IMPORTANT CONTACT INFORMATION

CITY CONTACTS

City of Sunnyvale

456 West Olive Ave. Sunnyvale, CA 94086 Tel: (408) 730-7415 TDD: (408) 730-7501 Fax: (408) 730-7286 sunnyvale.ca.gov

Hours of Operation: 8 a.m. to 5 p.m., M-F

Environmental Services Department (Leaks, Breaks, **Water Quality Questions)**

(408) 730-7400

Utility Division (Billing)

(408) 730-7400, Residential (408) 730-7681, Commercial

Backflow and Cross-Connection Control Program

(408) 730-7574

SCVWD Water Conservation Hotline

(408) 630-2554

SCVWD Pollution Hotline

(888) 510-5151 (24 Hours)

WEB RESOURCES

Department of Public Health

cdph.ca.gov

US EPA water.epa.gov/drink

Department of **Water Resources**

www.dwr.water.ca.gov

Emergency Preparedness ready.gov

Bay Area Water Supply and Conservation Agency bawsca.org

American Water Works

Association

awwa.org or DrinkTap.org

SCVWD valleywater.org

SFPUC

sfwater.org

TO GET INVOLVED

To provide input on decisions that affect drinking water quality, you are welcome to speak on any issue specifically coming before the City Council at a regularly scheduled council meeting. You can also speak on any topic you wish to bring to the Council's attention during the "Public Comments" portion of the meeting agenda. Alternatively, you can send a letter in advance of a meeting.

City Council Meetings

City Hall Council Chambers 456 West Olive Ave. Sunnyvale, CA 94086 Tuesdays, 7 p.m.

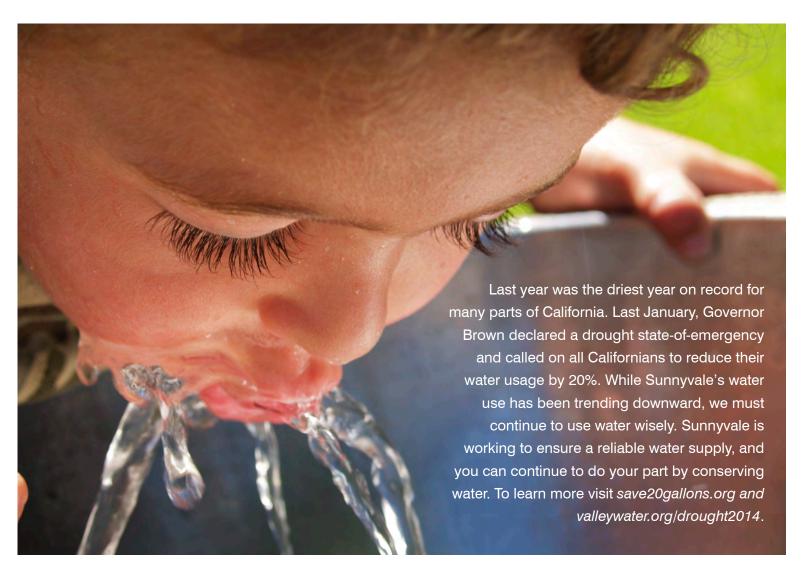
A list of City Council meetings, agenda items and study issues can be obtained by visiting sunnyvale.ca.gov or by calling the City Clerk's office at (408) 730-7483.

HEALTH & FDUCATION INFORMATION

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA Safe Drinking Water Hotline.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy; persons who have undergone organ transplants; people with HIV/AIDS or other immune system disorders; some elderly; and infants can be particularly at risk from infections. These people should seek advice from their health care providers.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline.


USEPA Safe Drinking Water Hotline ▶

(800) 426-4791

water distribution infrastructure to ensure continued reliable water supply. The improvements will enhance water quality and improve operational efficiency. In the past year, the City has replaced over eight miles of water pipelines and upgraded one of our water pumping facilities. The City has also updated the water communications system to better manage and operate the water distribution system. If you contact us at (408) 730-7400.

The City of Sunnyvale is replacing and upgrading aging have questions about an upcoming project along your street,

CITY OF SUNNYVALE 2013 **WATER QUALITY REPORT**

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo

Mahalaga ang impormasyong ito. Mangyaring ipasalin ito.

Chi tiết này thật quan trọng. Xin nhờ người dịch cho quý vị.

此份有關你的食水報告,內有重要資料和訊息,請找 他人為你翻譯及解釋清楚。

この情報は重要です。 翻訳を依頼してください。

이 소책자에는 식수수질 보고서의 내용을 요약한 당신의 수돗물에 관한 중요한 정보가 적혀져있습니다. 이 정보를 이해하실수 있는 분에게 번역을 부탁하십시요.

> यह सूचना महत्वपूर्ण है कपा करके किसी से :सका अनुवाद करायें ।

Last year your tap water met all state and federal drinking water health standards

The City of Sunnyvale aims to provide superior service while drinking water health standards. The City vigilantly safeguards its water supplies, and once again, we are proud to report that

Protecting your water supply

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial Contaminants such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic Contaminants such as salts and metals, that can be naturallyoccurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic Chemical Contaminants including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff. agricultural application and septic systems.
- Radioactive Contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

Protection begins in the watersheds. Protecting the water supply is important to ensure that water is safe from contamination and aesthetically pleasing for use. Contamination requires treatment, which increases the cost to deliver water to your tap. Here are ways that you can help protect our watershed:

- Eliminate excess use of lawn and garden fertilizers and pesticides
- Pick up after your pets
- Take used motor oil and other recyclables to the SMaRT Station ®
- Dispose of pharmaceuticals at any Sunnyvale fire station. Medications should not to be flushed down drains or put in the garbage.
- Dispose of cleaners, chemicals and paints at a Household Hazardous Waste Drop-off Event
- Volunteer in your community. The Creek Connections Action Group works to protect the County's waterways. Visit www.cleanacreek.org.
- Participate in public meetings and forums. It allows decision-makers to hear your perspective and you to be involved in protecting your water supply.

More information about disposal and recycling ▶ Call (408) 730-7262

SMaRT Station ®

301 Carl Road, Sunnyvale, CA 94089 Open daily, 8 a.m. to 5 p.m., Tel: (408) 752-8530

Household Hazardous Waste Drop-off 164 Carl Road, Sunnyvale, CA 94089 Every 3rd Saturday, 8 a.m. to 1 p.m.

Where your water comes from

The City of Sunnyvale has three different sources of drinking water supply: local groundwater, treated surface water from the Santa Clara Valley Water District (SCWWD) and treated surface water from the San Francisco Public Utilities Commission (SFPUC). There are also pockets of Sunnyvale customers who receive water from the California Water Service Company (Cal Water); questions regarding the source and delivery of water provided by Cal Water can be directed to its local office at (650) 917-0152.

Local Groundwater

The City owns, operates and maintains eight deep wells. The wells are used to help supplement the imported water supplies during peak demands in the summer months and emergency situations. The City is always working to increase flexibility in local groundwater supplies, enhance water quality, reduce operating costs, and increase reliability. Recent groundwater improvements include water well connections, electrical upgrades and installation of an emergency generator. Groundwater pumped from these wells is taxed by SCVWD.

The City completed a Drinking Water Source Assessment Program (DWSAP) in January 2003 for these groundwater sources. The City's groundwater sources are considered most vulnerable to

contamination by leaky underground fuel tanks, dry cleaning chemicals, sewer collection systems, old septic systems and machine shops.

SFPUC Supply

The City purchases a blend of Hetch Hetchy water and treated water from SFPUC to serve the northern part of the city. Filtered water turbidity from SFPUC met the standard of 0.3 NTU or less. 95% of the time.

The Hetch Hetchy Watershed provides most of the SFPUC water supply, supplemented by the Alameda watershed. The major water source originates from spring snowmelt flowing down the Tuolumne River and is stored in the Hetch Hetchy Reservoir. Since this water source meets all federal and state standards for watershed protection, disinfection treatment practices, bacteriological quality monitoring and operations, the State has granted this water source a filtration exemption.

The Alameda Watershed spans more than 35.000 acres in Alameda and Santa Clara Counties. Surface water from rainfall and runoff is collected in the Calaveras and San Antonio Reservoirs. Prior to distribution. the water from these reservoirs is treated. Fluoridation, chloramination and corrosion control treatment are provided for the combined Hetch Hetchy and treated water. Fluoride is added to the naturally occurring level to help protect against tooth decay in consumers. The average fluoride levels in the treated water were maintained within a range of 0.7-1.4 mg/L as required by CDPH.

The SFPUC actively protects the water resources entrusted to its care. Its annual update of the Hetch Hetchy Watershed Sanitary Survey evaluates the sanitary conditions, water quality, potential contamination sources and the results of watershed management activities with partner agencies (such as the National Park

Service and US Forest Service). The SFPUC also conducts sanitary surveys every five years to detect and track sanitary concerns for the Bay Area watersheds and the approved standby water sources in Early Intake Watershed, which includes Cherry Lake and Lake Eleanor. The latest 5-vear surveys were completed in 2011 for the period of 2006-2010. These surveys identified wildlife, stock and human activities as potential contamination sources. They are available for review at the CDPH San Francisco District office.

More information on SFPUC ▶ Visit sfwater.org, or call CDPH (510) 620-3474

SCVWD Supply

The City purchases treated surface water from SCVWD and delivers it to the southern portion of the city. SCVWD imports more than half of its supply from the South Bay Aqueduct, Lake Del Valle and San Luis Reservoir, which all draw water from the Sacramento-San

Joaquin Delta Watershed. SCVWD local surface water sources include Anderson and Calero Reservoirs. SCVWD source waters are vulnerable to potential contamination from a variety of land use practices such as agricultural and urban runoff, recreational activities, livestock grazing and residential and industrial development. Imported sources are vulnerable to wastewater treatment plant discharges, seawater intrusion

Local sources are also vulnerable to contamination from commercial stables and historic mining practices. No contaminant associated with any of these activities has been detected in SCVWD treated water. Water treatment plants provide multiple barriers for physical removal and disinfection of contaminants.

More information on SCVWD ▶ Visit valleywater.org

The City's Drinking Water Source Assessment Program ▶

To view the City's DWSAP, visit swap.ice.ucdavis.edu/tsinfo/tsintro.asp, or call (408) 730-7510 to schedule an appointment to view it at 221 Commercial Street.

WATER CONSERVATION TIPS

Water Conservation Hotline ▶ SCVWD (408) 630-2554 valleywater.org

The City works cooperatively with our water wholesalers to provide residents with advice, assistance and access to programs. The following water-saving tips are simple ways to conserve water both indoors and out, and are provided jointly by the City and SCVWD.

Steps to Save Water Indoors

- Turn off the faucet while you brush your teeth.
- Take shorter showers. You will save 2.5 gallons of water each
- Install water-efficient faucet aerators and showerheads in your kitchen and bathrooms.
- Check toilets and faucets for leaks. Running toilets can waste two gallons a minute while leaky faucets can waste thousands of gallons
- Do not use the toilet as a wastebasket
- Only wash full loads of laundry

· Rinse fruits and vegetables in a pan instead of using running

- Keep a pitcher of drinking water
- in the refrigerator. Running tap water to cool it off for drinking is wasteful
- Replace your old top-loading clothes washer with a highefficiency model. For information about rebates call the Water Conservation Hotline.
- If your toilet uses more than 3.5 gallons per flush, replace it with a high-efficiency toilet. New models use 70 percent less water. For information about rebates, call the Water Conservation Hotline.

Steps to Save Water Outdoors

and wildfires in watershed areas.

- Plant native or drought-tolerant plants that require less watering. Native plants promote healthier local ecosystems.
- Use a broom to sweep off pavement. Using a hose to wash sidewalks, driveways and patios wastes money and water.
- Apply organic mulch around plants to reduce moisture loss, keep weed-growth down and promote healthier soil.
- Deeply soak your lawn to ensure moisture reaches the roots. Light sprinkle watering evaporates quickly and encourages shallow root systems that need more frequent watering.

- Check for leaks in pipes, sprinkler heads and valves.
- Water during cool parts of the day. Early morning is the best time because it helps prevent growth of fungus.
- Water your lawn only when it needs it. If the grass springs back up after stepping on it, it does not need watering.
- Avoid watering on windy days.
- Use drip irrigation in larger gardens with weather-based irrigation control. For information about rebates call the Water Conservation Hotline.

2013

WATER QUALITY TEST RESULTS

The City of Sunnyvale has instituted a comprehensive water quality monitoring program that encompasses City-owned wells and all water purchased from SFPUC and SCVWD. This program ensures that all of our customers receive water that complies with all regulatory criteria and that no maximum contaminant levels (MCLs) or maximum contaminant level goals (MCLGs) for regulated chemicals, bacteria or pollutants are exceeded.

In order to ensure water quality standards are met, drinking water samples are collected daily throughout Sunnyvale and analyzed for a variety of regulated and unregulated contaminants. Samples are tested by the City's certified laboratory and an independent certified laboratory using the latest testing procedures and equipment. We collect more samples than required by the CDPH to provide you with the highest quality of water at all times. In addition, the City's wholesalers, SCVWD and SFPUC, conduct their own testing before delivering water to the City. Such measures help us to continue meeting established water quality standards.

The table to the right shows the results of the distribution system and source water analyses conducted by the City, SCVWD and SFPUC. Water quality data are grouped by water source. Last year we conducted more than 20,000 tests for more than 80 parameters. We detected only 15 of these parameters, and none were found at levels higher than CDPH allows.

Only the parameters detected are shown. Other constituents were analyzed but are not listed because they were not detected. Additionally, unregulated parameters are shown to provide you with supplemental information.

Some data—although representative were collected prior to 2013, as the CDPH requires monitoring for some constituents less than once per year since the concentrations of these constituents do not vary frequently or significantly.

More information ▶

For more information about this report or the City's water quality monitoring program, please contact

John Ramirez City of Sunnyvale Water Operations Manager Tel: (408) 730-7510 TDD: (408) 730-7501 jramirez@sunnyvale.ca.gov

Montant Mon	SOURCE WATER SAMPLING INORGANIC CHEMICALS Aluminum	Unit	(AL), or			vater Well	SC	VWD	SFI	PUC	
SOURCE WATER SAMPLING	SOURCE WATER SAMPLING INORGANIC CHEMICALS Aluminum	Unit		(MCLC) or							
MORGANIC CHANCAL SAMPLING MORGANIC CHANCALS MORGANIC CHANCAL	SOURCE WATER SAMPLING INORGANIC CHEMICALS Aluminum	0				Range		Range		Range	Typical Sources
No. No.	INORGANIC CHEMICALS Aluminum		[]	[526.]	J [a.r.]		J. [a]	193	J. [a]	195	
Besturn											
Bantum	Barium	maa	1	0.6	ND	ND	ND	ND	ND	ND-0.052	3. 4
Properties Pro			1								
Selection	Fluoride		2		0.20	0.14-0.24			0.4	ND-0.8	3, 5, 6
NTU TT NA 0.23 ND-1.2 0.06 0.00 0.16 0.2-0.3 2 2 2 2 2 2 2 2 2	Selenium			30		ND-2.6			ND		
Namic pom 45 45 45 15 10-28 ND	Turbidity			NA	0.23				[3.6]		
RapioLogical Parietic Activity pCil. 15 (0) ND ND ND ND ND ND ND N									u	D	3, 7, 8
Score Particle Activity				1			–				-, -, -
DISINFECTION BYPRODUCT PRECURSORS Fight TT NA 1.94 1.97-303 2.2 1.0-3.4 1.0		pCi/l	15	(0)	ND	ND	ND	ND	ND	ND-3.9	3
TOC (precursor control)				(0)						112 010	
Microbiological Symble TT (6) ND ND ND ND ND ND ND N			TT	NΑ	_		1 94	1.37–3.03	22	1 0–3 4	10
Signature Sign	,	ррпп		14/4	_		1.01	1.07 0.00	2.2	1.0 0.1	10
DISTRIBUTION SYSTEM SAMPLING		cvst/l	TT	(0)	_		ND	ND	ND	ND-0 04	1
Lead Decompton Decompto		σyσηΣ		(0)			110	NB	110	145 0.01	
Lead		HF-TAP SAMPI IN	IC)			90th Percentile	,	# of	Samples Ahov	ιο ΔΙ	
Copper	·			0.2			7	# 01	-	/C AL	2 17 10
DISINFECTION RESIDUALS AND BYPRODUCTS Highest Location RAA Range Disinfoctant Residual as Chlorine ppm [4] [4] 1.95 0.01-3.10 2.0											
Disinfectant Residual as Chlorine			(1.5)	0.5	Hio		RΔΔ				5, 17, 10
Total Trinalomethanes			[4]	[4]	Ting		IIAA		_		20
Halloacetic Acids ppb 60 NA 36.8 2.2-45.0 9 MICROBIOLOGICAL Total Coliform Bacteria % pos/month 5.0% (0) 0.7% 0.0-28% 1 SECONDARY DRINKING WATER STANDARDS (AESTHETIC STANDARDS) PARAMETER Unit MCL Average Range Average Range Average Range Source Aluminum ppb 200 ND											
Note Color Cu 15											
Total Coliform Bacteria % pos/month 5.0% (0) 0.7% 0.0-2.8% 1		ррь	00	IVA							9
PARAMETER Unit MCL Average Range Range Average Range Range Average Range		9/ pag/month	F 00/	(0)					_		4
PARAMETER Unit MCL Average Range Average Range Average Range Average Range Source Aluminum ppb 200 ND ND ND ND ND ND ND		· ·				0.7 %			0.0-2.0%		_
Aluminum ppb 200 ND ND ND ND ND ND ND-52 3, 4 Chloride ppm 500 44 34-64 83 76-88 10.2 ND-18 11, 12, Color CU 15 ND ND ND ND ND ND ND ND ND ND-6 13 Copper ppm 1 0.004 ND-0.011 ND					Average	Panga	Average	Panga	Average	Panga	Sources
Chloride ppm 500 44 34–64 83 76–88 10.2 ND–18 11, 12, 2 Color CU 15 ND									·		
Color CU 15 ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Copper ppm 1 0.004 ND-0.011 ND											
Irron											
Odor — Threshold TON 3 ND ND 1 1 ND ND 13 Specific Conductance μS/cm 1600 665 590-760 558 522-593 169 29-258 14, 14 Sulfate ppm 500 34 23-39 61 48-84 16.6 0.8-33 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,											
Specific Conductance μS/cm 1600 665 590–760 558 522–593 169 29–258 14, 14 Sulfate ppm 500 34 23–39 61 48–84 16.6 0.8–33 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,											
Sulfate ppm 500 34 23–39 61 48–84 16.6 0.8–33 11, 12, 12, 15 total Dissolved Solids ppm 1000 380 330–450 307 274–358 71 ND–109 11, 12 UNREGULATED PARAMETERS PARAMETER Unit NL Average Range Average Range Average Range Parameter NA			4					·			
Total Dissolved Solids		·									
Name											
Name		ppm		000	380	330–450	307	274–358	/1	ND-109	11, 12
Boron				NII							
Chromium VI (Hexavalent Chromium) ppb NS 1.4 ND-3.1 ND ND NA NA Vanadium ppb 50 6.7 4.3-22 ND ND NA NA OTHER WATER QUALITY PARAMETERS PARAMETER Unit MCL Average Range Averag											
Vanadium ppb 50 6.7 4.3–22 ND ND NA NA OTHER WATER QUALITY PARAMETERS PARAMETER Unit MCL Average Range Average											
OTHER WATER QUALITY PARAMETERS PARAMETER Unit MCL Average Range Av											
PARAMETER Unit MCL Average Range Average Average Range Average<		ppb		5 0	6.7	4.3–22	ND	ND	NA	NA	
Hardness (as Calcium Carbonate) ppm NS 310 290–330 104 91–125 53 7–89 pH Units NS 8.7 _c 7.0–9.7 _c 7.7 7.6–7.8 8.4 6.5–9.4 Sodium ppm NS 29 22–41 67 62–70 12 3–18											
PH Units NS 8.7 7.0–9.7 7.6–7.8 8.4 6.5–9.4 Sodium NS 29 22–41 67 62–70 12 3–18											
Sodium											
					_	C .					
Temperature °C NS 16 10-26 19 14-23 NA NA											

Important information about your water quality

Fluoride

Currently, all water from SFPUC is fluoridated while water from SCVWD, the City's other wholesale water provider is not. The City also does not fluoridate well water. As a result, some areas of Sunnyvale receive fluoridated water, other areas receive non-fluoridated water and some areas receive a mixture of both. A map showing the areas is found below. **According to the Centers for Disease** Control and Prevention, if a child under the age of six months is exclusively consuming infant formula reconstituted with fluoridated water, there may be an increased chance of dental fluorosis. Consult your child's health care provider for more information.

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at water.epa.gov/drink/info/lead.

Nitrate

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants younger than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask for advice from your health care provider.

Disinfection

Sunnyvale residents should know that the Sunnyvale system distributes water treated with chloramine and well water that is tested but not treated. Chloramine, a combination of chlorine and ammonia, is more stable than chlorine and offers a number of health benefits. Chloramine lasts longer in water to provide more protection against pathogens such as bacteria and viruses, and produces lower levels of disinfection byproducts such as trihalomethanes. State and federal regulations effective January 2002 lowered the allowable level of exposure to disinfection byproducts. The water provided by SFPUC and SCVWD is disinfected with chloramines, which can affect dialysis treatment. The City maintains contact with dialysis treatment centers in the service area. Residents on home dialysis should contact their physicians to discuss the impact on their treatment. The Western Pacific Renal Network, at (415) 897-2400, can provide more information about chloramines and dialysis. Fish and aquarium owners should check with their local pet stores to make sure they are using the correct equipment for chloramine removal of any concentration.

Hardness

Water hardness is determined mainly by the presence of calcium and magnesium salts. Although hard water does not pose a health risk, it may be considered undesirable for other reasons. Some benefits of water softening are reductions in soap usage, longer life for water heaters and a decrease in encrustation of pipes. Some disadvantages of water softening are an increase in sodium intake (depending on type of water softener used), an increase in maintenance and servicing requirements and potential adverse effects on salt-sensitive plants and landscaping. To convert hardness from ppm to grains per gallon, divide by 17.1. A hardness scale is provided below for your reference.

Hardness Classification	Grains per Gallon	mg/L or ppm			
Soft	less than 1.0	less than 17.1			
Slightly hard	1.0–3.5	17.1–60			
Moderately hard	3.5–7.0	60–120			
Hard	7.0–10.5	120–180			
Very hard	over 10.5	over 180			

HOW TO READ THIS CHART

DEFINITIONS OF KEY TERMS

Maximum Contaminant Level (MCL). The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water. MCLs are established by USEPA

Maximum Contaminant Level Goal (MCLG). The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Maximum Residual Disinfectant Level (MRDL). The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG). The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect

microbial contaminants.

the benefits of the use of disinfectants to control

Notification Level (NL). Notification levels are health-based advisory levels established by CDPH for chemicals in drinking water that lack MCLs. When chemicals are found at concentrations greater than their notification levels, certain requirements and recommendations apply.

Primary Drinking Water Standard (PDWS). MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG). The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Office of Environmental Health Hazard Assessment.

Regulatory Action Level (AL). The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT). A required process intended to reduce the level of a contaminant in drinking water.

Total Organic Carbon (TOC). TOC has no health effects. However, TOC provides a medium for the formation of disinfection byproducts including trihalomethanes and haloacetic acids. Drinking water containing disinfection byproducts in excess of the MCL may lead to adverse health effects, liver or kidney problems or nervous system effects and may lead to an increased risk of cancer.

Turbidity. Turbidity has no health effects. It is a measure of the clarity of the water and is monitored because it is a good indicator of water quality and the effectiveness of a filtration system. The MCL for turbidity is based on the TT. For unfiltered water, the MCL is 5.0 NTU. For filtered water, the MCL is ≤0.3 NTU 95% of the

Waiver. State permission to decrease the monitoring frequency for a particular contaminant.

ABBREVIATIONS

RAA

Dearees Celsius CDPH California Department of Public Health Color unit Max Maximum NA Not applicable ND Not detected NS No standard

NTU Nephelometric turbidity unit parts per billion (micrograms per liter) ppm parts per million (milligrams per liter) µS/cm microSiemens per centimeter % pos % positive

Running annual average

United States Environmental Protection Agency

SCVWD Santa Clara Valley Water District SFPUC San Francisco Public Utilities Commission Total organic carbon TOC TON Threshold odor number

> a Single-highest sample result in 2013 Range of monthly averages

> > Levels in the distribution system

* TYPICAL SOURCES IN DRINKING WATER

2 Soil runoff

3 Erosion of natural deposits

1 Naturally present in the environment

Residue from some surface water treatment processes

5 Water additive that promotes strong teeth

6 Discharge from fertilizer and aluminum factories **7** Runoff and leaching from fertilizer use

8 Leaching from septic tanks and sewage

9 By-product of drinking water disinfection **10** Various natural and man-made sources

11 Runoff from natural deposits **12** Leaching from natural deposits

13 Naturally-occurring organic materials

14 Seawater influence

15 Industrial wastes

16 Substances that form ions when in water

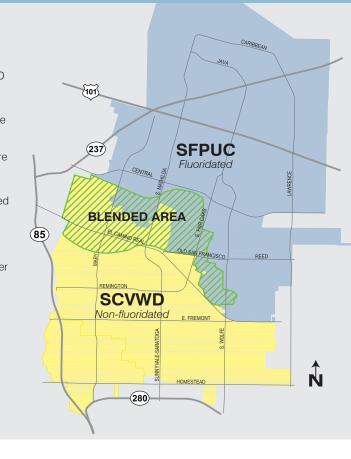
17 Internal corrosion of household plumbing systems

18 Leaching from wood preservatives

19 Discharges from industrial manufacturers

20 Drinking water disinfectant added for treatment 21 Discharges of oil drilling wastes and from metal refineries

22 Discharge from petroleum, glass, and metal refineries


23 Discharge from mines and chemical manufacturers **24** Runoff from livestock lots (feed additive)

SOURCE MAP

The adjacent map indicates which areas of the City are supplied by SFPUC, SCVWD or a mixture of the two. The colored regions correspond to the colored columns in the table above.

Groundwater wells, which are not shown on this map, are located throughout the City. Local groundwater is blended with surface water supplies from SFPUC and SCVWD.

SFPUC water is fluoridated but SCVWD and groundwater supplies are not.

