resistance to
along-fiber and cross-fiber shear). Data exist for the average
optimal fiber length for each of the lower limb muscles;21,47

however, no comprehensive data exist that characterize the
variation in optimal fiber lengths within the lower-limb
muscles. Detailed architecture measurements that capture
the fiber trajectories in the muscle and the distribution of op-
timal fiber lengths are needed. Though more data is needed
to better define the geometry and material properties of 3D
models, the parameters of the models we introduced have
an anatomical and physical basis and can be measured in
future experiments.

The 3D muscle models also require new types of data
for validation. We compared the moment arms estimated
by the 3D models with moment arms determined using
traditional techniques, like the tendon excursion method.3

These measurements fall short of fully testing the models.
For each joint position, the measurements provide only one
value for the moment arm of a muscle compartment, mak-
ing the same assumption that all fibers within each muscle
compartment have the same moment arm. An alternative
could be to use the dynamic ultrasound measurements of
changes in fascicle geometry during joint motion34 to test
the accuracy of fiber lengths and moment arms predicted by
the 3D muscle models. The second evaluation we made in

this paper was to compare the muscle shape changes with
static MR images in multiple joint positions. While we show
a preliminary comparison between two joint positions, one
could imagine a more comprehensive comparison over a
range of joint angles in a larger number of subjects. De-
formations from these models could also be evaluated with
dynamic MR imaging, such as cine phase-contrast MR8

or real-time MR,7 which give muscle tissue velocities and
displacements throughout a motion cycle.

Currently, it is impractical to use this 3D muscle repre-
sentation in all situations for which musculoskeletal mod-
els are used. For example, the computational expense of
these models makes them incompatible with simulations
that are already computationally expensive, like controlling
a forward dynamic simulation of movement.4 However, the
results from the 3D models could be used in a dynamic sim-
ulation by fitting regression equations to the average muscle
lengths and moment arms33 predicted by the models.

Models of musculoskeletal system are used in a broad
range of scientific studies. Models of musculoskeletal ge-
ometry are used to simulate orthopedic procedures, such
as osteotomies,11,40 tendon transfers,17,25,32,35 and tendon
lengthenings.18,19 Musculoskeletal models, combined with
dynamic simulation, are used to study normal5 and patho-
logical human movement.38 The conclusions from these
studies depend on accurate representation of muscle archi-
tecture and geometry. The methods introduced here offer
the potential to improve our ability to represent complex
muscle geometry and architecture and enhance the accu-
racy of models of the musculoskeletal system for a wide
variety of applications.
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