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 

Abstract—Goal: Technologies that augment human 

performance are the focus of intensive research and 

development, driven by advances in wearable robotic systems. 

Success has been limited by the challenge of understanding 

human–robot interaction. To address this challenge, we 

developed an optimization framework to synthesize a realistic 

human standing long jump and used the framework to explore 

how simulated wearable robotic devices might enhance jump 

performance. Methods: A planar, five-segment, seven-degree-of-

freedom model with physiological torque actuators, which have 

variable torque capacity depending on joint position and velocity, 

was used to represent human musculoskeletal dynamics. An 

active augmentation device was modeled as a torque actuator 

that could apply a single pulse of up to 100 Nm of extension 

torque. A passive design was modeled as rotational springs about 

each lower limb joint. Dynamic optimization searched for 

physiological and device actuation patterns to maximize jump 

distance. Results: Optimization of the nominal case yielded a 2.27 

m jump that captured salient kinematic and kinetic features of 

human jumps. When the active device was added to the ankle, 

knee, or hip, jump distance increased to between 2.49 and 2.52 m. 

Active augmentation of all three joints increased the jump 

distance to 3.10 m. The passive design increased jump distance to 

3.32 m by adding torques of 135 Nm, 365 Nm, and 297 Nm to the 

ankle, knee, and hip, respectively. Conclusion: Dynamic 

optimization can be used to simulate a standing long jump and 

investigate human-robot interaction. Significance:  Simulation 

can aid in the design of performance-enhancing technologies. 

 
Index Terms—biomechanics, human performance, 

optimization, robotics, simulation 
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I. INTRODUCTION 

DVANCES in robotic technology have recently enabled 

the development of wearable sensors and actuators aimed 

at assisting human movement. Robotic devices have been used 

successfully to assist patients with lower limb amputation in 

walking and climbing up and down stairs [1-6]. Augmentative 

devices for able-bodied individuals have also assisted with 

lifting and moving heavy loads [7], increased load carriage 

capacity during walking [8], and decreased the metabolic cost 

of hopping [9-12], but devices have had mixed results in 

decreasing the metabolic cost of walking and running [13-17]. 

Despite progress in wearable robotic systems, assisting 

able-bodied individuals has been limited by an insufficient 

understanding of the interaction between the neuromuscular 

system and assistive devices. Devices can change the 

operating length and velocity of muscles during a task, making 

them work suboptimally [9]. The neuromuscular system 

adapts when additional actuation is applied, and it can be 

difficult to predict how this adaptation will evolve [15]. 

Because of these challenges, much effort is currently spent in 

device testing and iteration, which slows the design process. 

Further, human subjects may be at risk of injury if devices 

apply large or poorly timed forces. 

Two approaches will accelerate the development of 

wearable robotic systems. First, experimental robotic testbeds 

allow device developers to explore a wide range of forces and 

torques to examine the effects on human performance [18]. 

Second, modeling and simulation provide insight into 

variables that cannot be measured experimentally, which may 

improve designs of augmentative devices, as suggested by 

previous review papers [19, 20]. 

To investigate the potential of simulation to give insight 

into assistive device design, we developed a framework to 

improve standing long jump performance. Jumping is a 

prevalent motion used as a measure of human performance. 

The task requires coordinated timing of muscles to flex each 

of the lower limb joints and then rapidly extend for take-off. 

Although complex, the motion is tractable for simulation since 

the salient features of the jump occur in the sagittal plane [21] 

and thus can be captured with a planar model. Jumping also 

has an unambiguous, quantifiable goal: to maximize jump 

distance without injuring oneself. 
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A simulation for designing devices must represent the 

important features of movement dynamics (e.g., ground 

reaction forces, joint motions, and joint moments should 

approximate experimental measurements of these variables). 

Ashby and Delp [21] used dynamic optimization of the 

standing long jump to elucidate the role of the arms in 

enhancing jump performance. This simulation produced a 

similar velocity at take-off and jump distance compared to 

experimental data [22-24], but it is unclear if simulated ground 

reaction forces and joint moments were consistent with 

experimental measurements. Ridderikhoff et al. [25] used 

dynamic optimization to investigate differences in control 

strategy between standing long jumps and vertical jumps. The 

changes in simulated COM kinematics between vertical and 

horizontal jumping matched experimental trends, but ground 

reaction forces were not investigated. These studies provide a 

foundation for developing simulations using dynamic 

optimization, but more work is needed to rigorously validate 

simulations against experimental data before using this type of 

framework for simulation-based design.  

The overall goals of this work were to investigate the utility 

of simulation for designing a wearable robotic system to 

augment a standing long jump and to explore the possibility of 

generating candidate designs and hypotheses about human 

performance. The first aim of this study was to develop a 

dynamic optimization framework that could synthesize a 

realistic standing long jump with a counter-movement, 

extension phase, take-off kinematics, ground reaction forces, 

and joint moments comparable to experiments. The second 

aim was to use this framework to design active and passive 

devices to increase simulated jump performance and elucidate 

the changes in jump strategy that account for the increase in 

jump distance.   

II. METHODS 

We developed an optimization framework to generate a 

standing long jump and to predict performance changes due to 

added actuators (Fig. 1). We implemented a human model 

with physiological torque actuators based on muscle dynamics 

and geometry then used an optimizer to find the controls that 

maximized the model’s jump distance without incurring 

injury. We first synthesized an unassisted, or nominal, jump 

and compared the simulation to experimental data. To explore 

how augmentative devices could increase performance, we 

simulated both active and passive augmentation strategies, 

allowing the optimizer to choose human controls and device 

parameters simultaneously. 

A. Human model, actuators, and controller 

The human model was implemented in OpenSim [26] based 

on a model described by Ashby and Delp for generating 

simulations of standing long jumps with dynamic optimization 

[21]. The human model (Fig. 2) was composed of five rigid 

segments (foot, shank, thigh, pelvis-torso-head, and arm) and 

seven degrees of freedom (three for the location and 

orientation of the torso and four pin joints at the ankle, knee, 

hip, and shoulder). Since we assumed an identical control 

strategy for each side of the body, the right and left lower 

limbs and upper limbs and their corresponding joints were 

lumped together. Segmental parameters, including the mass, 

inertia, and length of each rigid segment, were based on a 

previous experimental study of untrained jumpers [22]. 

The model was driven by torque actuators at the ankle, 

knee, hip, and shoulder that represented the combined action 

of muscles crossing each joint. These physiological torque 

actuators were based on the combined muscle properties, 

 
Fig. 1.  Flowchart of the framework used to optimize the standing long jump. In the dynamics block, a controller feeds activation patterns to the muscle torque 

actuators, which represent muscles in the human model. Integrating the equations of motion forward in time generates a forward simulation. An optimization 

loop is wrapped around the dynamics block. An objective function evaluates the performance of each forward simulation driven by the current set of activation 

patterns. The Covariance Matrix Adaptation (CMA) optimization algorithm uses the information from objective function evaluations to create the next set of 

activation patterns to be fed into the controller. To predict the performance of an augmentative device, a model of the device is added to the human model, and 

the optimizer adjusts the device parameters and activation patterns concurrently. 
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including moment arms and length- and velocity- dependent 

force generation capacities, about each joint. The magnitude 

of the torque was dependent on activation (a), joint angle (q), 

and joint angular velocity (q̇):  

 

)()( qTqaTT velpos
  (1) 

 

where Tpos is the maximum isometric torque as a function of 

joint angle and Tvel is a function that scales the maximum 

torque according to the joint angular velocity. There were 

eight different Tpos and Tvel curves describing torques about the 

ankle, knee, hip, and shoulder in flexion and extension. These 

curves were implemented as described by Ashby and Delp 

[27] and were based on experimental dynamometer data [28-

35]. Activation ranged between -1 and 1, where negative 

values indicated extension torque and positive values indicated 

flexion torque. A controller governed the activation values for 

the four physiological torque actuators. Each actuator had its 

own control signal, which was constrained to be a piecewise 

linear function with nodes every 50 ms. Since muscles were 

represented by torque actuators with no delays, muscle 

activation dynamics, tendon dynamics, and muscle-tendon 

unit energy storage were not included in the model (see 

Discussion for implications of this assumption).  

Ligaments were modeled by variable-stiffness springs at the 

ankle, knee, hip, and shoulder that engaged when a joint 

hyperextended or hyperflexed. The stiffnesses and angles at 

which the springs engaged were the same as those used by 

Ashby and Delp [27]. Ground contact was modeled as two 

point constraints: one at the heel and one at the toe. Each point 

constraint released when the vertical component of the ground 

reaction force reached 0, as determined by integration of the 

model’s equations of motion. 

B. Optimization framework for generating a simulation of a 

standing long jump 

We used dynamic optimization to solve for control signals 

to maximize standing long jump performance. In particular, 

the optimization (or design) variables were the values of the 

nodes for the controller signals, which were constrained by the 

optimizer to be between -1 and 1. There was a total of 132 

design variables. At each optimization step, the equations of 

motion were integrated forward in time until the heel or toe’s 

vertical position returned to the ground after a successful take-

off.  

The optimizer sought to minimize the following objective:  
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The objective function rewards longer jump distances through 

the variable d, which defines the distance from the initial 

horizontal toe position to the horizontal heel position at 

landing, in meters. Jumps that were likely to fall at landing 

were penalized by KCMx and KCMy, which are the horizontal 

and vertical landing penalties if the position of the COM was 

too far behind the heel and too low to the ground, respectively. 

Jumps in which the person would become injured were 

penalized by Kinjury, which penalizes the use of ligament 

torques. Compared to the previous study by Ashby and Delp, 

this formulation included two extra terms, Kslip and Ktime, in the 

objective function. Slipping during take-off was penalized by 

Kslip, which discards jumps that would lead to slipping before 

take-off. Finally, jumps were penalized by Ktime, which 

reduced the search space by discarding simulations where the 

model jumped immediately without a counter-movement; 

however, this formulation did not artificially enforce a 

counter-movement since a jump without a counter-movement 

could avoid this penalty by holding a static pose for sufficient 

time before jumping. The Ktime penalty was inactive (i.e., 

yielded a value of zero) for the final optimized solutions. The 

weights, wi, represent the relative importance of the high-level 

tasks related to each performance term. We report one set of 

values for the weights (see Appendix) which yielded results 

that were a good match with experiments. Details of all 

variables in the objective function are provided in the 

Appendix.  

 
Fig. 2.  Planar human model used for dynamic optimization of standing long 

jumps. The model consists of six segments with seven degrees of freedom. 

The ankle, knee, hip, and shoulder joints are modeled as pin joints described 
by the angles θA, θK, θH, and θS, respectively, which are each actuated by a 

muscle torque actuator (TA, TK, TH, and TS). The elbow and neck joints are 

locked.  
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We used the Covariance Matrix Adaptation (CMA) 

optimizer [36], which has been used successfully for dynamic 

optimization of human movement [37]. CMA is an 

evolutionary algorithm that samples the design variable space 

by creating a set of candidate solutions (defined as a 

generation) given a specified population size (defined as the 

number of samples in each generation) and a mean, covariance 

matrix, and step size for the population. The algorithm updates 

the mean, covariance matrix and step size for each generation. 

Parameters for the optimizer were chosen empirically. The 

population size per generation was set as 98, and the initial 

step size was set as 0.01. Since the optimizer is stochastic and 

may yield different solutions each time, we re-ran an 

optimization with the same initial guess 20 times. The best 

result from these optimizations was used to seed another set of 

20 optimizations until the final objective function value of 

each of the 20 optimizations did not improve compared to the 

seed’s objective function value.  

The model was initialized with the lower limb joints in a 

standing posture, whereas Ashby and Delp’s simulation began 

in a crouched posture and did not include a counter-

movement. All initial coordinate velocities were set to 0 m/s 

or 0 rad/s. The initial controls were generated by hand tuning 

to find a jump with a forward velocity at take-off. We used the 

initial controls for the optimized nominal solution to seed the 

augmented jumps. 

C. Validation of the Simulated Nominal Standing Long Jump 

To assess how well the optimized solution captured realistic 

human movement, we compared the simulation to kinematic 

and kinetic data from experiments. Simulated kinematics at 

take-off, including body inclination angle and velocity of the 

COM, were compared to three previous studies with similar 

jump distances [22-24]. Lower body joint torques were 

compared to experimental data from Horita et al. [23] to 

validate the magnitude of peak torque and the timing of the 

extension phase. We compared horizontal and vertical ground 

reaction forces to experimental data from Ashby and Heegaard 

[22] to verify that there was a counter-movement followed by 

an extension phase. Specifically, we ensured that the vertical 

ground reaction force reached a minimum prior to the vertical 

ground reaction force increasing above body weight, and that 

both the vertical and horizontal ground reaction forces peaked 

just before take-off. 

D. Augmenting the Standing Long Jump 

Experimental studies show that maximal torque production 

occurs during the extension phase just before take-off [23]; 

thus, there is a clear need to increase this torque production. 

We first modeled an active device that could provide one burst 

of constant extension torque at one of the lower limb joints 

(the ankle, knee, or hip) with a 100 Nm limit. Previous work 

has shown that up to 175 Nm of torque can be generated from 

a lightweight device [18], thus we chose a torque well within 

the limit. We assumed each active device was massless. The 

control signal for each actuator had three parameters: the 

magnitude of the applied torque, the time when the torque was 

initially applied, and the duration of application. We 

optimized the device controls and the physiological torque 

controls by adding both controllers to the optimization 

framework. We tested four actuation conditions: 1) ankle, 2) 

knee, 3) hip, and 4) all three together (multi-joint active 

device). 

We also modeled a multi-joint passive device by adding 

massless rotational springs to the ankle, knee, and hip. We 

again used our optimization framework, allowing the 

optimizer to choose each spring’s stiffness and equilibrium 

position (the joint position at which no torque is produced), 

along with the physiological torque controls.  

After optimizing each device design and the corresponding 

physiological torque controls, we identified changes in the 

kinematics and kinetics of the augmented simulation 

compared to the nominal simulation. We analyzed changes in 

COM position and velocity at the instant of take-off. We also 

inspected the torque curves for the lower limb joints to study 

the optimal actuator design and changes to the human control 

strategy. All models and results from the simulations 

presented here are freely available at 

https://simtk.org/home/predictive_slj/. 

 
Fig. 3.  Kinematic parameters of the center of mass (COM) at the instant of take-off from experimental data and from the nominal simulation. Parameters d and 

α describe the position of the COM with respect to the toe, and v and θ, respectively, describe the magnitude and direction of the COM velocity vector. Horita 

[23] and Wakai [24] reported results using the mean and standard deviation (Mean ± SD); Ashby [22] reported results using least squared mean and a 95% 

confidence interval (LSM ± 95% CI). Results that were not reported are denoted by NR. 
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III. RESULTS AND DISCUSSION 

A. Simulation of a nominal jump 

We first assessed if our dynamic optimization framework 

could reproduce a human standing long jump by comparing 

relevant kinematics and kinetics to experimental data. The 

framework was able to capture the salient features of a human 

standing long jump, including the counter-movement and 

extension phases, which led to realistic kinematics at take-off 

and total jump distance. In particular, the optimized, nominal 

jump entered the flight phase with kinematic parameters that 

were within 1 standard deviation (SD) of human subjects (Fig. 

3), including body inclination angle (α) and the velocity vector 

of the COM, described by its magnitude (v) and angle with the 

horizontal (θ). The model jumped 2.27 m, which is also 

consistent with experimentally measured jump distances [22-

24] (see Supplementary Material for a video of the simulated 

jumps). 

We also compared kinetics from the simulation to 

experimental data of human jumping (Fig. 4). For all three 

joints in the lower extremity, the peak torque values generated 

in the simulation were within 1 SD of the experimental values 

for the ankle and hip, and within 2 SD for the knee [23]. The 

simulation also produced a rapid extension torque phase just 

before take-off, as observed in experiments.  

We observed differences from experimental data, as the 

simulated hip and knee extension torques each had a delayed 

onset and faster rate of increase in preparation for take-off. 

Both of these differences are likely due to the lack of 

activation dynamics in the model, which allowed the model’s 

actuators to develop torque instantaneously. Consequently, the 

model had a later onset for hip and knee extension torque but 

still generated peak torques at the same time as peak torques 

measured in experiments. 

We also assessed whether key phases of a standing long 

jump were captured in the simulation by comparing simulated 

ground reaction forces to experimental ground reaction forces 

(Fig. 5). Both the horizontal and vertical ground reaction 

forces peaked just prior to take-off, as seen in experiments 

[22]. The simulated jump also captured the counter-movement 

phase, as seen by the dip in the vertical ground reaction force 

that starts approximately 500 ms before take-off.  

Discrepancies between the simulated and experimental 

vertical ground reaction force included a smaller minimum 

value during the simulated counter-movement, a steeper 

vertical ground reaction force curve both in initiation of the 

counter-movement and in the extension phase, and a peak 

vertical ground reaction force that was higher than in 

 
Fig. 4.  Joint torques about the (a) hip, (b) knee, and (c) ankle during the 

ground contact phase for the optimized nominal simulation. The shaded 

region shows the mean with one standard deviation from experiments. Joint 

torques from the nominal simulation are shown in the solid line. 

 

 
Fig. 5.  Horizontal (top) and vertical (bottom) ground reaction force during 

the ground contact phase for the optimized nominal simulation. The shaded 

region shows the least squared mean and 95% confidence interval from 
experimental data. Ground reaction forces from the nominal simulation are 

shown by the solid line.  
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experiments. The lack of activation dynamics in the model 

allowed the ground reaction force to change instantaneously, 

contributing to these discrepancies. In addition, the population 

in Ashby and Heegaard’s study [22] consisted of untrained 

jumpers, who may perform suboptimal jumps with a shorter 

counter-movement phase. This would limit performance as a 

greater counter-movement time allows for a larger impulse 

from the ground reaction force to increase velocity at take-off. 

Finally, we used a simple two-constraint contact model, which 

could have also contributed to the difference between 

experimental and simulated ground reaction forces. Once the 

heel came off the ground, the only point of contact was a 

single point at the toe, which could not move until take-off. A 

contact model where the contact point could move 

horizontally along the foot would more realistically represent 

the application of the ground reaction force, which could lead 

to smoother ground reaction forces. 

B. Simulation-based design of active augmentative devices 

We used the framework to evaluate how augmentative 

devices might enhance a standing long jump. Active 

augmentative devices increased jump distance in all cases. In 

general, human control during the counter-movement phase 

was similar to the nominal case, but small changes during the 

extension phase prepared the human for the torque assistance. 

Increases in distance could be attributed to greater velocities 

and smaller body inclination angles at take-off. 

In particular, single-joint active actuation yielded similar 

improvements in performance, increasing jump distance from 

2.27 m for the nominal case to 2.49 m, 2.52 m, and 2.49 m, for 

the ankle, knee, and hip, respectively (Table I). Although the 

optimizer chose to use at least 99 Nm torque (of the 100 Nm 

possible) in all three cases, the kinematics at take-off varied 

for each type of joint assistance. For example, the model with 

a knee actuator jumped farther than the hip or ankle actuator 

cases, although the optimizer found a solution with a lower 

velocity at take-off. This lower take-off velocity was balanced 

by the jumper’s body configuration at take-off—the model 

with the knee actuator had the smallest body inclination angle 

(α in Fig. 3 = 55°) and its COM was the farthest ahead of the 

toes of all three cases (d in Fig. 3 = 0.62 m). An experimental 

study inspecting optimum take-off configuration of physically 

active individuals [24] noted that a lower take-off angle and 

higher take-off velocity are important for optimal jumps. 

When an external actuator was added to all three lower 

joints to test the multi-joint design, the jump distance 

increased to 3.10 m. This is greater than the projected jump 

distance of 2.96 m if the individual improvements from single-

joint augmentation were summed. As expected, the magnitude 

of the take-off velocity was highest for this condition. The 

location of the COM led to a smaller body inclination angle 

than any of the single-joint cases (54°) and the COM was also 

far ahead of the toes at take-off (0.62 m). 

TABLE I 
KINEMATIC PARAMETERS OF THE CENTER OF MASS AT THE INSTANT OF TAKE-OFF FOR ALL SIMULATION CASES 

 Nominal 
Active: 

Multi-joint 

Passive: 

Multi-joint 

Active: 

Ankle 

Active: 

Knee 

Active: 

Hip 

Jump distance (m) 2.27 3.10 3.32 2.49 2.52 2.49 

d (m) 0.57 0.62 0.67 0.54 0.62 0.59 

α (°) 56 54 50 58 55 55 
v (m/s) 3.63 4.55 4.90 3.93 3.87 3.90 

θ (°) 34 38 34 39 35 34 

Parameters d, α, v, and θ are defined in Fig. 3. 

 

 

 
Fig. 6.  Joint torques during the ground contact phase for an optimized jump 

with the multi-joint active device. Shown are the total joint torque (black) 

and the individual physiological (red) and device (blue) torques. The total 

joint torque from the simulated nominal case (gray) is shown for reference. 

Extension torques about the (a) hip, (b) knee, and (c) ankle are shown. For 

comparison to human joint torque capacity, the peak isometric torque values 

for hip, knee, and ankle extension are 584 Nm, 529 Nm, and 400 Nm, 

respectively. 
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The human control strategy, as quantified by the torque-

time profiles, remained similar in the counter-movement phase 

with the active actuation designs but changed during the 

extension phase in response to the added active assistance. 

Results for the multi-joint device are shown in Fig. 6, and 

similar trends were observed for single-joint assistance. 

During the counter-movement phase, the muscle strategy 

remained similar to the nominal case (compare Physiological 

and Nominal curves in Fig. 6), but at the start of the extension 

phase, we see changes in lower limb muscle coordination to 

maintain a good take-off pose while still generating as much 

torque as possible (i.e., each of the lower joint muscle torque 

actuators still reach a peak extension activation of at least 

0.98). The higher total extension torques provided by the 

active assistive devices and physiological torques contribute to 

the increased take-off velocity. Furthermore, the device 

actuators were able to provide torque until take-off, in contrast 

to the physiological torques, which approach 0 Nm at take-off 

due to the high joint velocities and the torque-velocity 

relationship. 

C. Simulation-based design of a passive augmentative device 

We also evaluated how the framework might be used to 

optimize a passive device for a standing long jump. The 

optimized device parameters are provided in Table II. The 

passive device improved the jump distance to 3.32 m, more 

than 1 m longer than the nominal jump, which we attribute to 

the high joint torques delivered by the device (see Device 

curve in Fig. 7). Furthermore, a combination of the highest 

COM velocity, smallest body inclination angle, and farthest 

COM location past the toes at take-off also helped to increase 

jump distance. 

Torque–time plots (Fig. 7) show how the human model’s 

strategy adapted to the added springs and demonstrate that the 

springs have been optimized to maximize added extension 

torque. During the counter-movement phase, the muscle 

actuation strategy changed dramatically from the nominal case 

for the ankle and the knee (compare curves Physiological and 

Nominal in Fig. 7). The physiological torques changed to 

balance the added device torques so that the counter-

movement with the passive device is similar to the nominal 

case (compare curves Total and Nominal). Furthermore, the 

smaller device torques at take-off (see Device curve) 

demonstrate that the optimization framework set the 

equilibrium position of the rotational springs to maximize the 

extension torque provided by the springs before take-off. The 

data also show that significant energy was stored in the device 

at the beginning of the simulation for the knee and hip; 

however, given the physiological torque capacities of these 

joints, this initial pose is feasible to achieve.  

Similar work has been done to investigate passive devices 

to assist in walking [38, 39] using exotendons. A key 

difference is that this previous work was based on cables 

passing over multiple joints, which coupled the assist torques 

about different joints. The model presented here used 

rotational springs about each lower-limb joint, which were 

uncoupled. The torques found here were also higher compared 

to the exotendon designs (e.g., 100s of Nm versus 10s of Nm), 

which is expected due to the higher torques needed for 

jumping compared to walking. 

D. Injury analysis 

We investigated the potential for injury with all simulation 

cases by analyzing the use of the ligament torques (Fig. 8). For 

the nominal case (panel (a)), the ligament torque produced is 

small throughout the motion. The multi-joint, ankle only, and 

knee only active devices (panels (b), (d), and (e)) significantly 

engaged the ligament torque around the ankle just after take-

TABLE II 

OPTIMIZED PASSIVE DEVICE SPRING PARAMETERS 

 Ankle Knee Hip 

Stiffness (Nm/rad) 113 265 144 

Equilibrium position (°) -45 39 4 

 

 

 
Fig. 7.  Joint torques during the ground contact phase for an optimized jump 

with the passive device. Shown are the total joint torque (black) and the 

individual physiological (red) and device (blue) torques. The total joint 

torque from the simulated nominal case (gray) is shown for reference. 

Extension torques about the (a) hip, (b) knee, and (c) ankle are shown. For 

comparison to human joint torque capacity, the peak isometric torque values 

for hip, knee, and ankle extension are 584 Nm, 529 Nm, and 400 Nm, 

respectively. 
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off, while the multi-joint passive and hip only active devices 

(panels (c) and (f)) produced similar torque magnitude values 

as the nominal case. In all cases, these torques happened over 

a very small time range, but could lead to injuries with the 

higher torques. The engagement of the ligaments could be 

reduced by two methods. First, a joint stop could be added as 

part of the device design. Alternatively, an extra term in the 

optimization penalizing the maximum magnitude on the 

ligament torque could be used to avoid situations that would 

injure the joints. 

E. Limitations 

The simplicity of the human model limits the questions that 

this study can address. For example, since the human model 

was driven by torque actuators that combined the action of 

multiple muscles, we cannot answer questions about the 

interaction of robotic systems with individual muscles. The 

physiological torque actuators could only extend or flex each 

joint and were independently controlled, so there could be no 

co-contraction or coupling of joint torques due to biarticular 

muscles. The lack of activation dynamics prohibits detailed 

analysis of the timing of muscle control, and the lack of 

tendon dynamics precludes the potential for energy storage 

and subsequent analysis. Finally, landing was controlled by a 

soft kinematic constraint, so questions about strategy after 

returning to the ground cannot be addressed. Addressing these 

limitations presents a challenge for future modeling and 

simulation work. 

Assumptions in modeling the devices also limit the 

conclusions we can draw from this analysis. Both the active 

and passive devices were assumed to be massless; thus, the 

improvements in jump distance were likely overestimated, and 

we could not explore the trade-off between actuator size and 

jump performance. Furthermore, the torques produced by 

active devices were idealized, since they could produce torque 

instantaneously. Since timing is very important in jumping, 

the increase in performance of an actual device might be 

smaller than that predicted here. We also note that we cannot 

conclude that this passive device would outperform active 

devices since the active designs would likely lead to farther 

jump distances if they had an equivalent torque-generating 

capacity as the passive devices. Future work could include 

modeling designs with added mass, sensors, and more 

sophisticated controllers. 

Further work is needed to validate the predicted changes in 

human control strategy presented here. We have presented one 

set of weighting coefficients in the objective function to 

represent the relative importance of motor subtasks. We did 

not perform a sensitivity analysis, but given the comparison to 

experimental data, we do not believe there would be a 

significant change in our results or conclusions from this 

study. Furthermore, while the performance simulated in this 

study is likely an upper bound on performance increases 

observed in practice, we believe the predicted adaptations to 

human jump strategy with actuation are reasonable since the 

torques in our model were constrained by experimentally 

 
Fig. 8. Ligament torques plotted for the whole jump for all four joints in all six conditions simulated. Joint torques are only plotted when they are non-zero. 

The black line is plotted at 0 Nm torque for the duration of each simulation. 
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measured relationships between joint position, velocity, and 

torque. Experiments are needed to test these conclusions. 

Given the formulation of the optimization problem, we 

cannot guarantee that the solutions found here are the global 

optima, and the solutions are sensitive to initial conditions. We 

addressed this limitation by using a stochastic optimizer, re-

running the same optimization many times, and restarting 

optimizations as the solution evolved. 

IV. CONCLUSION 

We present a dynamic optimization framework that can 

synthesize human-like simulations of a standing long jump 

without requiring experimental data. Our simulations captured 

the salient features of a jump when compared to independent 

experimental kinematics, joint torques, and ground reaction 

forces. The framework enabled us to perform human-in-the-

loop design, demonstrating that this method is flexible enough 

to optimize both active and passive devices acting at a single 

joint or multiple joints, along with the corresponding human 

control. Our framework generated several candidate designs 

all of which are achievable with currently-available 

lightweight actuators and springs. These candidate designs and 

hypotheses developed about jump performance must now be 

tested with experiments. In the future, this framework could be 

extended to include muscle models to elucidate how devices 

will interact on the individual muscle level and to optimize 

device design for more complex tasks such as walking and 

running. 

APPENDIX 

Parameters of the objective function are detailed here. The 

objective function was described by Eq. 2, and is provided 

here for convenience. 

 

)()()(

)(

432

1

timeslipinjury

CMyCMx

KwKwKw

KKwdf




 (A1) 

 

 d: Distance from initial horizontal toe position to the 

horizontal heel position at landing in meters 

 w1 = 10.0, w2 = 1.0 × 10-4, w3 = 1.0, w4 = 10.0: 

Penalty weights for 1) landing, 2) injury, 3) slip, and 

4) time 

 More details about each term K term are included 

below. 

 

The landing penalty is composed of two parts, one for the 

horizontal direction and one for the vertical direction. 

 

)0,max( xCMxxCMx qqK   (A2) 

 

 qx: Horizontal position of the heel at the time of 

landing 

 qCMx: Horizontal position of the center of mass at the 

time of landing 

 δx = 0.17 m: If the horizontal distance to the heel 

from the center of mass is larger than this value, a 

penalty is applied. This value is based on 

experimental data of standing long jumps of active 

individuals [24]. 

 

)0,max( yCMyyCMy qqK   (A3) 

 

 qy: Vertical position of the heel at the time of landing 

 qCMy: Vertical position of the center of mass at the 

time of landing 

 δy = 0.62 m: If the vertical distance to the heel from 

the center of mass is smaller than this value, a penalty 

is applied. This value is based on experimental data 

of standing long jumps of active individuals [24]. 

 

The injury penalty is based on using ligament torques due to 

hyperextension or hyperflexion. 
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 tf: Final time of the simulation, when the feet first 

make contact at landing 

 n = 4: The number of torques that represent ligaments 

in the model 

 Ti: The ith ligament torque 

 

The model cannot slip because contact is modeled by point 

constraints, so a penalty is applied when the ratio of the 

magnitude of the horizontal force to the vertical force is 

excessive. 
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 ttake-off: Time of take-off, the instant both contact 

points are inactive 

 F(i): The force applied to the foot from the ground at 

the ith constraint 

 m = 2: Number of points constraints modeling 

contact 

 µ = 0.8: Coefficient of static friction 

 

The time penalty decreases the search space of the optimizer, 

discarding trials and avoiding local minima where the model 

immediately jumps without a counter-movement. 
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 tf: Final time of the simulation, when the feet first 

make contact at landing 

 tthreshold = 1.2 s: Threshold below which the time 

penalty is applied if the final time of the simulation is 

too short 
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