100% Clean and Renewable Wind, Water, and Sunlight (WWS) All-Sector Energy Roadmaps for 139 Countries of the World

November 27, 2015

Note: this is a draft – not the final version – modifications are expected

By

Mark Z. Jacobson^{1,}, Mark A. Delucchi², Zack A.F. Bauer¹, Savannah C. Goodman¹, William E. Chapman¹, Mary A. Cameron¹, Alphabetical: Cedric Bozonnat¹, Liat Chobadi³, Jenny R. Erwin¹, Simone N. Fobi¹, Owen K. Goldstrom¹, Sophie H. Harrison¹, Ted M. Kwasnik¹, Jonathan Lo¹, Jingyi Liu¹, Chun J. Yi¹, Sean B. Morris¹, Kevin R. Moy¹, Patrick L. O'Neill¹, Stephanie Redfern¹, Robin Schucker¹, Mike A. Sontag¹, Jingfan Wang¹, Eric Weiner¹, Alex S. Yachanin¹

¹Atmosphere/Energy Program, Dept. of Civil and Env. Engineering, Stanford University *Corresponding author. T: 650-723-6836; F: 650-723-7058; E: jacobson@stanford.edu

²Institute of Transportation Studies, U.C. Berkeley

³Technical University of Berlin

<u>Abstract</u>

We develop roadmaps for converting the all-purpose energy (electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing) infrastructures of each of 139 countries of the world to ones powered by wind, water, and sunlight (WWS). As of the end of 2014, 3.8% of the WWS energy generation capacity needed for a 100% world has already been installed in these countries, with Norway (67%), Paraguay (54%), and Iceland (39%) the furthest along The roadmaps envision 80% conversion by 2030 and 100% conversion of all countries by 2050. The transformation can reduce 2050 power demand relative to BAU by $\sim 32.3\%$ due to the efficiency of electricity over combustion and another $\sim 6.9\%$ due to end-use efficiency beyond that already occurring in the BAU case. Remaining annuallyaveraged 2050 demand may be met with a mean of ~19.4% onshore wind, ~12.9% offshore wind, ~42.2% utility-scale photovoltaic (PV), ~5.6% residential rooftop PV, ~6.0% commercial/government/parking rooftop PV, ~7.7% concentrated solar power (CSP), ~0.74% geothermal power, ~0.72% wave power, ~0.07% tidal power, and ~4.8% hydropower. The new plus existing nameplate capacity of generators across all 139 countries is ~45.0 TW, which represents only ~0.5% of the technically possible installed capacity. An additional ~0.93 TW nameplate capacity of new CSP, ~5.0 TW of new solar thermal for heat, and ~ 0.07 TW of existing geothermal heat in combination with low-cost storage is estimated necessary to balance supply and demand economically. The capital cost of all new generators (49.2 TW nameplate) is ~\$100.1 trillion in 2013 U.S. dollars, or ~\$2.0 million/MW. Over the 139 countries, converting will create an estimated 24.0 million 35-

year construction jobs and 26.5 million 35-year operation jobs for energy facilities alone, the total outweighing the 28.4 million jobs lost by ~22.1 million. Converting will eliminate \sim 4.6 (1.3-8.0) million premature air pollution mortalities per year today and 3.3 (0.8-7.0) million/yr in 2050 in the 139 countries, avoiding ~\$25.4 (\$4.3-\$69.7) trillion/year in 2050 air-pollution damage costs (2013 dollars), equivalent to ~7.9 (1.3-21.6) percent of the 2050 139-country gross domestic product. It will further eliminate ~\$17 (9.6-36) trillion/year in 2050 global warming costs (2013 dollars) due to 139-country emissions. A 2050 WWS versus BAU infrastructure will save the average person worldwide \$170/year in fuel costs, ~2,880/year in air-pollution damage costs, and \$1,930/year in climate costs (2013 dollars). The new footprint over land required for adding the WWS infrastructure is equivalent to ~0.29% of the 139-country land area, mostly in deserts and barren land, without accounting for land gained from eliminating the current energy infrastructure. The new spacing area between wind turbines, which can be used for farmland, ranchland, grazing land, or open space, is equivalent to 0.65% of the 139-country land area. Aside from virtually eliminating air pollution morbidity and mortality and global warming, the implementation of these roadmaps will create net jobs worldwide, stabilize energy prices because fuel costs are zero, reduce energy poverty and international conflict over energy as countries become energy independent, and reduce risks of large-scale system disruptions by significantly decentralizing power production. The aggressive worldwide conversion to WWS proposed here will avoid exploding CO₂ levels and catastrophic climate change by 2050.

Keywords: Renewable energy; air pollution; global warming; sustainability

1. Introduction

We develop roadmaps for converting the all-purpose energy (electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing) infrastructures of 139 countries to ones powered by wind, water, and sunlight (WWS). These roadmaps represent high-resolution country-specific WWS plans that improve upon and update the general world roadmap developed by Jacobson and Delucchi (2009, 2011) and Delucchi and Jacobson (2011) and expand upon the individual U.S. state energy roadmaps for New York, California, Washington State, and the 50 United States developed in Jacobson et al. (2013, 2014, 2016a, 2015a), respectively.

The roadmaps here are developed with a consistent methodology across all countries and with the goal of maximizing emission reductions of both health-affecting air pollutants and climate-relevant greenhouse gases and particles while quantifying land use requirements, jobs, and costs. Previous clean-energy plans have generally been limited to individual countries or regions, partial emission reductions and/or selected sectors (e.g., Parsons-Brinckerhoff, 2009 for the UK; Price-Waterhouse-Coopers, 2010 for Europe and North Africa; Beyond Zero Emissions, 2010 for Australia; ECF, 2010 for Europe; EREC, 2010 for Europe; Zero Carbon Britain, 2013 for Great Britain; ELTE/EENA, 2014 for Hungary; Connolly and Mathiesen, 2014 for Ireland; Hooker-Stroud et al., 2015 for the UK; Mathiesen et al., 2015 for Denmark; Negawatt Association, 2015 for France; and Teske et al., 2015 for several world regions).

This paper provides the original country-specific estimates of

- future energy demand (load) in the electricity, transportation, heating/cooling, industrial, and agriculture/forestry/fishing sectors in both a business-as-usual (BAU) case and a WWS case;
- (2) the number of total and new WWS generators needed to meet the estimated load in each sector in the WWS case;
- (3) footprint and spacing areas needed for the WWS generators;
- (4) rooftop areas and solar photovoltaic (PV) installation potentials on residential and commercial/government buildings and associated carports, garages, parking lots, and parking structures;
- (5) the levelized costs of energy today and in 2050 in the BAU and WWS cases;
- (6) the reductions in air-pollution mortality and morbidity and associated health costs today and in 2050, accounting for future reductions in emissions in the BAU and WWS cases;
- (7) avoided global-warming costs today and in 2050 in the BAU and WWS cases; and
- (8) the numbers of jobs produced and lost and the resulting revenue changes in the BAU and WWS cases.

This paper further provides a transition timeline, energy efficiency measures, and potential policy measures to implement the roadmaps.

2. WWS Technologies

This study starts with 2012 energy use in each energy sector in each of 139 individual countries for which IEA (2015) energy data are available. It then projects energy use in each sector of each country to 2050. The BAU projections account for some end use energy efficiency improvements and some growth in renewables. Next, all energy-consuming processes in each sector are electrified, and the resulting end-use energy required for a fully electrified all-purpose energy infrastructure is estimated. Some of the end-use electricity in each country is used to produce hydrogen for some transportation and industrial applications. Modest additional end-use energy efficiency improvements are then applied. Finally, the remaining power demand is supplied by a set of wind, water, and solar (WWS) technologies. The mix of WWS technologies varies with each country depending on available resources, rooftop areas, and land/water areas.

The WWS technologies selected to provide the electricity include wind, concentrated solar power (CSP), geothermal, solar PV, tidal, wave, and hydropower. These generators are existing technologies that were found to reduce health and climate impacts the most among multiple technologies while minimizing land and water use and other impacts (Jacobson, 2009).

The technologies selected for ground transportation, which will be entirely electrified, include battery electric vehicles (BEVs) and hydrogen fuel cell (HFC) vehicles, where the hydrogen (referred to here as electrolytic hydrogen) is produced by electrolysis (the splitting of water to produce hydrogen). BEVs with fast charging or battery swapping will dominate long-distance, light-duty ground transportation; battery electric-HFC hybrids will dominate heavy-duty ground transportation and long-distance water-borne shipping; batteries will

power short-distance shipping (e.g., ferries); and electrolytic cryogenic hydrogen combined with batteries will power aircraft. We restrict the use of HFCs to transport applications that require more on-board energy storage than can be provided economically by batteries (e.g., long-distance, heavy-load ground transport, shipping, and air transport) because electrolytic HFCs are a relatively inefficient use of primary WWS power. We do not use electrolytic hydrogen or HFCs to generate electricity because, as discussed later, there are more economical ways to balance supply and demand in a 100% WWS system.

Air heating and cooling will be electrified and powered by electric heat pumps (ground-, air, or water-source) and some electric-resistance heating. Water heat will be generated by heat pumps with electric resistance elements for low temperatures and/or solar hot water preheating. Cook stoves will have either an electric induction or a resistance-heating element.

High-temperature industrial processes will be powered by electric arc furnaces, induction furnaces, dielectric heaters, resistance heaters, and some combusted electrolytic hydrogen.

The roadmaps presented here assume the adoption of new energy-efficiency measures, but they exclude the use of nuclear power, coal with carbon capture, liquid or solid biofuels, or natural gas because all result in more air pollution and climate-relevant emissions than do WWS technologies, in addition to other issues, as discussed in Jacobson and Delucchi (2011) and Jacobson et al. (2013).

This study calculates the number of generators of each type needed to power each country based on the 2050 power demand in the country after all sectors have been electrified but before considering grid reliability and not considering imports/exports of energy. However, it then uses results from a grid reliability study for the continental U.S. (Jacobson et al., 2015b) to estimate the additional generators needed worldwide and by country to ensure a reliable electric power grid while considering that all energy sectors have been electrified with some use of electrolytic hydrogen.

In reality, energy exchanges among countries will occur in 2050 as they currently do. However, we restrict our calculations to assume each country can generate all of its annually-averaged power independently of other countries, since ultimately this goal may reduce international conflict. However, because it can be more profitable for countries with higher grade WWS resources to produce more power than they need for their own use and export the rest, the real system cost will likely be less than that proposed here since the costs of, for example solar, are higher in low-sunlight countries than in countries that might export solar electricity. An optimization study will be performed to determine the best tradeoff between generation cost and additional transmission cost, but such an optimization is left for future work.

3. Changes in Each Country's Power Load upon Conversion to WWS

Table 1 summarizes the projected country-specific end-use power demand by sector in 2050 if conventional fuel use continues along a BAU or "conventional energy" trajectory. End-use power is the power in electricity or fuel (e.g., power available in gasoline) that people

actually use to provide heating, cooling, lighting, transportation, and so on. Thus, it excludes losses incurred during the production and transmission of the power. Table 1 then shows the new load upon converting the electricity and fuel sources away from all fossil fuels, biofuels, and nuclear fuels to 100% WWS. The table is derived from a spreadsheet analysis of annually-averaged end-use load data by sector (Delucchi et al., 2015). All end uses that feasibly can be electrified are assumed to use WWS power directly, and remaining end uses (some transportation and high-temperature industrial processes) are assumed to use WWS power to produce electrolytic hydrogen.

With these roadmaps, electricity generation increases, but the use of oil and gas for transportation, heating/cooling, industry, and agriculture/forestry/fishing decreases to zero. Further, the increase in electricity use due to electrifying all sectors is much less than the decrease in energy in the gas, liquid, and solid fuels that the electricity replaces, because of the high energy-to-work conversion efficiency of electricity used for heating and electric motors. Also, converting eliminates the need for some BAU energy, including that required for coal, oil, gas, biofuels, bioenergy, and uranium mining, transport, and/or refining. As a result, end use load decreases significantly with WWS energy systems in all countries (Table 1).

Table 1. 1st row of each country: estimated 2050 total end-use load (GW) and percent of total load by sector if conventional fossil-fuel, nuclear, and biofuel use continue from today to 2050 under a BAU trajectory. 2nd row of each country: estimated 2050 total end-use load (GW) and percent of total load by sector if 100% of BAU end-use all-purpose delivered load in 2050 is instead provided by WWS. The estimate in the last column "Overall percent change" for each country is the percent reduction in total 2050 BAU load due to switching to WWS, including the effects of assumed policy-based improvements in end-use efficiency beyond those in the BAU case (6.9%), inherent reductions in energy use due to electrification, and the elimination of energy use for the upstream mining, transport, and/or refining of coal, oil, gas, biofuels, bioenergy, and uranium.

Country		2050	Resid-	Com-	Indus-	Trans-	Ag/For	Other	Overall
Country		Total	ential	mercial	trial	port	/Fish-	percent	percent
		end-use	per-cent	per-	per-	per-	ing	of total	change
	Scen-	load	of total	cent of	cent of	cent of	per-	or total	in end-
	ario	(GW)		total	total	total	cent of		use
		(,					total		power
									with
									WWS
Albania	BAU	4.7	24.54	12.44	22.01	37.36	3.39	0.25	
111041114	WWS	2.7	31.99	16.80	25.59	20.18	5.01	0.44	-42.32
Algeria	BAU	105.0	33.10	0.04	37.79	21.87	0.54	6.65	
8	WWS	54.5	43.42	0.07	29.86	14.28	0.98	11.39	-48.05
Angola	BAU	21.4	46.85	8.98	21.12	22.85	0.13	0.07	
0	WWS	13.7	52.50	10.86	25.31	11.08	0.17	0.09	-35.74
Argentina	BAU	145.4	30.39	9.97	28.51	27.81	3.32	0.00	
-	WWS	85.2	35.34	13.46	27.81	18.71	4.68	0.00	-41.37
Armenia	BAU	4.9	32.42	9.82	19.30	26.68	0.57	11.21	
	WWS	3.5	31.83	10.88	20.88	22.68	0.81	12.93	-28.91
Australia	BAU	170.3	10.92	7.48	41.30	33.66	2.03	4.60	
	WWS	89.2	14.97	11.18	41.60	21.80	3.24	7.21	-47.59
Austria	BAU	44.7	22.60	11.28	33.47	23.62	2.08	6.95	
	WWS	29.4	25.88	14.53	34.02	14.25	2.66	8.67	-34.23
Azerbaijan	BAU	20.8	30.53	10.84	24.91	29.67	4.05	0.00	
	WWS	11.2	39.72	15.99	20.03	17.78	6.47	0.00	-46.28
Bahrain	BAU	14.2	9.98	9.26	56.21	24.48	0.07	0.00	
	WWS	6.5	16.66	15.72	50.76	16.70	0.16	0.00	-54.33

Danala da ah	DAU	50.0	15 5 1	1.00	24.41	11.00	7.51	0.22	[
Bangladesh	BAU WWS	58.8 42.1	45.54 45.00	1.22 1.40	34.41 38.33	11.00 6.04	7.51 8.78	0.32 0.45	-28.49
Belarus	BAU	56.0	19.66	12.45	29.15	16.75	3.97	18.02	-20.47
Delalus	WWS	39.3	23.12	15.72	26.39	8.76	4.95	21.05	-29.81
Belgium	BAU	64.6	17.73	12.83	35.17	30.08	1.75	2.45	2,001
8	WWS	39.0	20.48	17.02	39.94	16.83	2.37	3.37	-39.58
Benin	BAU	5.7	48.10	10.16	1.12	40.62	0.00	0.00	
	WWS	3.2	61.10	14.59	1.73	22.58	0.00	0.00	-43.95
Bolivia	BAU	12.9	13.72	3.95	37.62	34.28	7.36	3.07	
	WWS	7.6	16.74	5.31	40.91	21.76	10.64	4.63	-41.42
Bosnia and	BAU	7.7	24.32	0.00	30.03	31.64	0.24	13.77	
Herzegovina	WWS	4.6	31.16	0.00	30.38	17.04	0.41	21.00	-41.18
Botswana	BAU	4.8	21.70	8.27	34.76	26.98	1.44	6.86	
	WWS	3.2	23.94	9.68	43.24	12.67	1.95	8.52	-33.69
Brazil	BAU	627.5	9.63	9.13	49.78	26.73	4.52	0.21	
	WWS	389.7	11.53	11.42	52.50	18.01	6.25	0.28	-37.90
Brunei	BAU	6.6	9.11	11.63	60.63	18.62	0.00	0.00	
Darussalam	WWS	2.2	20.01	26.53	36.39	17.07	0.00	0.00	-66.01
Bulgaria	BAU	25.1	20.39	15.53	33.46	29.08	1.54	0.00	
C	WWS	15.2	25.75	20.35	33.92	17.81	2.17	0.00	-39.40
Cambodia	BAU	9.3	46.75	4.17	31.64	16.36	0.00	1.08	
	WWS	6.3	49.26	4.74	37.17	7.46	0.00	1.37	-31.68
Cameroon	BAU	11.1	54.59	10.32	17.26	16.96	0.19	0.68	
	WWS	6.9	62.60	13.12	14.66	8.43	0.30	0.89	-37.36
Canada	BAU	412.1	13.93	15.58	53.32	14.83	2.35	0.00	
	WWS	235.1	17.57	21.69	47.52	9.70	3.51	0.00	-42.95
Chile	BAU	76.1	16.05	9.11	50.52	22.94	1.37	0.00	
	WWS	49.5	17.82	10.94	58.04	11.45	1.74	0.00	-35.02
China	BAU	5,044.7	24.62	7.22	41.92	22.21	1.40	2.63	
	WWS	3,252.0	27.93	8.99	45.87	11.54	1.90	3.77	-35.54
Chinese Taipei	BAU	170.0	11.87	9.45	55.37	18.95	1.16	3.20	
	WWS	111.6	13.47	11.22	59.79	9.15	1.57	4.79	-34.34
Colombia	BAU	60.8	18.33	7.73	28.99	39.80	5.04	0.11	
	WWS	32.2	24.52	11.52	31.41	24.39	7.98	0.18	-47.00
Congo	BAU	2.3	39.51	0.81	9.03	45.36	0.00	5.29	
U	WWS	1.2	53.51	1.24	10.54	26.55	0.00	8.16	-46.79
Congo, Dem.	BAU	42.4	56.80	0.25	39.57	3.04	0.00	0.34	
Republic of	WWS	31.1	54.89	0.26	43.18	1.29	0.00	0.38	-26.58
Costa Rica	BAU	7.4	13.62	12.58	20.90	50.92	1.48	0.49	
	WWS	4.0	18.81	17.98	30.79	29.17	2.46	0.79	-45.61
Cote d'Ivoire	BAU	12.2	58.09	12.09	15.36	12.18	2.27	0.00	
	WWS	8.3	61.70	14.20	15.76	5.59	2.75	0.00	-32.13
Croatia	BAU	15.6	25.14	17.52	25.09	29.61	2.64	0.00	
		0.2	31.85	23.64	24.11	1660	3.72	0.00	-41.30
Cuba	WWS	9.2		25.01	24.11	16.68	5.12		
	WWS BAU	9.2	15.45	5.01	24.11 59.07	13.91	1.71	4.85	
	BAU				59.07				
Cyprus	BAU WWS	14.5	15.45 16.37 14.76	5.01		13.91	1.71	4.85	-29.86
Cyprus	BAU WWS BAU	14.5 10.2	16.37	5.01 5.54	59.07 63.86	13.91 6.46 56.99	1.71 2.09	4.85 5.68	
Cyprus Czech Republic	BAU WWS	14.5 10.2 4.7	16.37 14.76	5.01 5.54 18.16	59.07 63.86 7.58	13.91 6.46	1.71 2.09 1.79	4.85 5.68 0.72	-29.86
	BAU WWS BAU WWS	14.5 10.2 4.7 2.4	16.37 14.76 21.43	5.01 5.54 18.16 27.48	59.07 63.86 7.58 11.03	13.91 6.46 56.99 35.66	1.71 2.09 1.79 3.07	4.85 5.68 0.72 1.33	-29.86 -48.69
	BAU WWS BAU WWS BAU	14.5 10.2 4.7 2.4 38.6	16.37 14.76 21.43 24.75	5.01 5.54 18.16 27.48 15.38	59.07 63.86 7.58 11.03 36.87	13.91 6.46 56.99 35.66 19.47	1.71 2.09 1.79 3.07 2.47	4.85 5.68 0.72 1.33 1.07	-29.86
Czech Republic	BAU WWS BAU WWS BAU WWS	14.5 10.2 4.7 2.4 38.6 25.4	16.37 14.76 21.43 24.75 27.49	5.01 5.54 18.16 27.48 15.38 19.41	59.07 63.86 7.58 11.03 36.87 37.02	13.91 6.46 56.99 35.66 19.47 11.37	1.71 2.09 1.79 3.07 2.47 3.18	4.85 5.68 0.72 1.33 1.07 1.53	-29.86 -48.69 -34.25
Czech Republic	BAU WWS BAU WWS BAU WWS BAU	14.5 10.2 4.7 2.4 38.6 25.4 24.3	16.37 14.76 21.43 24.75 27.49 29.20	5.01 5.54 18.16 27.48 15.38 19.41 15.59	59.07 63.86 7.58 11.03 36.87 37.02 22.34	13.91 6.46 56.99 35.66 19.47 11.37 26.91	1.71 2.09 1.79 3.07 2.47 3.18 5.90	4.85 5.68 0.72 1.33 1.07 1.53 0.07	-29.86 -48.69
Czech Republic Denmark	BAU WWS BAU WWS BAU WWS BAU WWS	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7	16.37 14.76 21.43 24.75 27.49 29.20 37.52	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49	1.71 2.09 1.79 3.07 2.47 3.18 5.90 7.86	4.85 5.68 0.72 1.33 1.07 1.53 0.07 0.09	-29.86 -48.69 -34.25
Czech Republic Denmark Dominican Republic	BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7 11.4 6.2	16.37 14.76 21.43 24.75 27.49 29.20 37.52 15.90 21.52	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91 5.21 7.48	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14 24.14	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49 51.86	1.71 2.09 1.79 3.07 2.47 3.18 5.90 7.86 2.89 5.24	4.85 5.68 0.72 1.33 1.07 1.53 0.07 0.09 0.00 0.00	-29.86 -48.69 -34.25 -35.43
Czech Republic Denmark Dominican	BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS BAU	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7 11.4 6.2 24.0	16.37 14.76 21.43 24.75 27.49 29.20 37.52 15.90 21.52 11.31	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91 5.21 7.48 4.52	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14 24.14 35.85 26.03	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49 51.86 29.91 55.66	1.71 2.09 1.79 3.07 2.47 3.18 5.90 7.86 2.89 5.24 0.73	4.85 5.68 0.72 1.33 1.07 1.53 0.07 0.09 0.00 0.00 1.74	-29.86 -48.69 -34.25 -35.43 -45.98
Czech Republic Denmark Dominican Republic Ecuador	BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7 11.4 6.2 24.0 10.8	16.37 14.76 21.43 24.75 27.49 29.20 37.52 15.90 21.52	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91 5.21 7.48	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14 24.14 35.85	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49 51.86 29.91 55.66 38.69	1.71 2.09 1.79 3.07 2.47 3.18 5.90 7.86 2.89 5.24 0.73 1.34	4.85 5.68 0.72 1.33 1.07 1.53 0.07 0.09 0.00 0.00 1.74 3.55	-29.86 -48.69 -34.25 -35.43
Czech Republic Denmark Dominican Republic	BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS BAU	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7 11.4 6.2 24.0 10.8 173.3	16.37 14.76 21.43 24.75 27.49 29.20 37.52 15.90 21.52 11.31 18.29 22.22	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91 5.21 7.48 4.52 7.81 9.86	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14 24.14 35.85 26.03 30.32 41.51	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49 51.86 29.91 55.66 38.69 19.68	$ \begin{array}{r} 1.71\\ 2.09\\ 1.79\\ 3.07\\ 2.47\\ 3.18\\ 5.90\\ 7.86\\ 2.89\\ 5.24\\ 0.73\\ 1.34\\ 5.23\\ \end{array} $	$\begin{array}{r} 4.85\\ 5.68\\ 0.72\\ 1.33\\ 1.07\\ 1.53\\ 0.07\\ 0.09\\ 0.00\\ 0.00\\ 1.74\\ 3.55\\ 1.50\\ \end{array}$	-29.86 -48.69 -34.25 -35.43 -45.98 -55.11
Czech Republic Denmark Dominican Republic Ecuador	BAU WWS BAU WWS BAU WWS BAU WWS BAU WWS	14.5 10.2 4.7 2.4 38.6 25.4 24.3 15.7 11.4 6.2 24.0 10.8	16.37 14.76 21.43 24.75 27.49 29.20 37.52 15.90 21.52 11.31 18.29	5.01 5.54 18.16 27.48 15.38 19.41 15.59 20.91 5.21 7.48 4.52 7.81	59.07 63.86 7.58 11.03 36.87 37.02 22.34 19.14 24.14 35.85 26.03 30.32	13.91 6.46 56.99 35.66 19.47 11.37 26.91 14.49 51.86 29.91 55.66 38.69	1.71 2.09 1.79 3.07 2.47 3.18 5.90 7.86 2.89 5.24 0.73 1.34	4.85 5.68 0.72 1.33 1.07 1.53 0.07 0.09 0.00 0.00 1.74 3.55	-29.86 -48.69 -34.25 -35.43 -45.98

									1
Eritrea	BAU WWS	0.8 0.6	73.64 77.74	9.41 10.93	5.49 6.09	11.47 5.25	$\begin{array}{c} 0.00 \\ 0.00 \end{array}$	0.00 0.00	-31.93
Estonia	BAU	5.2	29.38	15.55	23.45	27.98	3.65	0.00	-51.95
Estonia	WWS	3.2	29.38 38.24	20.55	23.43 22.21	14.14	3.63 4.87	0.00	-36.46
Ethiopia	BAU	53.3	86.38	1.96	6.12	4.48	0.52	0.53	50.10
Lunopia	WWS	37.7	87.50	2.20	7.09	1.98	0.60	0.62	-29.32
Finland	BAU	39.8	22.19	9.44	44.71	15.23	2.99	5.44	27.52
1 miana	WWS	28.7	25.41	10.18	45.99	7.71	3.54	7.17	-27.87
France	BAU	242.5	27.72	17.72	22.97	27.38	2.95	1.26	
1 1 1 1 1 2 2	WWS	155.3	31.30	22.12	24.09	16.88	3.89	1.72	-35.93
Gabon	BAU	4.5	38.73	3.97	39.16	16.74	0.77	0.63	
	WWS	3.0	41.58	4.57	44.26	7.73	0.94	0.93	-32.51
Georgia	BAU	7.2	31.97	8.93	25.14	28.78	4.35	0.84	
U	WWS	4.5	36.66	11.38	28.75	16.03	6.07	1.10	-37.95
Germany	BAU	375.8	23.56	15.35	28.68	32.34	0.00	0.08	
2	WWS	258.3	24.55	18.03	28.53	28.80	0.00	0.09	-31.28
Ghana	BAU	15.1	30.11	6.00	32.00	29.58	2.32	0.00	
	WWS	9.6	34.50	7.39	40.59	14.53	3.00	0.00	-36.60
Gibraltar	BAU	3.3	0.00	0.00	0.13	99.28	0.00	0.58	
	WWS	1.1	0.00	0.00	0.30	97.85	0.00	1.84	-68.39
Greece	BAU	30.9	23.56	12.63	26.07	33.62	1.57	2.56	
	WWS	16.9	31.45	18.01	23.99	19.99	2.73	3.83	-45.34
Guatemala	BAU	14.5	52.29	5.11	9.65	32.59	0.00	0.35	
	WWS	8.6	63.14	6.77	12.53	17.07	0.00	0.49	-40.54
Haiti	BAU	4.4	71.55	2.15	8.03	18.28	0.00	0.00	
	WWS	2.9	78.72	2.65	9.88	8.75	0.00	0.00	-34.95
Honduras	BAU	7.7	34.91	6.70	23.28	31.66	0.00	3.45	
	WWS	4.8	40.95	8.43	30.04	15.99	0.00	4.58	-38.34
Hong Kong,	BAU	59.5	7.87	23.64	12.50	55.92	0.00	0.08	
China	WWS	30.6	10.40	35.72	19.80	33.94	0.00	0.14	-48.50
Hungary	BAU	24.5	34.45	21.67	21.26	19.93	2.69	0.00	
	WWS	15.9	38.07	27.24	19.98	11.19	3.51	0.00	-35.07
Iceland	BAU	4.4	16.11	11.80	48.18	13.20	10.44	0.27	
	WWS	3.4	17.34	12.60	52.95	5.41	11.34	0.35	-22.05
India	BAU	1,607.8	24.07	5.26	26.99	38.96	3.27	1.45	
	WWS	921.9	30.05	7.24	33.25	21.92	5.28	2.27	-42.66
Indonesia	BAU	380.4	25.69	5.81	41.51	24.34	2.40	0.26	
	WWS	227.1	31.25	7.56	44.49	13.04	3.30	0.36	-40.30
Iran, Islamic	BAU	380.4	21.36	6.76	43.26	23.78	4.63	0.21	10.00
Republic of	WWS	227.0	24.34	9.13	44.46	14.81	6.91	0.35	-40.32
Iraq	BAU	53.1	13.18	1.38	27.12	48.82	0.00	9.49	40.14
	WWS	27.5	18.37	2.06	31.96	29.33	0.00	18.29	-48.14
Ireland	BAU	15.4	24.05	14.90 19.85	25.59	32.74	2.72	0.00	40.27
Taura 1	WWS	9.2	26.18		32.15	17.94	3.88	0.00	-40.37
Israel	BAU	27.0	18.58	12.47	18.82	24.93	0.90	24.30	27 75
Te la	WWS	16.8	22.13	15.53	13.56	12.48	1.44	34.86	-37.75
Italy	BAU	215.0	23.89	14.60	27.01	32.26	2.11	0.13	24.40
I	WWS	140.9	25.50	17.85	26.64	27.11	2.74 2.35	0.17 0.09	-34.49
Jamaica	BAU WWS	4.1	12.55	8.67	32.51 45.49	43.83			41.00
Ionon	BAU	2.4 365.1	15.86 17.88	11.60 26.15	33.33	23.54 21.87	3.35 0.59	0.15 0.17	-41.99
Japan	WWS	234.0	20.44	32.33	33.55 34.58	11.61	0.39	0.17	-35.91
Jordan	BAU	234.0	16.98	8.32	21.92	45.52	3.62	3.65	-33.71
Jordan	WWS	6.2	23.84	6.52 12.23	21.92 24.58	43.32 26.84	5.62 6.84	5.65 5.67	-47.16
Kazakhstan		0.2 141.9	8.40		72.59		1.22	4.23	-47.10
NazaKiiställ	BAU WWS	71.5	8.40 12.69	4.71 8.15	63.57	8.85 6.02	2.10	4.23 7.47	-49.60
Kenya	BAU	22.9	63.74	2.20	15.74	17.47	0.26	0.59	-47.00
Kellya	WWS	15.2	63.74 69.19	2.20	13.74	8.24	0.26	0.39	-33.91
Korea, Dem.	BAU	38.4	0.16	0.00	66.39	2.34	0.32	31.11	-33.91
People's Rep.	WWS	38.4 30.7	0.16	0.00	65.93	2.34 0.91	0.00	33.02	-19.96
i copie s Kep.	6 W W	30.7	0.14	0.00	05.95	0.91	0.00	55.02	-17.90

17	DAU	205.6	14.10	20.02	40.70	00.01	1.00	0.67	1
Korea, Republic of	BAU WWS	295.6 192.3	14.18 15.88	20.92 25.54	40.70 44.27	22.31 11.75	1.23 1.71	0.67 0.84	-34.92
Kosovo	BAU	3.1	38.03	10.93	24.00	25.72	1.71	0.84	-54.92
KOSOVO	WWS	5.1 1.9	45.17	10.93	24.00	12.94	1.89	0.00	-38.09
Kuwait	BAU	57.2	9.89	7.05	61.59	21.47	0.00	0.00	-30.07
Kuwan	WWS	22.5	19.24	13.91	49.84	17.01	0.00	0.00	-60.69
Kyrgyzstan	BAU	9.2	22.42	10.54	18.42	34.86	1.92	11.84	00.07
Ryigyzstan	WWS	5.7	29.05	13.70	21.30	17.55	2.68	15.72	-38.11
Latvia	BAU	9.9	25.15	19.64	22.17	30.27	2.74	0.02	
Latin	WWS	6.5	31.07	24.83	25.39	15.15	3.54	0.02	-34.35
Lebanon	BAU	9.0	23.46	7.32	16.07	46.45	0.00	6.70	
	WWS	5.2	29.79	9.85	23.76	25.10	0.00	11.49	-42.34
Libya	BAU	27.2	12.05	10.02	19.75	39.42	1.64	17.11	
2	WWS	16.2	14.89	13.07	19.84	20.65	2.76	28.78	-40.54
Lithuania	BAU	12.9	22.54	16.08	29.43	30.17	1.74	0.04	
	WWS	7.9	30.06	22.21	28.05	17.17	2.45	0.05	-39.06
Luxembourg	BAU	5.8	10.91	17.55	16.45	54.36	0.72	0.00	
C	WWS	3.1	14.17	26.90	24.24	33.55	1.15	0.00	-46.56
Macedonia,	BAU	4.9	26.21	15.24	32.50	22.49	1.13	2.43	
Republic of	WWS	3.3	30.31	18.09	36.55	10.63	1.42	3.00	-33.51
Malaysia	BAU	141.9	8.65	13.80	52.66	24.81	0.08	0.00	
	WWS	77.7	11.85	19.57	53.87	14.57	0.15	0.00	-45.27
Malta	BAU	4.1	4.82	5.99	3.30	85.43	0.06	0.41	
	WWS	1.6	9.67	12.30	6.32	70.50	0.15	1.05	-62.25
Mexico	BAU	400.4	10.65	4.25	51.23	29.17	3.65	1.05	
	WWS	194.2	16.06	6.82	49.48	18.97	6.52	2.16	-51.50
Moldova,	BAU	5.0	32.88	16.07	31.42	17.06	1.78	0.80	
Republic of	WWS	3.5	34.58	19.14	35.21	7.83	2.14	1.09	-29.82
Mongolia	BAU	9.2	25.76	8.32	39.56	15.06	2.82	8.49	
	WWS	6.8	28.30	11.18	41.10	6.40	3.17	9.86	-25.86
Montenegro	BAU	1.6	36.18	1.35	29.81	31.39	0.47	0.81	
	WWS	1.0	42.48	1.68	38.61	15.55	0.64	1.04	-36.54
Morocco	BAU	37.5	18.35	9.16	32.38	25.17	14.93	0.00	
	WWS	24.2	20.86	11.18	36.27	12.40	19.29	0.00	-35.50
Mozambique	BAU	14.2	50.07	1.24	40.08	8.43	0.18	0.00	
	WWS	10.4	49.24	1.32	45.63	3.62	0.20	0.00	-26.90
Myanmar	BAU	26.5	56.81	2.87	25.29	8.06	1.19	5.79	
	WWS	18.4	58.71	3.20	25.65	4.16	1.40	6.88	-30.34
Namibia	BAU	3.9	7.06	0.11	14.02	28.00	22.72	28.09	• • • • •
	WWS	2.8	7.08	0.12	16.59	12.23	26.13	37.85	-28.69
Nepal	BAU	16.0	71.92	2.98	11.72	10.44	2.82	0.12	20.02
NT (1 1 1	WWS	11.1	74.55	3.37	13.83	4.71	3.38	0.17	-30.82
Netherlands	BAU	105.2	16.90	16.12	29.54	32.62	4.83	0.00	40.75
Noth or low de	WWS	60.2	20.53	23.00	30.61	18.62	7.25	0.00	-42.75
Netherlands	BAU	7.8	1.24	0.00	19.36	78.49	0.00	0.91	60.70
Antilles New Zeeland	WWS PAU	2.4	2.82	0.00	13.24	80.92	0.00	3.02	-69.78
New Zealand	BAU	23.7	10.35	8.66	37.64	38.63	4.28	0.44	10 70
Nicorogue	WWS PAU	<u>13.5</u> 3.8	13.45	11.88 9.72	46.31	21.12	6.48	0.77	-42.73
Nicaragua	BAU	3.8 2.2	37.16 45.62		16.37 19.97	34.56	2.13	0.05	41.27
Nigeria	WWS BAU	2.2 207.1	45.62 60.21	12.94 3.53	25.21	18.33 7.76	3.08 0.01	0.07 3.28	-41.27
nigena	WWS	133.1	60.21	3.33 4.39	25.21 20.44	3.76	0.01	5.28 4.18	-35.72
Norway	BAU	37.0	19.74	4.39	46.24	3.76 17.61	1.45	0.41	-33.12
noiway		37.0 20.7	27.01						11 15
Omen	WWS PAU			20.75	38.28	11.00	2.36	0.60	-44.15
Oman	BAU	55.2 34.0	4.07	3.78	74.11	15.27	0.11	2.66	20 50
Delviator	WWS PAU	34.0	5.05	4.77	78.72	7.73	0.17	3.55	-38.50
Pakistan	BAU	169.8	44.79	4.88	33.91	14.93	1.31	0.17	21.40
Danama	WWS	116.4	45.98	5.65	38.39	7.89	1.89	0.21	-31.42
Panama	BAU	14.5	7.39	7.89	11.36	73.18	0.17	0.00	56 21
	WWS	6.3	12.40	14.01	21.10	52.18	0.32	0.00	-56.31

D	DAT	0.7	22.00	0.51	20.02	20.40	0.00	0.00	
Paraguay	BAU WWS	8.7 5.2	23.98 29.40	8.51 11.04	28.03 36.73	39.49 22.82	$\begin{array}{c} 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	-40.25
Peru	BAU	35.4	15.67	7.04	28.96	46.78	1.55	0.00	-40.23
l'elu	WWS	18.7	21.58	10.43	33.84	31.62	2.52	0.00	-47.18
Philippines	BAU	67.7	19.12	15.49	34.55	29.25	1.59	0.00	
11	WWS	42.0	22.82	19.40	39.91	15.58	2.28	0.00	-37.94
Poland	BAU	99.3	26.83	15.08	31.08	21.18	5.84	0.00	
	WWS	60.5	29.43	20.22	29.55	12.88	7.92	0.00	-39.03
Portugal	BAU	24.4	17.30	7.56	37.66	35.08	2.25	0.15	
	WWS	14.2	21.75	10.68	43.29	20.76	3.31	0.21	-41.66
Qatar	BAU	71.7	2.89	1.69	78.15	15.17	0.00	2.12	(0.71
Demenie	WWS	<u>22.4</u> 56.1	7.04 27.42	4.18	66.92	15.10	0.00	6.77 0.94	-68.71
Romania	BAU WWS	36.1 34.5	33.20	10.00	37.11 36.21	22.14 12.71	2.42	0.94 1.26	-38.55
Russian	BAU	864.1	24.67	7.13	43.31	22.75	2.42	0.01	-30.55
Federation	WWS	574.3	31.45	8.48	39.32	17.74	2.12	0.01	-33.54
Saudi Arabia	BAU	232.4	11.63	9.23	39.62	39.08	0.39	0.01	55.51
Suudi / Hubiu	WWS	121.6	16.96	13.68	45.25	23.27	0.75	0.09	-47.68
Senegal	BAU	5.9	39.68	8.28	22.71	28.43	0.42	0.48	
0	WWS	3.7	45.82	10.27	28.45	14.17	0.67	0.63	-37.47
Serbia	BAU	20.8	32.94	13.13	32.20	20.06	1.67	0.00	
	WWS	13.6	38.25	16.07	33.50	10.01	2.17	0.00	-34.49
Singapore	BAU	142.2	1.85	5.84	19.44	72.78	0.00	0.10	
	WWS	57.2	3.47	11.27	28.37	56.63	0.00	0.25	-59.76
Slovak Republic	BAU	16.5	21.46	16.69	42.87	17.56	1.42	0.00	
	WWS	10.5	25.62	21.58	39.81	11.08	1.90	0.00	-36.55
Slovenia	BAU	7.2	24.45	11.76	27.98	33.37	1.85	0.58	
	WWS	4.5	29.05	15.04	34.69	18.04	2.42	0.76	-37.37
South Africa	BAU	236.5	16.67	8.28	54.24	15.52	2.52	2.77	
	WWS	130.8	16.20	11.79	54.51	9.28	3.97	4.25	-44.71
Spain	BAU	147.1	16.94	13.20	31.65	34.43	3.04	0.75	
	WWS	82.7	21.77	18.42	32.07	22.00	4.54	1.20	-43.75
Sri Lanka	BAU	22.1	30.73	7.06	30.88	28.57	0.05	2.71	26.41
A 1	WWS	14.1	35.08	8.68	38.69	14.00	0.06	3.49	-36.41
Sudan	BAU	21.6	37.67	14.98	19.89	24.94	1.51	1.00	25.24
C d	WWS	14.0	42.19 23.89	18.55	23.91	12.02	2.07	1.26	-35.34
Sweden	BAU WWS	53.7 37.6	23.89 28.80	16.50 19.84	35.63 37.38	22.76 12.49	1.22 1.49	0.00 0.00	-30.01
Switzerland	BAU	31.2	27.79	19.84	21.32	30.12	1.49	0.00	-30.01
Switzerland	WWS	19.8	31.65	23.52	25.12	16.98	1.24	1.01	-36.59
Syrian Arab	BAU	21.7	15.27	4.85	37.25	34.35	4.63	3.66	-50.57
Republic	WWS	12.5	19.71	6.56	42.50	18.65	6.61	5.96	-42.63
Tajikistan	BAU	5.1	14.67	7.80	26.02	6.57	15.34	29.60	
	WWS	4.2	13.73	7.38	27.60	2.86	18.72	29.71	-18.03
Tanzania, United	BAU	35.0	52.24	1.49	25.01	8.72	7.51	5.03	
	WWS	25.1	52.24	1.61	27.96	3.79	8.63	5.78	-28.26
Republic of	BAU	249.8	10.11	11.31	51.70	21.27	5.47	0.13	
Thailand	WWS	151.8	12.29	14.44	53.03	12.63	7.39	0.22	-39.23
Togo	BAU	3.3	57.64	8.79	6.79	26.25	0.00	0.52	
	WWS	2.1	65.96	11.32	8.88	13.00	0.00	0.83	-37.10
Trinidad and	BAU	16.5	6.90	1.51	70.04	21.55	0.00	0.00	
Tobago	WWS	6.8	12.32	2.86	68.38	16.44	0.00	0.00	-59.18
Tunisia	BAU	22.0	20.99	16.03	37.42	19.63	5.92	0.00	
	WWS	14.6	22.76	19.23	39.54	10.82	7.66	0.00	-33.63
Turkey	BAU	124.3	23.91	13.68	36.89	18.06	6.33	1.12	
	WWS	80.0	22.96	16.97	41.32	9.09	8.23	1.43	-35.63
Turkmenistan	BAU	45.6	1.24	41.77	22.14	15.76	1.37	17.72	01.50
T11 :	WWS	31.2	1.40	50.80	12.25	11.92	2.00	21.63	-31.70
Ukraine	BAU	174.6	29.62	9.84	42.74	15.36	2.44	0.00	21.01
	WWS	119.1	32.28	12.47	42.43	9.66	3.16	0.00	-31.81

	WWS	11,796.7	25.90	12.66	39.96	16.06	2.96	2.47	-39.19
All countries	BAU	19,399.8	21.64	9.66	37.97	27.01	2.06	1.66	
Linuauwe	WWS	17.2	49.75	8.58	18.21	4.38	10.99	1.53	-26.14
Zimbabwe	BAU	17.2	50.91	7.95	18.21	4.58	16.99	1.35	-23.75
Zambia	BAU WWS	14.0 10.4	52.30 51.11	2.60 2.72	38.82 42.07	4.48 1.93	1.07 1.29	0.73 0.88	-25.95
	WWS	7.5	11.64	1.81	28.25	17.77	27.44	13.08	-41.59
Yemen	BAU	12.8	9.39	1.37	27.37	33.32	19.55	9.00	
	WWS	91.6	23.60	5.97	59.51	8.71	2.21	0.00	-31.18
Vietnam	BAU	133.1	23.66	5.23	50.07	19.24	1.80	0.00	
	WWS	61.6	12.59	9.36	56.75	21.17	0.12	0.00	-49.44
Venezuela	BAU	121.9	8.87	6.05	50.76	34.27	0.06	0.00	
	WWS	57.7	37.29	12.93	25.90	6.39	6.69	10.80	-29.38
Uzbekistan	BAU	81.6	39.42	11.10	28.09	8.54	4.99	7.86	
e8j	WWS	4.7	20.79	14.95	38.86	22.54	2.55	0.31	-42.00
Uruguay	BAU	8.0	16.22	11.11	30.33	40.49	1.66	0.18	
America	WWS	1,296.4	21.33	21.02	28.22	26.10	1.88	1.45	-43.89
United States of	BAU	2,310.3	16.44	14.83	28.24	38.42	1.25	0.82	10110
United Kingdom	WWS	127.9	36.22	19.98	23.92	16.70	0.00	1.22	-43.18
United Kingdom	BAU	225.1	29.88	14.15	25.92	28.60	0.60	0.85	-57.11
Emirates	WWS	110.7	5.04	6.73	69.55	16.23	0.00	2.45	-37.11
United Arab	BAU	176.0	4.14	5.46	56.07	32.78	0.00	1.56	

BAU values are extrapolated from IEA (2015) data for 2012 to 2050 as follows: EIA's International Energy Outlook (IEO) projects energy use by end-use sector, fuel, and world region out to 2040 (EIA, 2015). This was extended to 2075 using a ten-year moving linear extrapolation. EIA sectors and fuels were then mapped to IEA sectors and fuels, and each country's 2012 energy consumption by sector and fuel was scaled by the ratio of EIA's 2050/2012 energy produced in each country for international transportation and shipping. 2050 WWS values are estimated from 2050 BAU values assuming electrification of end-uses and effects of additional energy-efficiency measures. See Delucchi et al. (2015) for details.

In 2012, the 139-country all-purpose, end-use load was ~11.95 TW (terawatts, or trillion watts). Of this, 2.4 TW (20.1%) was electric power load. If the countries follow the BAU trajectory, which involves increasing load, modest shifts in the power sector away from coal toward natural gas, biofuels, bioenergy and some WWS, and modest end-use energy efficiency improvements, their summed all-purpose end-use load is expected to grow to 19.4 TW in 2050 (Table 1).

A conversion to WWS by 2050 is calculated here to reduce the 139-country end-use load and the power required to meet that load by ~39.2% to 11.8 TW (Table 1), with the greatest percentage reduction in the transportation sector. About 6.9 percentage points of this reduction is due to end-use energy efficiency measures beyond those in the BAU scenario and another small portion is due to the fact that conversion to WWS eliminates the need for energy use in coal, oil, gas, biofuels, bioenergy, and uranium mining, transport, and/or refining. The remaining and major reason for the reduction is that the use of electricity for heating and electric motors is more efficient than is fuel combustion for the same applications (Jacobson and Delucchi, 2011). Also, the use of WWS electricity to produce hydrogen for fuel cell vehicles, while less efficient than is the use of WWS electricity to run BEVs, is more efficient and cleaner than is burning liquid fossil fuels for vehicles (Jacobson et al., 2005; Jacobson and Delucchi, 2011). Burning electrolytic hydrogen is slightly less efficient but cleaner than is burning fossil fuels for direct heating, and this is accounted for in Table 1. In the table ~9.1% of all 2050 WWS electricity (44.5% of the transportation load and 4.8% of the industrial load) is for producing, storing, and using hydrogen for long distance and heavy transportation and high-temperature industrial processes.

The percent decrease in load upon conversion to WWS in Table 1 is greater in some countries than in others. The reason is that the transportation-energy share of total energy is greater in some countries than in others. This trend is shown in Table 1, where countries with a higher fraction of load in the transportation sector exhibit a larger efficiency gain.

4. Numbers of Electric Power Generators Needed and Land-Use Implications

Table 2 summarizes the number of WWS power plants or devices needed to power the sum of all 139 countries in 2050 for all purposes assuming end use power requirements in Table 1 when the percent mixes of end-use power generation by country in Table 3 are used. Table 2 accounts for power losses during transmission and distribution of energy, maintenance of devices, and competition among wind turbines for limited kinetic energy (array losses).

Energy Technology	Rated power one plant or device (MW)	^a Percent of 2050 all- purpose load met by plant/de vice	Name-plate capacity, existing plus new plants or devices (GW)	Percent name- plate capacity already installed 2014	Number of new plants or devices needed for 139 countries	^b Percent of 139-country land area for footprint of new plants or devices	Percent of 139- country area for spacing of new plants or devices
Annual power							
Onshore wind	5	19.37	6,219	5.83	1,171,330	0.000012	0.65235
Offshore wind	5	12.90	3,820	0.23	762,221	0.000008	0.42451
Wave device	0.75	0.72	372	0.00	495,917	0.000217	0.00000
Geothermal plant	100	0.74	97	13.03	840	0.000241	0.00000
Hydropower plant ^c	1300	4.84	1,143	100.00	0	0.000000	0.00000
Tidal turbine	1	0.068	33	1.64	32,071	0.000008	0.00010
Res. roof PV	0.005	5.55	3,305	1.20	653,034,835	0.014280	0.00000
Com/gov roof PV ^d	0.1	5.97	3,590	1.66	35,302,712	0.015440	0.00000
Solar PV plant ^d	50	42.17	24,917	0.30	496,850	0.218484	0.00000
Utility CSP plant ^d	100	7.67	1,550	0.37	15,446	0.037862	0.00000
Total for annual power		100.00	45,046	3.79	691,312,222	0.287	1.077
New land annual power ^e						0.257	0.652

Table 2. Number, capacity, footprint area, and spacing area of WWS power plants or devices needed to provide total annually-averaged end-use all-purpose load over all 139 countries examined. Delucchi et al. (2015) derive individual tables for each country.

Total new land ^e						0.285	0.652
Total all			51,050	3.54	691,420,960	0.315	1.077
Geothermal heat ^f	50		70	100.00	0	0.000000	0.000
Solar thermal ^f	50		5,004	0.64	99,436	0.005932	0.000
For peaking/storage Additional CSP ^f	100	4.60%	930	0.00	9,302	0.022801	0.000

The total number of each device is the sum among all countries. The number of devices in each country is the end use load in 2050 in each country to be supplied by WWS (Table 1) multiplied by the fraction of load satisfied by each WWS device in each country (Table 3) and divided by the annual power output from each device. The annual output by device equals the rated power (this table; same for all countries) multiplied by the country-specific annual capacity factor of the device, diminished by transmission, distribution, maintenance, and array losses. The capacity factors, given in Delucchi et al. (2015), before transmission, distribution, and maintenance losses for onshore and offshore wind turbines at 100-m hub height in 2050, are calculated country by country from global model simulations of winds and wind power (Figure 3), accounting for competition among wind turbines for available kinetic energy based on the approximate number of turbines needed per country as determined iteratively from Tables 2 and 3. Wind array losses due to competition among turbines for the same energy are calculated here to be ~8.5%. The 2050 139-country mean onshore wind capacity factor calculated in this manner after transmission, distribution, maintenance, and array losses is 37.0%. That for offshore wind is ~40.1%. Short- and moderate distance transmission, distribution, and maintenance losses for all energy sources treated here, except rooftop PV, are assumed to be 5-10%. Rooftop PV losses are assumed to be 1-2%. The plans assume 38 (30-45)% of onshore wind and solar and 20 (15-25)% of offshore wind is subject to long-distance transmission with line lengths of 1400 (1200-1600) km and 120 (80-160) km, respectively. Line losses are 4 (3-5)% per 1000 km plus 1.5 (1.3-1.8)% of power in the station equipment. Footprint and spacing areas are calculated from the spreadsheets in Delucchi et al. (2015). Footprint is the area on the top surface of soil covered by an energy technology, thus does not include underground structures.

^aTotal end-use power demand in 2050 with 100% WWS is estimated from Table 1.

- ^bTotal land area for each country is given in Delucchi et al. (2015). 139-country land area is 119,725,384 km². The world land area is 510,072,000 km².
- ^cThe average capacity factors of hydropower plants are assumed to increase from their current values to 50.0%, except for Tajikistan and Paraguay, which are assumed to increase to 40% (see text).
- ^dThe solar PV panels used for this calculation are Sun Power E20 panels. CSP plant characteristics are patterned after the Ivanpah facility but assuming storage, namely a maximum charge to discharge rate (storage size to generator size ratio) of 2.62:1. The capacity factors used for residential PV, commercial/government rooftop PV, utility scale PV, and CSP are calculated here country-by-country with the 3-D global model simulations also used to calculate solar resource analysis (Figure 5), and are given in Delucchi et al. (2015). For utility solar PV plants, nominal "spacing" between panels is included in the plant footprint area.
- ^eThe footprint area requiring new land equals the sum of the footprint areas for new onshore wind, geothermal, hydropower, and utility solar PV. Offshore wind, wave and tidal are in water so do not require new land. Similarly, rooftop solar PV does not use new land because the rooftops already exist. Only onshore wind requires new land for spacing area. Spacing area is for onshore and offshore wind is calculated as $42D^2$, where *D*=rotor diameter. The 5-MW Senvion (RePower) turbine assumed has *D*=126 m.
- The other energy sources either are in water or on rooftops, or do not use new land for spacing. Note that the spacing area for onshore wind can be used for multiple purposes, such as open space, agriculture, grazing, etc.
- ^fThe installed capacities for peaking power/storage are estimated based on data from Jacobson et al. (2015b). Additional CSP is CSP plus storage beyond that needed for annual power generation to firm the grid across all countries. Additional solar thermal and geothermal are used for soil heat storage. Other types of storage are also used in Jacobson et al. (2015b).

Rooftop PV in Table 2 is divided into residential (5-kW systems on average) and commercial/government (100-kW systems on average). Rooftop PV can be placed on

existing rooftops or on elevated canopies above parking lots, highways, and structures without taking up additional undeveloped land. Table 4 summarizes projected 2050 rooftop areas by country usable for solar PV on residential and commercial/government buildings, carports, garages, parking structures, and parking lot canopies. The rooftop areas in Table 4 are used to calculate potential rooftop generation, which in turn limits the penetration of PV on residential and commercial/government buildings in Table 3. Utility-scale PV power plants are sized, on average, relatively small (50 MW) to allow them to be placed optimally in available locations. While utility-scale PV can operate in any country because it can take advantage of both direct and diffuse solar radiation, CSP is assumed to be viable only in countries with significant direct solar radiation, and its penetration in each country is limited to less than its technical potential.

Onshore wind is available to some extent in every country but assumed to be viable in high penetrations primarily in countries with good wind resources (Section 5.1). Offshore wind is assumed to be viable in any country with either ocean or lake coastline (Section 5.1). Wind and solar are the only two sources of electric power with sufficient resource to power the world independently on their own. Averaged over the 139 countries, wind (\sim 32.3%) and solar (61.4%) are the largest generators of annually-averaged end-use electric power under these plans. The ratio of wind to solar end-use power is 0.53:1.

Under the roadmaps, the 2050 nameplate capacity of hydropower in each country is assumed to be exactly the same as in 2014. However, existing dams in most countries are assumed to run more efficiently for producing peaking power, thus the capacity factor of dams is assumed to increase (Section 5.4). Geothermal, tidal, and wave energy expansions are limited in each country by their technical potentials (Sections 5.3 and 5.5).

Table 2 indicates that 3.8% of the summed nameplate capacity required for a 100% WWS system for 2050 all-purpose energy in the 139 countries is already installed as of the end of 2014. Figure 1 shows that the countries closest to 100% 2050 all-purpose WWS power as of the end of 2014 are Norway (67%), Paraguay (54%), and Iceland (39%), Tajikistan (34%), Portugal (26%), Sweden (21%), and Switzerland (20.6%). The United States (4.2%) ranks 56th and China (3.4%) ranks 65th.

Figure 1. Countries ranked in order of how close they are at the end of 2014 to reaching 100% WWS power for all purposes in 2050. The percentages are of 2050 WWS installed capacity (summed over all WWS technologies) needed that are already installed..

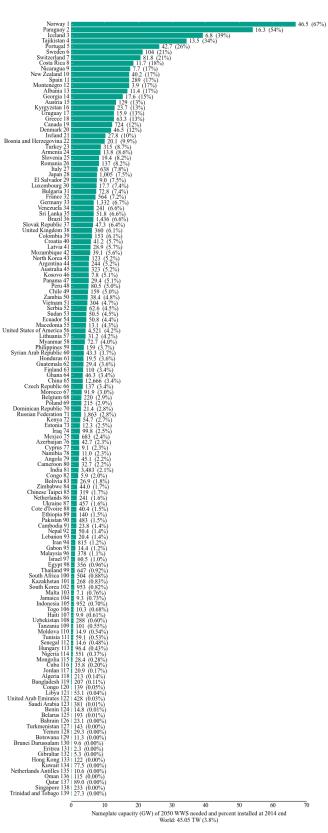


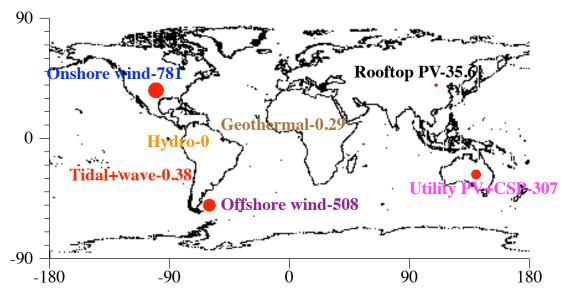
Table 2 also lists 1) installed capacities beyond those needed to match annually-averaged power demand for CSP with storage, 2) solar thermal for current and stored heat, and 3) geothermal for current and stored heat. These additional capacities are estimated using data from the grid integration study of Jacobson et al. (2015b) and are needed to produce peaking power, to account for additional loads due to losses in and out of storage, and to ensure reliability of the grid, as described and quantified in that paper (see also Section 6).

to 100%.							-	-		
Country	On-	Off-shore	Wave	Geoth-	Hydro-	Tidal	Res	Comm/g	Utility	CSP
-	shore	wind		ermal	electric		PV	ov PV	PV	
	wind									
Albania	1.50	0.28	2.00	0.00	35.10	0.45	7.54	9.59	43.54	0.00
Algeria	1.25	0.00	0.92	0.00	0.25	0.02	9.33	10.33	62.90	15.00
Angola	8.00	1.70	3.00	0.00	3.64	0.09	36.92	27.57	8.58	10.50
Argentina	30.00	20.00	2.80	1.07	7.27	0.01	8.04	9.22	11.59	10.00
Armenia	18.50	0.00	0.00	0.64	16.96	0.00	5.09	5.46	33.35	20.00
Australia	30.00	6.20	5.00	0.40	4.93	0.14	4.83	5.98	32.53	10.00
Austria	27.00	0.00	0.00	0.00	22.68	0.00	5.12	5.55	39.45	0.20
Azerbaijan	45.00	0.00	0.00	0.00	4.42	0.00	6.91	8.89	27.78	7.00
Bahrain	1.00	8.00	1.25	0.00	0.00	0.19	3.32	5.41	60.83	20.00
Bangladesh	15.00	0.00	0.65	0.00	0.27	0.09	16.55	6.59	55.85	5.00
Belarus	45.00	0.00	0.00	0.02	0.01	0.00	0.77	1.43	51.77	1.00
Belgium	8.00	18.00	0.08	0.00	1.83	0.03	4.56	4.75	62.75	0.00
Benin	29.20	0.30	0.50	0.00	0.02	0.38	11.96	5.81	41.83	10.00
Bolivia	25.00	0.00	0.00	14.98	3.17	0.00	20.12	8.61	23.12	5.00
Bosnia and Herzegovina	10.50	1.20	0.22	0.00	21.86	0.27	6.85	9.43	44.67	5.00
Botswana	30.00	0.00	0.00	0.00	0.00	0.00	5.53	8.61	40.85	15.00
Brazil	0.85	17.00	0.97	0.00	11.31	0.01	7.40	10.21	42.24	10.00
Brunei Darussalam	5.00	11.50	0.00	0.00	0.00	0.00	7.00	8.78	57.72	10.00
Bulgaria	7.00	0.00	0.00	0.00	12.23	0.08	1.56	4.40	74.72	0.00
Cambodia	30.00	7.90	2.00	0.00	2.68	0.19	26.02	12.15	14.05	5.00
Cameroon	15.00	1.50	1.00	0.00	5.19	0.18	10.03	5.47	46.63	15.00
Canada	37.50	21.00	2.00	1.91	16.24	0.21	1.46	1.69	17.99	0.00
Chile	25.00	10.00	1.00	3.15	6.67	0.05	5.33	6.92	36.89	5.00
China	16.00	12.90	0.20	0.05	4.33	0.02	3.65	4.52	49.34	9.00
Chinese Taipei	2.00	38.00	0.70	27.14	2.08	0.01	1.48	3.11	25.48	0.00
Colombia	25.00	14.10	1.00	0.00	14.43	0.38	9.38	6.26	24.45	5.00
Congo	10.00	12.00	1.90	0.00	4.90	1.01	27.71	21.61	20.88	0.00
Congo, Dem. Republic	10.00	0.00	0.00	0.00	0.11	0.04	6.75	1.73	56.37	25.00
Costa Rica	3.00	1.10	1.00	26.68	21.71	0.31	17.05	17.39	6.76	5.00
Cote d'Ivoire	22.40	7.00	2.50	0.00	3.62	0.15	11.23	7.09	45.91	0.10
Croatia	30.00	0.00	1.00	0.00	11.74	0.13	2.41	4.84	48.87	1.00
Cuba	22.93	15.00	2.00	0.00	0.29	0.12	13.34	8.40	32.92	5.00
Cyprus	20.00	13.00	1.00	0.00	0.00	0.51	13.02	14.06	28.41	10.00
Czech Republic	25.00	0.00	0.00	0.00	4.39	0.00	4.14	6.64	59.84	0.00
Denmark	28.00	57.00	3.00	0.00	0.03	0.08	1.59	1.64	8.66	0.00
Dominican Republic	25.00	5.00	2.00	9.94	4.63	0.20	24.12	20.01	4.11	5.00
Ecuador	35.00	1.00	2.00	0.33	10.20	0.57	25.22	13.89	11.79	0.00
Egypt	20.00	0.25	1.00	0.00	1.36	0.01	11.72	8.07	42.58	15.00
El Salvador	10.00	2.00	3.00	32.07	8.25	0.43	17.79	10.09	11.37	5.00
Eritrea	15.00	5.00	2.00	0.00	0.00	2.19	52.53	17.26	1.02	5.00
Estonia	60.00	20.66	2.00	0.00	0.12	0.37	0.78	1.29	14.77	0.00
Ethiopia	16.00	0.00	0.00	4.08	2.51	0.00	17.74	5.12	36.55	18.00
Finland	32.00	41.00	1.50	0.00	5.57	0.04	0.25	0.56	19.09	0.00
France	30.00	25.00	1.25	0.02	8.17	0.16	10.36	9.71	14.59	0.75

Table 3. Percent of annually-averaged 2050 country-specific all-purpose end-use load (not installed capacity) in a WWS world from Table 1 proposed here to be met by the given electric power generator. All rows add up to 100%

Cabar	15.00	20.00	2.00	0.00	2.02	0.41	5.07	7 22	16 17	0.00
Gabon	15.00 18.00	20.00 4.00	2.00	0.00	2.82	0.41	5.97 5.21	7.33 7.30	46.47 33.21	0.00
Georgia					30.01					
Germany	18.00	17.00	0.35	0.01	2.20	0.00	5.72	5.49	51.23	0.00
Ghana	21.10	4.00	1.00	0.00	8.25	0.13	8.87	6.34	50.07	0.25
Gibraltar	0.03	35.00	0.50	0.00	0.00	1.17	0.37	0.75	62.15	0.04
Greece	30.00	4.00	1.00	2.40	10.05	0.07	14.19	9.14	24.45	4.70
Guatemala	7.00	3.00	1.00	23.68	5.82	0.14	22.54	10.38	16.43	10.00
Haiti	30.00	11.00	1.00	0.00	1.05	0.43	28.58	6.32	11.61	10.00
Honduras	25.00	7.50	4.00	11.17	5.78	0.26	17.22	6.65	14.92	7.50
Hong Kong, China	0.25	35.00	1.20	0.00	0.00	0.04	3.18	3.71	41.62	15.00
Hungary	1.70	0.00	0.00	2.15	0.18	0.00	3.01	4.37	88.59	0.00
Iceland	39.03	6.00	2.00	23.56	29.05	0.36	0.00	0.00	0.00	0.00
India	17.00	3.20	0.38	0.03	2.54	0.02	6.32	8.71	50.30	11.50
Indonesia	6.30	10.00	2.00	3.88	1.15	0.01	8.73	8.66	49.27	10.00
Iran, Islamic Republic	11.00	2.50	0.20	0.00	2.15	0.01	2.49	2.27	61.39	18.00
Iraq	25.00	0.00	0.10	0.00	4.56	0.00	10.95	6.53	41.96	10.90
Ireland	46.00	37.00	1.80	0.00	2.87	0.13	2.36	2.88	6.95	0.00
Israel	10.00	3.00	0.00	0.00	0.02	0.07	5.71	13.65	47.54	20.00
Italy	11.00	0.90	2.00	0.64	7.77	0.01	6.27	6.31	63.11	2.00
Jamaica	10.00	20.00	5.00	0.00	0.42	0.52	16.44	12.59	35.04	0.00
Japan	4.50	6.00	1.00	0.56	10.51	0.23	7.38	11.36	56.46	2.00
Jordan	30.00	0.00	0.00	0.00	0.12	0.20	9.39	9.13	36.17	15.00
Kazakhstan	46.50	6.50	1.00	0.00	1.56	0.02	2.56	4.09	37.78	0.00
Kenya	21.00	7.00	1.00	10.75	2.67	0.08	14.56	7.28	28.66	7.00
Korea, Dem. People's Rep.	25.00	12.50	2.00	0.00	10.49	0.80	1.84	0.57	46.80	0.00
Korea, Republic of	3.50	12.00	0.60	0.00	1.30	0.13	2.10	4.99	74.13	1.25
Kosovo	15.00	0.00	0.00	37.31	10.31	0.00	2.96	2.86	31.56	0.00
Kuwait	5.00	6.80	1.00	0.00	0.00	0.05	1.39	3.18	54.57	28.00
Kyrgyzstan	15.00	0.00	0.00	0.00	26.62	0.00	8.31	6.03	44.03	0.00
Latvia	35.00	14.50	3.90	0.00	12.16	0.19	0.63	1.17	32.45	0.00
Lebanon	10.00	8.00	0.25	0.00	2.70	0.24	4.41	8.62	60.78	5.00
Libya	26.50	3.50	2.00	0.00	0.00	0.08	5.63	7.87	39.42	15.00
Lithuania	15.00	50.00	0.50	0.00	6.49	0.16	1.78	2.36	23.72	0.00
Luxembourg	7.00	0.00	0.00	0.00	18.28	0.00	5.27	4.86	64.59	0.00
Macedonia, Republic of	40.00	0.00	0.00	0.00	8.58	0.00	5.62	7.98	37.82	0.00
Malaysia	14.00	8.90	1.00	0.00	2.52	0.02	4.07	10.71	58.78	0.00
Malta	1.00	10.00	5.00	0.00	0.00	0.79	4.14	7.94	66.13	5.00
Mexico	25.00	7.90	1.00	2.40	3.19	0.01	10.41	14.09	23.00	13.00
Moldova, Republic of	45.00	0.00	0.00	0.00	1.14	0.00	3.91	4.55	45.40	0.00
Mongolia	38.00	0.00	0.00	0.00	0.22	0.00	2.75	3.20	55.83	0.00
Montenegro	10.00	15.00	2.00	0.00	31.95	1.19	3.98	6.55	29.33	0.00
Morocco	22.50	5.00	2.00	0.00	3.66	0.05	8.41	7.49	45.89	5.00
Mozambique	25.00	2.00	2.00	0.00	10.48	2.37	13.56	4.77	34.81	5.00
Myanmar	10.00	12.00	0.20	0.00	7.86	0.27	20.72	9.56	34.38	5.00
Namibia	14.00	3.25	2.00	0.00	4.52	0.45	3.39	4.00	63.39	5.00
Nepal	15.00	0.00	0.00	0.00	3.21	0.00	11.59	3.77	56.43	10.00
Netherlands	5.00	60.00	0.30	0.00	0.03	0.02	1.60	1.62	31.43	0.00
Netherlands Antilles	2.00	12.50	4.00	0.00	0.00	0.52	3.47	3.21	74.29	0.00
New Zealand	30.00	13.25	1.00	13.29	19.43	0.36	2.77	3.72	16.18	0.00
Nicaragua Nicaria	10.00	2.00	1.00	18.39	22.49	0.55	23.75	10.01	6.81	5.00
Nigeria	20.00		0.10	0.00	0.77	0.01	9.65	9.94	39.53	20.00
Norway	14.00	10.00	0.55	0.00	72.86	0.42	0.36	0.71	1.10	0.00
Oman	18.00	3.90	1.00	0.00	0.00	0.04	1.52	1.98	58.57	15.00
Pakistan	2.50	2.25	0.30	0.00	2.93	0.01	12.23	6.65	58.12	15.00
Panama	30.00	5.00	4.00	0.00	11.85	0.78	11.31	10.69	26.38	0.00
Paraguay	4.00	0.00	0.00	0.00	67.83	0.00	17.11	8.03	3.03	0.00
Peru Dhilippingg	25.00	0.00	1.00	6.79	10.09	0.07	21.70	13.55	19.80	2.00
Philippines	5.00	10.00	5.00	12.29	4.55	0.29	31.52	17.27	14.09	0.00
Poland	43.00	29.00	0.35	0.16	1.96	0.02	4.83	10.00	10.67	0.00

Portugal	35.00	15.00	1.00	0.63	20.40	0.87	7.37	9.62	7.37	2.75
Qatar	3.50	7.90	0.50	0.00	0.00	0.05	1.21	2.83	77.50	6.50
Romania	24.40	22.00	0.25	0.26	10.07	0.04	1.58	5.36	36.04	0.00
Russian Federation	48.80	22.00	2.00	0.08	4.53	0.02	0.73	1.33	20.51	0.00
Saudi Arabia	11.00	0.00	0.50	0.00	0.00	0.01	3.25	4.33	45.92	35.00
Senegal	20.00	5.00	2.00	0.00	0.95	0.34	18.48	9.04	34.19	10.00
Serbia	25.00	0.00	0.00	0.00	10.34	0.00	2.39	4.97	57.31	0.00
Singapore	0.10	0.48	0.17	6.17	0.00	0.02	3.68	3.56	85.82	0.00
Slovak Republic	35.00	0.00	0.00	0.00	12.03	0.00	2.28	3.87	46.81	0.00
Slovenia	30.00	2.80	0.50	2.01	14.41	0.27	2.34	3.46	44.20	0.00
South Africa	20.00	7.00	1.00	0.00	1.13	0.01	1.56	2.56	56.74	10.00
Spain	25.70	10.00	1.00	0.07	11.86	0.30	10.58	9.42	20.10	10.98
Sri Lanka	20.00	22.00	2.00	0.00	5.79	0.09	18.13	12.22	19.77	0.00
Sudan	12.00	7.35	1.00	0.00	8.04	0.09	21.04	13.39	17.09	20.00
Sweden	55.00	19.00	1.00	0.00	22.01	0.07	0.73	0.97	1.23	0.00
Switzerland	15.00	0.00	0.00	0.00	39.64	0.00	4.41	7.91	33.04	0.00
Syrian Arab Republic	35.00	1.50	0.00	0.00	6.45	0.10	11.82	5.79	32.34	7.00
Tajikistan	30.00	0.00	0.00	0.00	44.61	0.00	16.60	8.00	0.80	0.00
Tanzania, United Republic	18.55	7.00	1.00	0.00	1.11	0.49	8.38	3.63	49.84	10.00
Thailand	11.00	5.40	1.00	0.07	1.45	0.01	3.42	4.38	68.27	5.00
Togo	21.50	2.00	0.60	0.00	1.67	0.59	11.74	3.71	53.20	5.00
Trinidad and Tobago	1.00	48.00	1.00	0.00	0.00	0.18	3.67	3.55	41.60	1.00
Tunisia	23.00	4.00	1.00	0.00	0.24	0.08	5.12	5.60	55.96	5.00
Turkey	16.00	0.05	0.50	0.83	14.46	0.02	10.90	10.16	39.08	8.00
Turkmenistan	16.00	0.00	0.00	0.00	0.00	0.00	1.43	2.80	79.76	0.00
Ukraine	25.00	30.00	1.00	0.00	2.50	0.01	1.46	2.05	37.98	0.00
United Arab Emirates	4.00	4.00	0.50	0.00	0.00	0.01	0.79	1.31	79.39	10.00
United Kingdom	20.00	65.00	0.80	0.00	1.73	2.19	1.09	2.96	6.22	0.00
United States of America	30.92	17.50	0.37	0.45	3.92	0.01	8.04	7.36	24.14	7.30
Uruguay	30.00	13.50	2.00	0.00	16.52	0.26	7.56	10.52	19.64	0.00
Uzbekistan	4.00	0.00	0.00	0.00	1.50	0.00	3.48	2.05	88.97	0.00
Venezuela	15.80	20.00	1.00	0.00	12.98	0.02	6.92	6.00	27.03	10.25
Vietnam	0.01	30.00	1.90	0.00	7.78	0.01	8.40	4.91	33.04	13.95
Yemen	4.00	5.00	2.00	1.20	0.00	0.16	23.13	7.03	44.47	13.00
Zambia	20.00	0.00	0.00	0.78	8.88	0.00	12.98	7.73	31.62	18.00
Zimbabwe	21.50	0.00	0.00	0.00	2.95	0.00	6.42	6.09	39.04	24.00
World average	19.37	12.90	0.72	0.74	4.84	0.07	5.55	5.97	42.17	7.67


Figure 2 shows the additional footprint and spacing areas required from Table 2 to replace the 139-country all-purpose energy infrastructure with WWS by 2050. Footprint area is the physical area on the top surface of the ground or water needed for each energy device. Spacing area is the area between some devices, such as wind, tidal, and wave turbines, needed to minimize interference of the wake of one turbine with downwind turbines.

Only onshore wind, geothermal, additional hydropower (which none is proposed here), utility PV plants, and CSP plants require new footprint on land. Rooftop PV does not take up new land. Table 2 indicates that the total new land footprint required for the plans, averaged over the 139 countries is ~0.29% of the land area of the countries, mostly for utility PV plants. This does not account for the decrease in footprint from eliminating the current energy infrastructure, which includes the footprint for mining, transporting, and refining fossil fuels and uranium and for growing, transporting, and refining biofuels and bioenergy.

The only spacing over land needed for the WWS system is between onshore wind turbines and requires $\sim 0.65\%$ of the 139-country land area.

For several reasons, we have not estimated the footprint or spacing area of additional transmission lines. Transmission systems have virtually no footprint on the ground because transmission towers are four metal supports connected to small foundations, allowing grass to grow under the towers. Further, the rights-of-way under transmission lines typically can accommodate many uses; more than can the rights-of-way under gas and oil pipelines and other conventional infrastructure that new transmission lines will replace. Finally, in our roadmaps, as much additional transmission capacity as possible will be placed along existing pathways but with enhanced lines.

Figure 2. Footprint plus spacing areas required from Table 2, beyond existing 2014 resources, to repower the 139 countries for all purposes in 2050. The dots do not indicate the actual location of energy farms, just their relative spacing areas. After the name of each resource the thousands of square kilometers of footprint plus spacing. For hydropower, the new footprint plus spacing area is zero since no new installations are proposed. For tidal + wave and geothermal, the new spacing areas are so small they are difficult to distinguish on the map. For rooftop PV, the circle represents the new rooftop area needed.

5. Resource Availability

This section evaluates whether the 139 countries have sufficient wind, solar, geothermal, and hydropower resources to supply each country's all-purpose power in 2050.

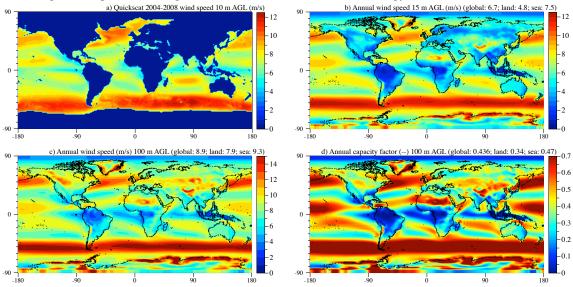

5.1. Wind

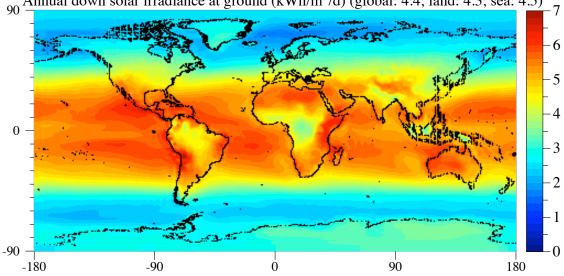
Figure 3 shows three-dimensional computer model estimates, derived for this study, of the world annually-averaged wind speed and capacity factor at the 100-m hub height above the topographical surface of modern wind turbines. The figure also compares near-surface modeled wind speeds with QuikSCAT data over the oceans, suggesting model predictions and data are similar at that height giving confidence in the 100-m values.

Locations of strong onshore wind resources include the Great Plains of the U.S. and Canada, the Sahara desert, the Gobi desert, much of Australia, the south of Argentina, South Africa, and northern Europe among other locations. Strong offshore wind resources occur off the east and west coasts of North America, over the Great Lakes, the North Sea, the west coast of Europe and the east coast of Asia, offshore of Peru and Argentina, Australia, South Africa, India, Saudi Arabia, and west Africa.

Our estimates of the nameplate capacity of onshore and offshore wind to be installed in each country (Tables 2 and 3) are limited by the country's power demand and technical potential available for onshore (NREL, 2012a) and offshore (Arent et al., 2012) turbines. Only 3.5% of the onshore technical potential and 27.2% of the near-shore offshore technical potential are proposed for use in 2050. Table 2 indicates that the 2050 WWS roadmaps require ~0.65% of the 139-country onshore land area and 0.42% of the 139-country onshore-equivalent land area sited offshore for wind-turbine spacing to power 32.2% of all-purpose annually-averaged 139-country power in 2015.

Figure 3. (a) QuikSCAT 10-m above ground level (AGL) wind speed at 1.5° x 1.5° resolution (JPL, 2010), (b) GATOR-GCMOM (Jacobson, 2010b) 4-year-average modeled annual 15-m AGL wind speed at 2.5° W-E x 2.0° S-N resolution, (c) Same as (b) but at 100 m AGL, (d) Same as (c) but for capacity factor assuming a Senvion (RePower) 5 MW turbine with 126-m rotor diameter. In all cases, wind speeds are determined before accounting for competition among wind turbines for the same kinetic energy.

As of the end of 2014, 3.7% of the proposed 2050 onshore plus offshore wind power nameplate capacity of 10.0 TW among the 139 countries has been installed. Figure 4 indicates that China, the United States, and Germany have installed the greatest capacity of onshore wind, whereas the United Kingdom, Denmark, and Germany have installed the most offshore wind.


Figure 4. Installed onshore and offshore wind power by country as of the end of 2014. Capacity is determined first from GWEC (2015) year-end values for 2014, followed by IEA (2014b) capacity estimates for 2014, then IEA (2015) capacity estimates for 2011.

China 1	-					113,951 (658
United States of America 2 Germany 3	-	38,116		65,879		110,501 (000
Spain 4	- 22	,982 (5.0) 465	(1,049)			
India 5 United Kingdom 6	- 22,	465 194)				
Canada 7 France 8	- 9,694 - 9,285					
Italy 9	8,663					
Brazil 10 Sweden 11	- 5,939 - 5,213 (212)					
Portugal 12 Denmark 13	4,912 (2.0)					
Poland 14	3,612 (1,271) 3,832 (2.0)					
Australia 15 Turkey 16	- 3,806 - 3,763					
Romania 17 Austria 18	- 2,954 - 2,905					
Netherlands 19	2,558 (247)					
Japan 20 Mexico 21	2,739 (50) 2,551					
Ireland 22 Greece 23	2,247 (25)					
Belgium 24	1,205 (712)					
Sri Lanka 25 Norway 26	1,800 856 (2.0)					
Chile 27	836					
Morocco 28 Bulgaria 29	787 657					
Chinese Taipei 30 New Zealand 31	633 623					
South Korea 32	609 (10)					
Egypt 33 South Africa 34	610 570					
Finland 35 Ukraine 36	541 (26) 471					
Uruguay 37	464					
Hungary 38 Estonia 39	325 302					
Czech Republic 40 Argentina 41	292 271					
Pakistan 42	256					
Tunisia 43 Lithuania 44	245 225					
Thailand 45 Philippines 46	223 216					
Costa Rica 47	198					
Nicaragua 48 Croatia 49	186 180					
Ethiopia 50 Honduras 51						
Peru 52	148					
Cyprus 53 Iran 54	91					
Switzerland 55 Luxembourg 56	77					
Latvia 57	68					
Mongolia 58 Jamaica 59						
Dominican Republic 60 Israel 61						
Venezuela 62	30					
Libya 63 Colombia 64	20					
Ecuador 65 Russian Federation 66						
Jordan 67	14					
Cuba 68 Kenya 69	12					
Slovak Republic 70 Armenia 71	3.0					
Bangladesh 72 Nigeria 73	2.0					
Slovenia 74	2.0					
Iceland 75 Kazakhstan 76						
Indonesia 77 United Arab Emirates 78	1.0					
Bahrain 79	0.5					
Malaysia 80 Bolivia 81	0.1					
Algeria 82	0.1			Onshore	C	offshore
	20000	40000	60000	80000	100000) 120000
				pacity (MW)		
		World: 362,826	o (onshore)	8,765 (offsho	re)	

5.2. Solar

Figure 5 shows annually-averaged modeled solar irradiance worldwide accounting for sun angles, day/night, and clouds. The best solar resources are broadly between 40 °N and 40 °S. The new land area in 2050 required for non-rooftop solar under the plan here is equivalent to $\sim 0.28\%$ of the 139-country land area (Figure 5).

Figure 5. Modeled annually-averaged downward direct plus diffuse solar irradiance at the ground $(kWh/m^2/day)$ worldwide. The model used is GATOR-GCMOM (Jacobson, 2010), which simulates clouds, aerosols gases, weather, radiation fields, and variations in surface albedo over time. The model is run with horizontal resolution of 2.5° W-E x 2.0° S-N.

Annual down solar irradiance at ground (kWh/m²/d) (global: 4.4; land: 4.3; sea: 4.5)

Table 4 provides estimates of each country's maximum rooftop PV nameplate capacity. The proposed capacity for each country, summed in Table 2, is limited by the values in Table 4. Rooftops considered include those on residential, commercial, and governmental buildings, and garages, carports, parking lots, and parking structures associated with these buildings. Commercial and governmental buildings include all non-residential buildings except manufacturing, industrial, and military buildings. Commercial buildings include schools.

The total residential rooftop area suitable for PV in each country in 2050 is calculated first by extrapolating the fraction of 2050 population living in urban versus rural areas linearly but with upper limits from 2005-2014 urban fraction data (World Bank, 2015c). Projected 2050 population in each country is then divided between rural and urban population. Population in each case is then multiplied by floor area per capita by country (assumed the same for rural and urban homes) from Entranze Data Tool (2015) for European countries, IEA (2005) for a few additional countries, and IEA (2014a) for remaining regions of the world. The result is finally multiplied by the utilization factor (UF), which is the ratio of the usable rooftop area to ground floor area. For rural areas in each country, UF=0.2. Eiffert (2003) estimates UF=0.4 for rooftops and 0.15 for facades, but for single-family rural residential homes, we assume shading reduces the UF to 0.2. For urban areas, we assume UF=0.4 but divide the urban area population by the number of floors in each urban complex to account for the fact that urban buildings house more people per unit ground floor area. The number of floors is estimated by country in Europe from Entranze Data Tool (2015) as

the number of dwellings per multi-family building divided by an estimated four dwellings on the bottom floor of a building. This gives the average number of floors in an urban area ranging from 2 to 5 for these countries. We assume three floors per urban dwelling in other countries. Potential solar PV installed capacity is then calculated as the installed capacity of a Sunpower E20 435 W panel multiplied by the suitable rooftop area and divided by panel area.

The total commercial rooftop area suitable for PV for European countries in 2050 is calculated as the product of the estimated 2050 country population, the average commercial ground floor area per capita (Entranze Data Tool, 2015), and a UF=0.4 (Eiffert, 2003). Scaling the European value to the GDP/capita of countries to that of European countries gives the average commercial ground floor area per capita in other countries. Potential solar PV installed capacity is then the installed capacity of a Sunpower E20 435 W panel multiplied by suitable rooftop area and divided by panel area.

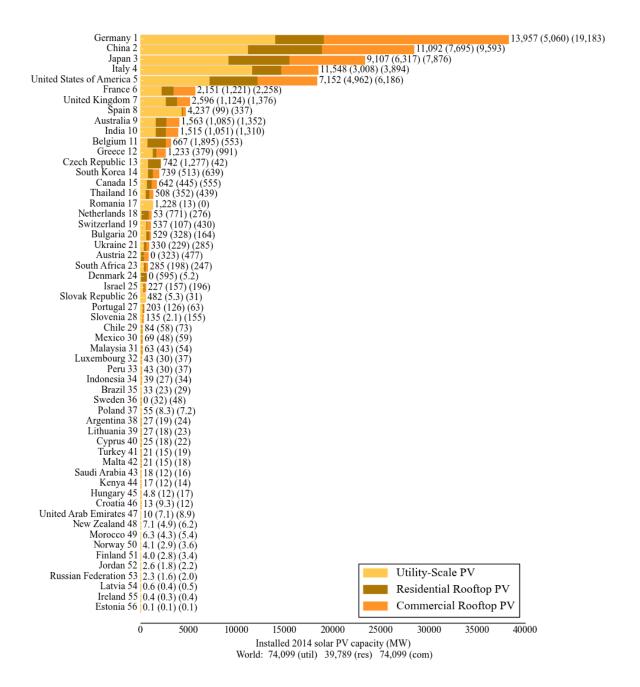
The potential rooftop or canopy area over parking spaces in each country is computed by multiplying the number of passenger cars per person (World Bank, 2014) by the average parking space per car (30 m^2 , Dulac, 2013) in the country. Given that 1) some of these parking spaces will be in residential garages that have already been included in the residential rooftop PV calculation, and 2) some parking spaces will not necessarily have a roof (e.g. basement parking spaces), a utilization factor of 0.5 is applied to the estimate for parking area suitable for PV. With these assumptions, the PV capacity on parking-space rooftops is ~15% of the maximum capacity on residential rooftops.

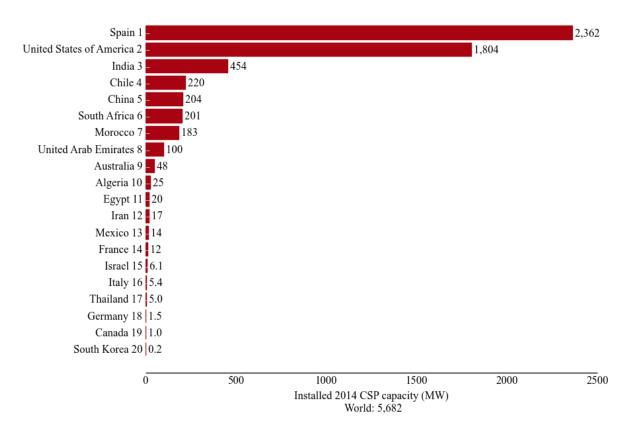
Based on the foregoing analysis, 2050 residential rooftop areas (including garages and carports) are estimated to support up to 6.3 TW_{dc-peak} of installed power among the 139 countries. The plans here propose to install 39.3% of this potential. In 2050, commercial/government rooftop areas (including parking lots and parking structures) are estimated to support 6.5 TW_{dc-peak} of installed power. The country plans here propose to cover 55.4% of installable power, with low-latitude, high GDP-per-capita countries expected to adopt solar at a greater pace than high-latitude or low GDP-per-capita countries.

(2013) 101 calcula		Residential r	oofton PV	Commercial/government rooftop PV				
Country	Rooftop	Potential	Proposed	Percent	Rooftop	Potential	Proposed	Percent
county	area	capacity of	installed	of	area	capacity of	installed	of
	suitable	suitable	capacity	potential	suitable	suitable area	capacity in	potential
	for PVs in	area in	in 2050	capacity	for PVs	in 2050	2050	capacity
	2012	2050	(MW_{dc})	installed	in 2012	(MW _{dc-peak})	(MW _{dc-peak})	installed
	(km ²)	(MW _{dc-peak})	_{peak})		(km^2)	I	ľ	
Albania	12.1	2,435	1,162	48	7.6	3,099	1,479	48
Algeria	126.6	25,387	22,848	90	92.2	28,120	25,308	90
Angola	104.8	21,009	16,822	80	71.8	15,691	12,564	80
Argentina	216.4	43,396	30,806	71	136.6	49,738	35,308	71
Armenia	14.3	2,863	1,099	38	7.1	3,073	1,180	38
Australia	178.9	35,869	21,582	60	91.0	44,424	26,729	60
Austria	54.0	10,826	9,744	90	24.7	11,747	10,573	90

Table 4. Rooftop areas suitable for PV panels, potential capacity of suitable rooftop areas, and proposed installed capacity for both residential and commercial/government buildings, by country. See Delucchi et al. (2015) for calculations.

Azerbaijan	53.4	10,700	4,644	43	36.2	13,776	5,980	43
Bahrain	5.2	1,038	934	90	4.6	1,694	1,525	43 90
Bangladesh	799.8	160,388	39,670	25	305.3	63,873	15,798	25
Belarus	32.3	6,470	2,119	33	25.3	12,053	3,948	33
Belgium	73.1	14,655	13,144	90	31.7	15,282	13,706	90
Benin	53.7	10,760	2,112	20	18.4	5,229	1,026	20
Bolivia	69.2	13,870	6,607	48	24.0	5,936	2,828	48
Bosnia and Herzegovina	20.2	4,046	1,830	45	10.3	5,568	2,519	45
Botswana	6.7	1,350	809	60	6.3	2,100	1,258	60
Brazil	1,063.7	213,295	135,738	64	647.2	294,162	187,201	64
Brunei Darussalam	4.0	803	723	90	2.6	1,008	907	90
Bulgaria	12.7	2,544	1,303	51	14.8	7,164	3,670	51
Cambodia	81.7	16,389	6,997	43	27.8	7,652	3,267	43
Cameroon	78.5	15,748	3,769	24	36.4	8,593	2,057	24
Canada	266.7	53,481	21,480	40	128.0	61,963	24,887	40
Chile	78.6	15,767	11,739	74	56.1	20,466	15,237	74
China	5,606.0	1,124,149	622,325	55	4029.9	1,395,466	772,526	55
Chinese Taipei	57.6	11,559	7,794	67	89.8	24,197	16,315	67
Colombia	240.1	48,137	17,524	36	114.0	32,152	11,705	36
Congo	21.0	4,217	1,635	39	14.1	3,289	1,275	39
Congo, Dem. Republic	347.7	69,727	10,920	16	76.9	17,858	2,797	16
Costa Rica	25.3	5,082	3,073	60	12.9	5,185	3,135	60
Cote d'Ivoire	81.6	16,360	4,670	29	40.4	10,331	2,949	29
Croatia	15.2	3,057	1,327	43	13.2	6,143	2,666	43
Cuba	40.3	8,072	5,901	73	22.6	5,083	3,716	73
Cyprus	10.8	2,162	1,470	68	5.4	2,335	1,588	68
Czech Republic	39.0	7,820	7,038	90	24.2	12,557	11,301	90
Denmark	40.0	8,019	2,026	25	18.2	8,293	2,095	25
Dominican Republic	56.5	11,328	6,618	58	27.7	9,397	5,490	58
Ecuador	96.8	19,411	11,593	60	40.0	10,690	6,385	60
Egypt	472.4	94,722	52,748	56	254.0	65,258	36,340	56
El Salvador	26.6	5,333	2,385	45	10.2	3,023	1,352	45
Eritrea	30.2	6,047	1,419	23	8.6	1,987	466	23
Estonia	3.8	761	204	27	2.3	1,249	334	27
Ethiopia	745.9	149,576	33,013	22	208.4	43,196	9,534	22
Finland	16.3	3,275	654	20	15.2	7,392	1,476	20
France	566.5	113,604	102,243	90	216.9	106,447	95,802	90
Gabon	6.5	1,308	826	63	7.6	1,607	1,015	63
Georgia	18.4	3,686	1,414	38	9.0	5,166	1,982	38
Germany	579.2	116,150	104,535	90	234.5	111,578	100,420	90
Ghana	89.4	17,929	4,678	26	48.7	12,816	3,344	26
Gibraltar	0.1	22	20	90	0.1	46	41	90
Greece	111.7	22,390	12,513	56	26.8	14,431	8,065	56
Guatemala	107.3	21,507	9,157	43	36.3	9,903	4,216	43
Haiti	57.4	11,514	3,480	30	10.7	2,548	770	30
Honduras	57.8	11,593	3,963	34	16.4	4,480	1,532	34
Hong Kong, China	24.7	4,951	4,456	90	23.3	5,777	5,199	90
Hungary	36.8	7,374	2,989	41	22.4	10,710	4,341	41
Iceland	1.4	284	0	0	1.1	543	0	0
India	2,818.9	565,256	280,689	50	3270.3	779,505	387,079	50
Indonesia	929.1	186,312	95,952	52	663.0	184,926	95,238	52
Iran, Islamic Republic	283.6	56,861	26,057	46	164.0	51,841	23,757	46
Iraq	171.5	34,397	14,321	42	87.4	20,516	8,542	42
Ireland	40.1	8,032	1,854	23	21.3	9,828	2,268	23
Israel	29.7	5,955	4,327	73	31.6	14,228	10,338	73
Italy	457.1	91,652	47,890	52	183.2	92,146	48,148	52
Jamaica	17.0	3,402	1,749	51	6.2	2,607	1,340	51
Japan	491.7	98,606	88,745	90	291.8	151,825	136,643	90
Jordan	31.1	6,234	2,641	42	16.1	6,061	2,568	42

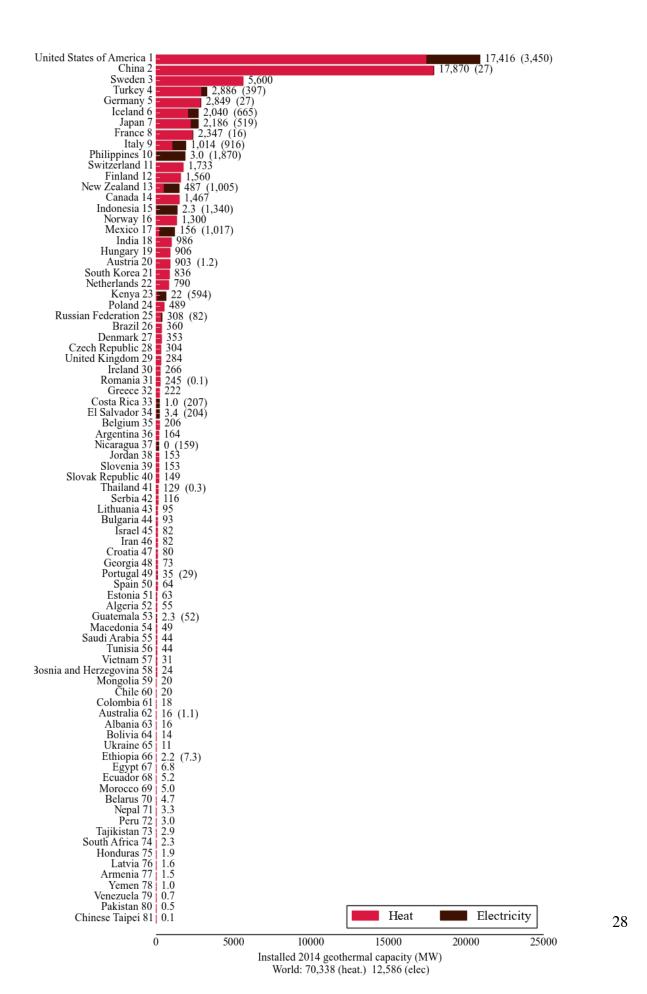

Kazakhstan	112.5	22,558	10,548	47	79.7	36,050	16,857	47
Kenya	112.5	37,014	10,548	29	73.5	18,512	5,372	29
Korea, Dem. People's Rep.	84.8	17,011	3,188	19	22.3	5,286	990	19
Korea, Republic of	123.3	24,728	22,255	90	128.8	58,749	52,874	90
Kosovo	5.3	1,072	335	31	2.6	1,033	323	31
Kuwait	10.4	2,077	1,449	70	11.9	4,738	3,304	70
Kuwan Kyrgyzstan	43.4	8,710	2,728	31	13.8	6,322	1,980	31
Latvia	6.8	1,356	338	25	5.5	2,493	621	25
Lebanon	11.5	2,311	1,065	46	7.0	4,516	2,082	46
Libya	31.3	6,278	3,999	64	23.6	8,772	5,587	64
Lithuania	17.2	3,455	1,033	30	10.3	4,587	1,371	30
Luxembourg	6.7	1,346	1,000	90	2.9	1,241	1,113	90
Macedonia, Republic of	9.8	1,940	1,005	51	5.8	2,783	1,426	51
Malaysia	120.9	24,240	15,386	63	124.9	63,788	40,489	63
Malta	1.7	347	313	90	1.5	666	599	90
Mexico	622.0	124,735	90,390	72	382.7	168,888	122,385	72
Moldova, Republic of	11.6	2,332	811	35	4.5	2,709	942	35
Mongolia	12.4	2,332	1,043	42	9.5	2,901	1,215	42
Montenegro	2.7	532	241	42	9.5	876	397	42
Morocco	124.4	24,947	9,955	40	66.0	22,203	8,860	40
Mozambique	124.4	30,834	6,668	22	38.6	10,855	2,347	22
Myanmar	238.6	47,836	18,236	38	101.4	22,073	8,415	38
Namibia	4.7	941	443	47	3.8	1,111	523	47
Nepal	165.3	33,157	7,343	22	3.8 49.4	10,790	2,390	22
Netherlands	137.7	27,613	7,343	27	59.5	28,092	7,628	22
Netherlands Antilles	2.1	417	375	90	1.1	386	347	90
New Zealand	30.3	6,084	2,388	39	17.3	8,154	3,201	39
Nicaragua	33.1	6,628	2,569	39	17.5	2,792	1,082	39
Nigeria	891.2	178,709	66,426	39	654.5	184,011	68,397	39
Norway	20.8	4,163	736	18	18.4	8,175	1,445	18
Oman	14.9	2,995	2,206	74	13.1	3,915	2,883	74
Pakistan	960.6	192,621	71,027	37	433.2	104,762	38,630	37
Panama	21.7	4,351	3,118	72	11.8	4,114	2,948	72
Paraguay	41.1	8,238	4,031	49	11.3	3,865	1,891	49
Peru	154.1	30,896	17,822	58	71.6	19,302	11,001	58
Philippines	606.4	121,603	60,273	50	300.7	66,623	33,022	50
Poland	110.7	22,208	19,987	90	85.0	45,989	41,390	90
Portugal	55.0	11,037	5,711	52	27.1	14,407	7,454	52
Qatar	6.8	1,368	1,232	90	9.6	3,202	2,882	90
Romania	41.8	8,374	3,402	41	60.4	28,400	11,536	41
Russian Federation	408.3	81,868	28,542	35	321.9	149,203	52,018	35
Saudi Arabia	112.3	22,517	17,271	77	106.0	29,998	23,008	77
Senegal	67.5	13,543	3,398	25	25.1	6,629	1,663	25
Serbia	21.0	4,208	1,906	45	17.2	8,746	3,963	45
Singapore	51.7	10,359	9,323	90	36.4	10,039	9,035	90
Slovak Republic	21.2	4,243	1,571	37	13.6	7,182	2,660	37
Slovenia	7.9	1,583	650	41	4.5	2,341	962	41
South Africa	107.0	21,451	10,198	48	99.6	35,152	16,712	48
Spain	439.3	88,091	46,934	53	155.2	78,479	41,813	53
Sri Lanka	94.6	18,979	11,368	60	52.4	12,787	7,660	60
Sudan	255.9	51,306	15,139	30	117.2	32,655	9,635	30
Sweden	52.9	10,601	2,371	22	29.9	14,196	3,176	22
Switzerland	32.8	6,576	5,919	90	25.9	11,785	10,606	90
Syrian Arab Republic	102.7	20,603	6,937	34	39.2	10,091	3,398	34
Tajikistan	66.1	13,258	3,928	30	18.6	6,388	1,893	30
Tanzania, United Republic	163.8	32,853	9,821	30	65.3	14,219	4,251	30
Thailand	199.6	40,015	24,410	61	165.1	51,258	31,269	61
Тодо	40.4	8,097	1,386	17	12.2	2,558	438	17
Trinidad and Tobago	6.1	1,220	1,098	90	2.9	1,181	1,063	90
Timono uno 100020	5.1	1,000	1,070		2.7	1,101	1,000	


Tunisia	36.9	7,401	3,591	49	23.4	8,105	3,933	49
Turkey	429.1	86,050	45,069	52	243.7	80,238	42,025	52
Turkmenistan	21.1	4,240	2,347	55	20.4	8,278	4,583	55
Ukraine	150.3	30,140	11,089	37	83.8	42,433	15,611	37
United Arab Emirates	21.6	4,340	3,906	90	23.1	7,199	6,479	90
United Kingdom	199.4	39,990	10,859	27	222.0	108,727	29,523	27
United States of America	3,723.1	746,577	494,885	66	1507.1	683,515	453,083	66
Uruguay	14.0	2,803	1,690	60	8.5	3,903	2,353	60
Uzbekistan	124.5	24,969	10,749	43	73.4	14,720	6,337	43
Venezuela	168.7	33,834	19,985	59	91.3	29,302	17,308	59
Vietnam	362.4	72,664	34,414	47	177.0	42,517	20,136	47
Yemen	150.0	30,073	8,078	27	38.8	9,136	2,454	27
Zambia	93.7	18,789	6,353	34	45.4	11,199	3,787	34
Zimbabwe	69.0	13,846	3,735	27	20.5	13,132	3,542	27
World total or average	31,356	6,287,586	3,304,963	39.30	19,070	6,482,448	3,589,760	55.38

Utility-scale PV potential is determined with the NREL Global Solar Opportunity Tool (NREL, 2012b), which gives the utility PV potential (in GW of rated capacity) by country for different resource thresholds. We define the utility-scale PV potential as the potential calculated from the tool in locations exceeding 4 kWh/m²/day.

As of the end of 2014, 0.55% of the proposed 2050 PV (residential rooftop, commercial/government rooftop, and utility scale) capacity and 0.37% of the CSP capacity among the 139 countries from Table 2 has been installed. Figure 6 indicates that Germany, China, Japan, and Italy have installed the most PV. Spain, the United States, and India have installed the most CSP.

Figure 6. (a) Installed residential, commercial/government, plus utility PV by country and (b) installed CSP by country as of the end of 2014. Total PV is determined first from IEA-PVPS (2015) and IEA (2014b); the ratios of residential : commercial/government : utility PV for 20 European countries and global averages were obtained from EPIA (2014). CSP by country includes operational plants and plants under construction that broke ground before 2015 (CSP World, 2015; NREL, 2015).

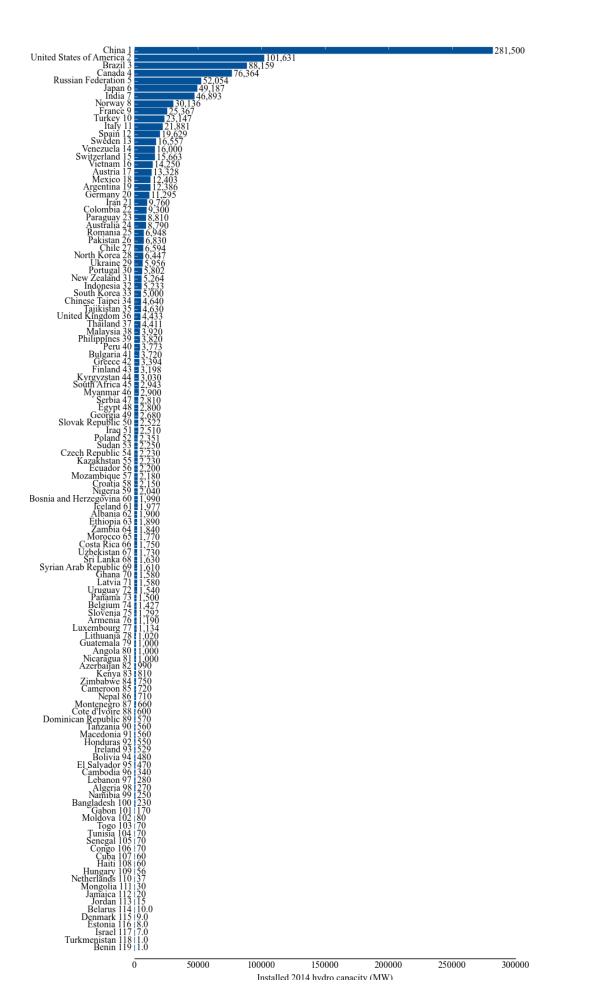


5.3. Geothermal

Geothermal heat from volcanos, geysers, hot springs, conduction from the interior of the Earth, and solar radiation absorbed by the ground can be used to generate electricity or produce heat, depending on the temperature of the resource. All countries can extract heat from the ground for direct heating or use in heat pumps.

As of the end of 2014, 12.586 GW of geothermal has been installed for electric power and 70.338 GW has been installed for heat worldwide. The United States, Philippines, and Indonesia lead electric power installations, whereas China, the United States, and Sweden lead heat installations (Figure 7). The installed geothermal for electricity represents 13.0% of the nameplate capacity of geothermal needed for electric power generation under the plans proposed here (Table 2). The installed geothermal for heat represents 100% of the nameplate capacity of geothermal needed for heat storage (Table 2).

Figure 7. Installed geothermal power for (a) electricity and (b) heat by country, 2014 (Lund and Boyd, 2015; Bertani, 2015; REN21, 2015).

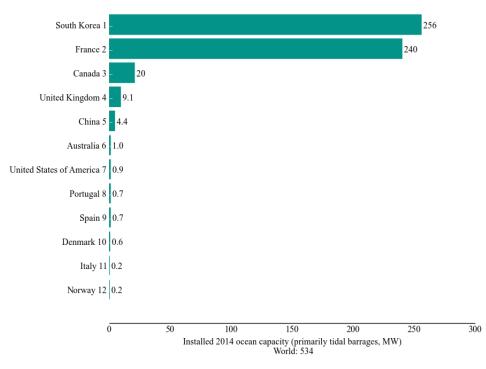

The average capacity factor of installed geothermal for electricity worldwide based on 2012 data is \sim 70.3% (IEA, 2015). However, this is not a technical or economic limit, and in a 100% WWS system the capacity factor for geothermal could be higher than this. Therefore, the roadmaps here assume that the capacity factor of geothermal will increase to 90.5% by 2050. They call for a 139-country-total of 96.6 GW of installed geothermal for electricity producing 87.0 GW of delivered power in 2050.

5.4. Hydropower

In 2012, conventional (small and large) hydropower provided ~16.5% of the world electric power supply (IEA, 2014a). 2014 installations of hydropower were ~1.143 TW (Figure 8). Given the world-averaged capacity factor for hydropower of ~41.8% in 2012 (IEA, 2014a), this implies hydropower delivered electricity in 2014 of ~477.8 GW (4185 TWh/yr).

Figure 8 shows the distribution of installed conventional hydropower by country. China, the United States, Brazil, and Canada lead in installations. However, the countries of the world with the greatest percentage of their electric power production from hydropower in 2012 include, in order: Albania (100%), Paraguay (100%), Montenegro (99.9%), Zambia (99.7%), Tajikistan (99.6%), Democratic Republic of the Congo (99.6%), Nepal (99.5%), Ethiopia (98.7%), Namibia (97.8%), Norway (96.7%), and the Kyrgyz Republic (93.5%). (World Bank, 2015d). Thus, 7 countries already produce 99-100% of all their electricity from WWS hydropower. In fact, 22 countries produce more than 70% of all their electricity from hydropower and 36 produce more than 50%, of which 28 are developing countries.

Figure 8. Installed conventional hydropower by country in 2014 (IEA, 2014b; IHA, 2015).


Under the roadmaps proposed here, conventional hydropower will supply $\sim 4.8\%$ (570.4 GW) of the 139-country 2050 end-use power demand for all purposes (Table 2). However, no new hydropower dams are proposed for installation. Instead, the capacity factor of hydropower will be increased from a 139-country average of $\sim 41.8\%$ to 50% by 2050. Increasing the capacity factor is feasible because existing dams currently produce less than their maximum capacity, mainly because many other dispatchable sources of electricity exist in the current energy system, greatly reducing the need for hydropower to balance supply and demand. However, in some cases, hydropower is not used to its full extent because of other priorities affecting water use, and in a 100% WWS system, these other priorities will remain.

Whereas, increasing hydropower capacity factors should be possible, if it is not, additional hydropower capacity can be obtained by powering presently non-powered dams. The U.S., for example, has over 80,000 dams that are not powered at present. Although only a small fraction of these dams can feasibly be powered, DOE (2012) estimates that the potential amounts to \sim 12 GW of capacity in the contiguous 48 states.

5.5. Tidal and Wave

Worldwide by the end of 2014, a total of ~534 MW of ocean devices (mostly tidal barrages) had been installed. Figure 9 indicates these are mostly from two large plants in South Korea and France and smaller plants in Canada and the United Kingdom.

Figure 9. Installed ocean power by country in 2014 (IEA 2014b). Ocean power includes tidal rise and fall, ocean and tidal currents, wave power, ocean thermal energy conversion, and salinity gradients. Nearly all existing capacity in the figure arises from tidal barrages.

Under the roadmaps here, tidal is proposed to contribute ~0.068%, or ~8.03 GW, of the 139country end-use delivered power in 2050 (Table 2). This requires a nameplate capacity of ~32.6 GW installed of which ~1.6% has been installed as of the end of 2014. The needed nameplate capacity is much less than the estimated world technical potential of ~556 GW installed (1200 TWh/yr or 137 GW delivered power) (Marine Renewables Canada, 2013). Some countries with significant tidal potential include Australia (3.8 GW nameplate capacity), Canada (171 GW), France (16 GW), Ireland (107 GW), Japan (3 GW), United Kingdom (8 GW), and the United States (116 GW) (Marine Renewables Canada, 2013).

Wave power is proposed here to contribute ~0.72%, or ~85.3 GW, of the 139-country enduse power demand in 2050 (Table 2). This requires a nameplate installation of ~372 GW, which is much less than the world technical potential for the 139 countries considered of ~4.362 GW installed (8,850 TWh/yr, or 1010 GW delivered) (Marine Renewables Canada, 2015 but assuming 70% exclusion zones). Some of countries with significant wave potential include Australia (192 GW installed), Canada (275 GW), France (14 GW), Japan (13 GW), Ireland (3 GW), Norway (59 GW), United Kingdom (6 GW), and the United States (263 GW) (Marine Renewables Canada, 2013).

6. Matching Electric Power Supply with Demand

An important requirement for 100% WWS roadmaps is that the grid remains reliable. To that end, Jacobson et al. (2015b) developed and applied a grid integration model to determine the quantities and costs of storage devices needed to ensure that a 100% WWS system developed for each of the 48 contiguous U.S. states, when integrated across all such states, could match load without loss every 30 s for 6 years (2050-2055) while accounting for the variability and uncertainty of WWS resources.

Wind and solar time-series were derived from 3-D global model simulations that accounted for extreme events and competition among wind turbines for kinetic energy and the feedback of extracted solar radiation to roof and surface temperatures. Solutions were obtained by prioritizing storage for excess heat (in soil and water) and electricity (in ice, water, phase-change material tied to CSP, pumped hydro, and hydrogen), using hydropower only as a last resort, and using demand response to shave periods of excess demand over supply.

No stationary storage batteries, biomass, nuclear power, or natural gas were needed. Frequency regulation of the grid was provided by ramping up/down hydropower, stored CSP or pumped hydro; ramping down other WWS generators and storing the electricity in heat, cold, or hydrogen instead of curtailment; and using demand response.

Multiple low-cost stable solutions to the grid integration problem across the 48 contiguous U.S. states were obtained, suggesting that maintaining grid reliability upon 100% conversion to WWS in that region is a solvable problem. The mean U.S.-averaged levelized cost of energy in that study, accounting for storage transmission, distribution, maintenance, and array losses, was ~10.6 ¢/kWh for electricity and ~11.4 ¢/kWh for all energy in 2013 dollars.

For the 139-country roadmaps here, similar grid integration studies are being performed (Jacobson et al., 2016b). For these studies, the 139 countries are divided into 20 groups of countries or individual island countries where both time-dependent demand for and supply of WWS energy are aggregated for use in the same grid integration model as was used in the 50-state study. Additional CSP and solar thermal collectors for peaking/storage are also being added to each country's energy supply to help firm the grid, as in that study. Geothermal heat in 2014 by country is assumed also to exist in 2050, enhancing the ability of the entire heat and power system to remain stable. For each region, electricity storage and heat/cold storage are being used. Stable solutions have been obtained to date for all 20 regions and countries suggesting grid reliability is not a barrier to 100% clean, renewable WWS energy systems in the 139 countries considered.

7. Costs of Electric Power Generation

In this section, current and future full social costs (including capital, land, operating, maintenance, storage, fuel, transmission, and externality costs) of WWS electric power generators versus non-WWS conventional fuel generators are estimated. These costs do not include the costs of storage necessary to keep the grid stable, which are being quantified in Jacobson et al. (2016b), except for the cost of storage associated with CSP, which is included here. The estimates here are based on current cost data and trend projections for individual generator types. The estimates are only a rough approximation of costs in a future optimized renewable energy system.

Table 5 presents 2013 and 2050 139-country weighted average estimates of fully annualized levelized business costs of electric power generation for conventional fuels and WWS technologies. The table indicates that the 2013 business costs of hydropower, onshore wind, utility-scale solar PV, and solar thermal for heat are already similar to or less than the costs of natural gas combined cycle. Residential and commercial PV, offshore wind, tidal, and wave are more expensive. However, residential rooftop PV costs are given as if PV is purchased for an individual household. A common business model today is where multiple households contract together with a solar provider to decrease the average cost.

By 2050, the costs of all WWS technologies are expected to drop, most significantly for offshore wind, tidal, wave, rooftop PV, CSP, and utility PV, whereas conventional fuel costs are expected to rise. Because WWS technologies have zero fuel costs, the drop in their costs over time is due primarily to technology improvements. WWS costs are expected to decline also due to less expensive manufacturing and streamlined project deployment from increased economies of scale. Conventional fuels, on the other hand, face rising costs over time due to higher labor and transport costs for mining, transporting, and processing fuels continuously over the lifetime of fossil-fuel plants.

Table 5. Approximate fully annualized, unsubsidized 2013 and 2050 U.S.-averaged costs of delivered electricity, including generation, short- and long-distance transmission, distribution, and storage, but not including external costs, for conventional fuels and WWS power (2013 U.S. \$/kWh-delivered).

Technology	Tec	hnology yea	r 2013	Technology year 2050		
	LCHB	HCLB	Average	LCHB	HCLB	Average
Advanced pulverized coal	0.083	0.113	0.098	0.079	0.107	0.093
Advanced pulverized coal w/CC	0.116	0.179	0.148	0.101	0.151	0.126
IGCC coal	0.094	0.132	0.113	0.084	0.115	0.100

IGCC coal w/CC	0.144	0.249	0.197	0.098	0.146	0.122
Diesel generator (for steam turb.)	0.187	0.255	0.221	0.250	0.389	0.319
Gas combustion turbine	0.191	0.429	0.310	0.193	0.404	0.299
Combined cycle conventional	0.082	0.097	0.090	0.105	0.137	0.121
Combined cycle advanced	n.a.	n.a.	n.a.	0.096	0.119	0.108
Combined cycle advanced w/CC	n.a.	n.a.	n.a.	0.112	0.143	0.128
Fuel cell (using natural gas)	0.122	0.200	0.161	0.133	0.206	0.170
Microturbine (using natural gas)	0.123	0.149	0.136	0.152	0.194	0.173
Nuclear, APWR	0.082	0.143	0.112	0.073	0.121	0.097
Nuclear, SMR	0.095	0.141	0.118	0.080	0.114	0.097
Distributed gen. (using natural gas)	n.a.	n.a.	n.a.	0.254	0.424	0.339
Municipal solid waste	0.204	0.280	0.242	0.180	0.228	0.204
Biomass direct	0.132	0.181	0.156	0.105	0.133	0.119
Geothermal	0.087	0.139	0.113	0.081	0.131	0.106
Hydropower	0.063	0.096	0.080	0.055	0.093	0.074
On-shore wind	0.076	0.108	0.092	0.064	0.101	0.082
Off-shore wind	0.111	0.216	0.164	0.093	0.185	0.139
CSP no storage	0.131	0.225	0.178	0.091	0.174	0.132
CSP with storage	0.081	0.131	0.106	0.061	0.111	0.086
PV utility crystalline tracking	0.073	0.107	0.090	0.061	0.091	0.076
PV utility crystalline fixed	0.078	0.118	0.098	0.063	0.098	0.080
PV utility thin-film tracking	0.073	0.104	0.089	0.061	0.090	0.075
PV utility thin-film fixed	0.077	0.118	0.098	0.062	0.098	0.080
PV commercial rooftop	0.098	0.164	0.131	0.072	0.122	0.097
PV residential rooftop	0.130	0.225	0.177	0.080	0.146	0.113
Wave power	0.276	0.661	0.468	0.156	0.407	0.282
Tidal power	0.147	0.335	0.241	0.084	0.200	0.142
Solar thermal for heat (\$/kWh-th)	0.057	0.070	0.064	0.051	0.074	0.063

LCHB = low cost, high benefits case; HCLB = high cost, low benefits case. The methodology for calculating the costs is described in Jacobson et al. (2015a).

For the year 2050 100% WWS scenario, costs are shown for WWS technologies; for the year 2050 BAU case, costs of WWS are slightly different. The costs assume \$0.0115 (0.11-0.12)/kWh for standard (but not extralong-distance) transmission for all technologies except rooftop solar PV (to which no transmission cost is assigned) and \$0.0257 (0.025-0.0264)/kWh for distribution for all technologies. Transmission and distribution losses are accounted for in the energy available.

CC = carbon capture; IGCC = integrated gasification combined cycle; AWPR = advanced pressurized-water reactor; SMR = small modular reactor; PV = photovoltaics.

CSP w/storage assumes a maximum charge to discharge rate (storage size to generator size ratio) of 2.62:1.

Solar thermal for heat assumes \$3,600-\$4,000 per 3.716 m² collector and 0.7 kW-th/m² maximum power (Jacobson et al., 2015a).

Table 5 does not include externality costs. These are estimated as follows. The 2050 139country air pollution cost (Table 7) plus global climate cost (Table 8) per unit energy (converted to kWh) produced in all sectors in all countries in the 2050 BAU case (Table 1) corresponds to a mean 2050 externality cost (in 2013 dollars) due to conventional fuels of ~\$0.24 (0.082-0.62)/kWh, with \$0.15 (0.02-0.41)/kWh due to air pollution impacts and the rest due to climate impacts. The mean air pollution cost is in the middle of the \$0.014-\$0.17/kWh range from Buonocore et al. (2015). Externality costs arise due to air pollution morbidity and mortality and global warming damage (e.g. coastline losses, fishery losses, agricultural losses, heat stress mortality and morbidity, famine, drought, wildfires, and severe weather) due to conventional fuels. When externality costs are added to the business costs of conventional fuels, all WWS technologies cost less than conventional technologies in 2050. Table 6 provides the mean value of the 2013 and 2050 LCOEs weighted among all conventional generators (BAU cases) and WWS generators (WWS case) by country. The table also gives the 2050 energy, health, and global climate cost savings per person. The electric power cost of WWS in 2050 is not directly comparable with the BAU electric power cost, because the latter does not integrate transportation, heating/cooling, or industry energy costs. Conventional vehicle fuel costs, for example, are a factor of 4-5 higher than those of electric vehicles, yet the cost of BAU electricity cost in 2050 does not include the transportation cost, whereas the WWS electricity cost does. Nevertheless, based on the comparison, WWS energy in 2050 will save the average 139-country consumer \$170/yr in energy costs (\$2013 dollars).

In addition, WWS will save \$2,880/yr in health costs, and \$1,930/yr in global climate costs. The total up-front capital cost of the 2050 WWS system (for both average annual power and peaking storage in Table 2) for the 139 countries is ~\$100 trillion for the 49.2 TW of installed capacity needed (~\$2.03 million/MW).

Table 6. Mean values of the levelized cost of energy (LCOE) for conventional fuels (BAU) in 2013 and 2050 and for WWS fuels in 2050. The LCOE estimates do not include externality costs. The 2013 and 2050 values are used to calculate energy cost savings per person per year in each country (see footnotes). Health and climate cost savings per person per year are derived from data in Section 8. All costs are in 2013 dollars.

Country	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	2013	2050	2050	2050	2050	2050	2050
	LCOE of	LCOE of	LCOE of	Average	Average air	Average	Average
	BAU	BAU	WWS	electricity	quality	climate cost	energy +
	(¢/kWh)	(¢/kWh)	(¢/kWh)	cost	health cost	savings to	health +
				savings per	savings per	world per	world climate
				person per	person per	person per	cost savings
				year (\$/per-	year due to	year due to	due to WWS
				son/yr)	WWS	WWS	(\$/person/yr)
					(\$/person/yr)	(\$/person/yr)	
Albania	7.98	6.90	6.92	82	1,823	818	2,723
Algeria	8.95	12.01	7.28	157	1,203	1,618	2,977
Angola	8.26	8.40	13.63	-9	2,289	340	2,619
Argentina	9.07	10.68	10.60	83	1,376	1,837	3,296
Armenia	9.60	9.50	5.89	175	3,560	676	4,411
Australia	10.83	10.37	8.49	418	776	5,871	7,064
Austria	9.55	9.17	6.45	456	4,311	4,162	8,929
Azerbaijan	8.83	11.38	7.72	226	3,877	2,341	6,444
Bahrain	8.96	12.06	7.29	1,419	2,363	6,739	10,522
Bangladesh	8.99	11.93	6.90	28	2,220	130	2,378
Belarus	8.97	12.04	6.35	699	10,935	4,030	15,664
Belgium	11.31	10.70	6.88	581	4,570	5,003	10,155
Benin	9.02	12.08	6.19	10	2,475	123	2,608
Bolivia	8.94	10.48	8.69	22	542	573	1,138
Bosnia and Herzegovina	10.34	9.07	6.37	229	2,323	4,096	6,648
Botswana	11.33	9.94	7.25	131	1,186	896	2,213
Brazil	8.87	7.97	8.07	70	515	923	1,508
Brunei Darussalam	8.98	12.07	6.83	1,310	258	8,257	9,825
Bulgaria	11.30	9.85	5.78	950	6,253	4,457	11,660
Cambodia	9.19	11.84	9.92	15	802	110	926
Cameroon	8.32	8.29	5.85	19	2,492	108	2,619
Canada	9.35	8.48	9.89	164	2,616	6,109	8,888
Chile	10.03	10.01	9.12	288	1,588	2,302	4,178
China	10.91	9.62	7.40	342	5,329	3,823	9,494
Chinese Taipei	10.91	9.62	10.19	376	5,647	6,553	12,576

Colombia	8.56	8.01	6.49	40	253	784	1,078
Congo	8.36	8.90	9.19	7	1,132	122	1,260
Congo, Dem. Republic	7.99	6.93	5.00	4	489	10	504
Costa Rica	9.89	8.89	9.68	23	148	650	821
Cote d'Ivoire	8.75	10.58	7.28	21	396	83	500
Croatia	9.33	9.45	6.54	437	4,934	2,654	8,025
Cuba	5.43	7.05	9.60	-18	625	2,147	2,755
Cyprus	9.28	12.17	8.54	452	3,867	2,749	7,068
Czech Republic	11.75	10.10	6.00	524	5,041	5,901	11,466
Denmark	13.21	12.15	12.92	145	4,757	3,599	8,500
Dominican Republic	9.24	11.14	10.39	40	366	797	1,203
Ecuador	8.66	9.30	8.78	28	290	862	1,180
Egypt	9.00	11.68	8.15	171	1,835	777	2,783
El Salvador	11.36	11.21	9.82	42	195	509	746
Eritrea	9.02	12.08	11.76	2	1,110	27	1,140
Estonia	11.75	10.36	8.52	586	7,530	10,902	19,018
Ethiopia	8.02	6.96	7.39	0	758	12	770
Finland	10.69	9.62	9.83	335	6,360	5,226	11,921
France	11.48	9.70	10.18	159	3,191	2,462	5,813
Gabon	8.55	9.70	7.23	65	1,147	421	1,632
Georgia	8.20	8.06	7.64	90	3,523	808	4,421
Germany	11.91	10.87	7.50	656	5,189	5,296	11,141
Ghana	7.56	7.59	6.51	14	2,790	121	2,924
Gibraltar	11.44	11.22	6.20	18	8,331	8,139	16,489
Greece	10.74	10.79	8.21	379	3,634	3,684	7,696
Guatemala	11.28	10.51	9.11	18	216	245	478
Haiti	9.17	11.33	9.98	2	215	79	296
Honduras	8.97	10.10	8.61	23	92	312	427
Hong Kong, China	10.65	10.55	6.98	1,176	8,517	3,165	12,857
Hungary	11.19	10.74	4.91	396	5,518	2,431	8,345
Iceland	10.63	9.13	9.84	286	1,016	2,798	4,100
India	10.97	10.05	7.44	70	3,234	726	4,030
Indonesia	10.39	10.91	7.50	80	603	773	1,457
Iran, Islamic Republic	8.93	11.80	6.59	249	1,750	3,052	5,051
Iraq	7.33	9.57	7.65	26	1,299	1,088	2,413
Ireland	10.12	11.11	11.55	93	1,591	2,897	4,581
Israel	10.38	10.80	7.25	354	2,434	3,300	6,088
Italy	10.20	11.17	6.92	486	3,522	2,868	6,876
Jamaica	9.49	12.14	10.65	50	206	1,007	1,263
Japan	9.72	10.36	7.49	429	2,598	5,806	8,833
Jordan	8.97	12.04	8.02	139	761	1,000	1,899
Kazakhstan	10.79	9.87	8.52	284	3,912	6,913	11,109
Kenya	10.57	10.49	8.42	10	357	94	461
Korea, Dem. People's Rep.	9.22	8.14	7.83	19	1,048	1,417	2,484
Korea, Republic of	10.87	10.39	6.35	1,136	2,965	7,089	11,190
Kosovo	11.26	9.89	8.02	297	1,036	2,833	4,165
Kuwait	8.96	12.06	6.44	2,197	2,078	13,008	17,283
Kyrgyzstan	8.12	7.18	6.79	47	1,239	393	1,679
Latvia	8.77	9.71	7.76	405	12,538	2,390	15,334
Lebanon	8.91	11.81	7.45	282	1,435	2,629	4,346
Libya	8.96	12.06	8.40	240	683	2,748	3,671
Lithuania	9.61	11.19	9.07	373	12,373	2,315	15,061
Luxembourg	9.35	11.88	5.23	950	6,136	7,403	14,489
Macedonia, Republic of	10.58	9.36	7.47	321	2,462	2,767	5,550
Malaysia	9.95	10.92	6.69	464	448	2,667	3,579
Malta	9.00	12.06	7.63	695	4,497	3,251	8,442
Mexico	9.52	11.21	8.25	232	676	1,573	2,482
Moldova, Republic of	8.90	11.74	7.45	305	5,774	1,067	7,146
Mongolia	11.21	10.04	7.26	108	1,237	1,443	2,789

World total or average	10.28	10.10	7.94	170	2,882	1,930	4,982
Zimbabwe	8.90	7.75	6.46	24	579	179	782
Zambia	7.98	6.91	6.78	8	762	33	803
Yemen	8.96	12.06	8.77	9	1,479	257	1,745
Vietnam	9.17	10.06	8.94	67	1,093	760	1,920
Venezuela	8.29	8.52	7.41	102	241	2,741	3,083
Uzbekistan	8.87	10.97	5.78	163	1,805	1,466	3,433
Uruguay	9.16	9.11	9.29	72	1,098	958	2,129
United States of America	10.84	10.39	8.48	443	1,390	6,186	8,020
United Kingdom	10.85	11.07	13.09	46	3,238	3,244	6,527
United Arab Emirates	8.96	12.06	6.73	1,440	2,077	11,527	15,044
Ukraine	11.13	9.84	9.55	278	8,451	4,489	13,218
Turkmenistan	8.96	12.06	6.35	255	3,202	4,085	7,541
Turkey	9.64	10.34	7.30	115	1,617	1,609	3,341
Tunisia	9.02	12.06	7.43	239	1,168	1,106	2,513
Trinidad and Tobago	8.96	12.06	8.31	759	818	23,862	25,439
Togo	8.35	8.28	6.18	6	1,829	52	1,887
Thailand	9.67	11.39	6.76	412	2,080	2,347	4,839
Tanzania, United Republic	8.50	9.49	7.14	7	295	54	357
Tajikistan	7.99	6.96	7.83	-1	1,353	115	1,468
Syrian Arab Republic	8.88	11.65	8.19	76	762	953	1,792
Switzerland	9.73	8.24	6.28	338	2,780	2,757	5,875
Sweden	10.58	8.95	9.14	277	5,419	2,481	8,177
Sudan	8.22	8.18	8.48	3	3,062	78	3,143
Sri Lanka	8.89	9.86	10.05	20	750	289	1,058
Spain	11.44	11.22	8.43	288	3,410	2,283	5,981
South Africa	11.35	9.92	7.31	549	1,605	4,528	6,682
Slovenia	10.82	9.32	6.70	439	4,118	4,841	9,398
Slovak Republic	11.06	9.83	6.66	329	4,969	3,431	8,729
Singapore	9.05	11.97	7.13	945	1,102	1,015	3,063
Serbia	10.53	9.28	6.25	536	5,505	3,234	9,275
Senegal	8.90	11.48	8.46	15	3,508	137	3,660
Saudi Arabia	6.26	8.42	6.24	429	1,761	6,444	8,634
Russian Federation	9.61	10.48	10.15	523	10,055	8,289	18,866
Romania	10.44	9.60	8.34	216	6,883	2,088	9,186
Qatar	8.96	12.06	7.08	1,253	1,500	17,054	19,807
Portugal	11.25	11.15	9.76	130	3,407	2,611	6,149
Poland	11.56	10.32	9.91	184	5,365	4,849	10,398
Philippines	10.96	10.99	11.48	21	176	271	468
Peru	8.62	9.24	8.53	31	490	877	1,398
Paraguay	7.98	6.90	7.13	21	539	282	843
Panama	8.64	9.25	8.07	74	128	966	1,169
Pakistan	8.82	10.37	6.79	37	3,150	282	3,469
Oman	8.96	12.06	7.41	482	9,501	5,825	15,453
Norway	8.12	7.16	8.00	221	4,629	5,825	10,674
Nigeria	8.76	10.98	6.17	13	6,830	103	6,947
Nicaragua	10.22	12.13	8.92	40	119	317	475
New Zealand	10.22	9.62	9.34	199	346	3,111	3,656
Netherlands Antilles	7.92	9.47	7.59	74	360	5,872	6,306
Netherlands	10.40	11.65	11.19	224	4,392	40	9,215
Nepal	7.98	6.90	6.35	3	1,379	46	1,846
Namibia	8.03	6.96	7.47	1	1,379	761	2,142
Mozambique Myanmar	8.45	8.90	8.68	-2	1,852	72	1,927
Morocco	10.25 7.98	10.76 6.90	8.19	-2	1,138 256	<u>621</u> 27	281
Montenegro	9.81	8.56	8.07 8.47	210	279	2,275	2,765 1,837

 a) The 2013 LCOE cost for conventional fuels in each country combines the estimated distribution of conventional and WWS generators in 2013 with 2013 mean LCOEs for each generator from Table 5. Costs include all-distance transmission, pipelines, and distribution, but they exclude externalities.

- b) Same as (a), but for a 2050 BAU case (Supplemental Information) and 2050 LCOEs for each generator from Table 5. The 2050 BAU case includes significant existing WWS (mostly hydropower) plus future increases in WWS and energy efficiency.
- c) The 2050 LCOE of WWS in the country combines the 2050 distribution of WWS generators from Table 3 with the 2050 mean LCOEs for each WWS generator from Table 5. The LCOE accounts for all-distance transmission and distribution (footnotes to Tables 2 and 5).
- d) The total cost of electricity use in the electricity sector in the BAU (the product of electricity use and the LCOE) less the total cost in the electricity sector in the WWS scenario and less the annualized cost of the assumed efficiency improvements in the electricity sector in the WWS scenario. (See Delucchi et al., 2015 for details.)
- e) Total cost of air pollution per year in the country from Table 7 divided by the 2050 population of the country.
- f) Total climate cost per year to the world due to country's emissions (Table 8) divided by the 2050 population of the country.
- g) The sum of columns (d), (e), and (f).

8. Air Pollution and Global Warming Damage Costs Eliminated by WWS

Conversion to a 100% WWS energy infrastructure in the 139 countries will eliminate energy-related air pollution mortality and morbidity and the associated health costs, and it will eliminate energy-related climate change costs to the world while causing variable climate impacts on individual countries. This section discusses these topics.

8.A. Air Pollution Cost Reductions due to WWS

The benefits of reducing air pollution mortality and its costs in each U.S. country can be quantified as follows.

First, the premature human mortality rate worldwide due to cardiovascular disease, respiratory disease, and complications from asthma arising from air pollution has been estimated previously by combining computer model estimates of human exposure to particulate matter ($PM_{2.5}$) and ozone (O_3) with the relative risk of mortality from these chemicals and population. Results suggest that an estimated 4-7 million people currently perish prematurely each year worldwide from outdoor plus indoor air pollution (e.g., Shindell et al., 2012; Anenberg et al., 2012; WHO, 2014a,b; OECD, 2014). These mortalities represent ~0.7-1.2% of the 570 million deaths/year worldwide in 2015. Here, we combine modeled concentrations of $PM_{2.5}$ and O_3 in each of 139 countries with the relative risk of mortality as a function of concentration and with population in a health-effects equation (e.g., Jacobson, 2010a) to estimate low, medium, and high mortalities due to $PM_{2.5}$ and O_3 by country, then extrapolate the results forward to 2050 while accounting for efficiencies that occur under the BAU scenario.

Figure 10 shows the results. Premature mortalities in 2014, summed over the 139 countries are estimated for $PM_{2.5}$ to be ~4.28 (1.19-7.56) million/yr, and those for O_3 , ~279,000 (140,000-417,000)/yr. The sum is ~4.56 (1.33-7.98) million premature mortalities/yr for $PM_{2.5}$ plus O_3 , which is in the range of the previous literature estimates.

Figure 10. Modeled worldwide (all countries, including the 139 discussed in this paper) (a) $PM_{2.5}$ and (b) O_3 premature mortalities in 2014 as estimated with GATOR-GCMOM (Jacobson, 2010a), a 3-dimensional global computer model.

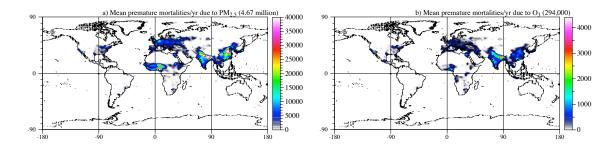


Table 7 shows estimated air pollution mortality avoided by country in 2050 due to conversion to WWS, projected forward from 2014 with the methodology detailed in Delucchi et al. (2015). This method projects future pollution from current levels with an estimated annual rate of pollution change that considers increasing emission controls and more sources over time. The number of mortalities in 2050 then accounts for the growth of population by country and a nonlinear relationship between exposure and population. The resulting number of 2050 air pollution mortalities avoided in the 139 countries due to WWS is estimated at 3.3 (0.8-7.0) million/yr.

Country	2050 High	2050 Mean	2050 Low	2014 Mean	2050 Mean
	avoided	avoided	avoided	avoided cost	avoided cost
	premature	premature	premature	(\$2013 mil./yr)	as percent of
	mortalities/yr	mortalities/yr	mortalities/yr		2050 GDP
Albania	1,197	538	140	5,149	3.8
Algeria	16,035	7,214	1,817	53,137	4.2
Angola	43,242	18,694	4,486	105,016	13.8
Argentina	19,230	8,155	1,751	73,633	3.2
Armenia	2,736	1,223	297	10,477	9.2
Australia	4,759	1,988	430	22,501	1.2
Austria	6,139	2,707	637	32,420	5.7
Azerbaijan	8,298	3,715	887	43,463	5.4
Bahrain	1,016	494	122	4,365	5.7
Bangladesh	264,472	123,340	29,114	555,430	20.8
Belarus	15,715	7,125	1,621	84,624	14.7
Belgium	8,900	3,881	863	45,162	6.4
Benin	33,188	16,812	4,188	54,740	44.4
Bolivia	3,811	1,606	344	8,675	3.5
Bosnia and Herzegovina	2,193	969	236	9,042	5.1
Botswana	1,021	439	102	3,404	3.7
Brazil	36,341	15,305	3,342	134,206	1.3
Brunei Darussalam	24	10	2	165	0.2
Bulgaria	5,665	2,527	600	29,083	9.0
Cambodia	9,036	3,911	910	17,913	7.3
Cameroon	45,570	22,149	5,310	86,992	30.7
Canada	22,214	9,598	2,188	107,607	4.0
Chile	6,910	2,981	652	30,794	2.8
China	1,349,179	624,262	145,129	6,947,983	8.2
Chinese Taipei	13,773	6,164	1,464	113,841	3.1
Colombia	4,753	1,986	428	14,222	0.9
Congo	4,736	2,049	472	10,865	7.7
Congo, Dem. Republic	72,332	31,482	7,199	70,878	18.4
Costa Rica	281	120	29	900	0.5
Cote d'Ivoire	8,660	3,603	760	14,711	4.5
Croatia	3,430	1,514	362	19,066	5.9

Table 7. Avoided air pollution $PM_{2.5}$ plus ozone premature mortalities by country in 2050 and mean avoided costs (in 2013 dollars) from mortalities and morbidities.

Cuba	1,495	659	167	5,727	1.6
Cyprus	817	365	90	5,384	3.4
Czech Republic	9,628	4,267	974	43,051	9.4
Denmark	5,128	2,238	504	26,518	6.4
Dominican Republic	1,592	701	182	5,009	1.4
Ecuador	2,154	913	206	6,127	1.2
Egypt	83,713	38,708	9,474	253,029	8.2
El Salvador	460	204	53	1,208	1.1
Eritrea	9,097	4,205	973	12,639	23.4
Estonia	1,481	671	153	6,491	15.3
Ethiopia	163,820	70,820	15,764	210,895	16.2
Finland	6,059	2,697	600	30,653	9.4
France	45,497	19,875	4,574	222,658	4.8
Gabon	1,061	446	96	3,704	3.2
Georgia	3,569	1,597	387	13,336	9.6
Germany	71,015	31,132	7,044	371,196	6.9
Ghana	50,372	25,133	6,169	112,266	26.6
Gibraltar	41	18	4	233	9.9
Greece	8,668	3,852	947	36,467	7.7
Guatemala	2,000	875	226	4,958	1.3
Haiti	2,000	913	238	2,873	4.1
Halu Honduras	604	257	61	1,197	0.8
Hong Kong, China	7,913	3,677	873	52,575	7.9
Hungary	11,294	5,023	1,154	46,848	12.1
Iceland	70	31	8	357	12.1
India	1,586,512	767,247	186,459	5,356,599	12.6
India	61,331	26,207	5,987	192,385	2.1
Iran, Islamic Republic	64,875	29,850	7,280	192,383	9.7
	28,542	13,116	3,283	73,153	7.9
Iraq Ireland	1,927	821	187	10,078	2.0
Israel	5,561	2,526	618	26,351	4.3
Italy	45,774	2,320	4,992	216,301	5.9
Jamaica	262	118	33	731	1.0
Japan	66,619	28,833	6,481	278,536	5.3
Jordan	3,645	1,650	410	8,551	5.4
Kazakhstan	14,842	6,528	1,522	86,985	4.2
Kazakhstan Kenya	15,196	6,450	1,322	25,276	4.4
Korea, Dem. People's Rep.	19,725	8,743	1,455	28,276	19.1
Korea, Republic of	27,371	12,095	2,690	128,594	5.0
Kosovo	354	250	143	1,549	5.1
Kuwait	1,526	723	145	8,026	3.2
Kuwan Kyrgyzstan	3,862	1,704	408	10,209	6.6
Latvia	3,190	1,469	338	19,359	13.7
Lebanon	2,183	991	247	5,964	7.5
Libya	2,175	970	249	7,426	2.2
Libya	5,380	2,479	570	34,495	12.1
Luxembourg	642	2,479	61	4,424	4.6
Macedonia, Republic of	1,072	474	118	4,424	4.4
Malaysia	4,247	1,849	464	19,215	0.8
Malaysia	266	1,849	31	19,213	3.9
Mexico	24,913	10,925	2,698	100,026	1.5
Moldova, Republic of	4,038	1,851	428	13,054	22.1
Mongolia	1,585	695	166	5,370	3.9
Montenegro	35	15	3	161	0.4
Morocco	18,808	8,485	2,080	47,840	6.8
Morocco	13,580	5,660	1,272	15,102	6.8
Mozambique Myanmar	59,875	26,143	5,920	133,475	13.5
Namibia	1,065	468	113	2,965	6.5
		20,502			
Nepal	43,866	20,302	4,840	82,607	21.0

Netherlands	14,933	6,487	1,435	78,642	5.7
Netherlands Antilles	36	15	3	145	0.7
New Zealand	352	148	34	1,797	0.4
Nicaragua	372	159	37	858	0.8
Nigeria	900,528	472,188	121,680	2,748,708	38.3
Norway	3,760	1,649	383	22,986	4.5
Oman	12,147	6,011	1,481	51,325	24.8
Pakistan	341,378	170,517	42,461	916,166	20.7
Panama	169	73	18	624	0.3
Paraguay	1,846	784	173	4,768	2.8
Peru	6,293	2,641	562	18,108	2.0
Philippines	11,351	4,855	1,159	30,223	0.9
Poland	40,913	18,348	4,172	172,136	11.6
Portugal	7,933	3,487	817	33,845	6.9
Qatar	543	271	68	3,839	1.4
Romania	22,892	10,184	2,351	124,304	8.8
Russian Federation	229,017	104,097	23,877	1,097,847	17.2
Saudi Arabia	15,938	7,598	1,855	70,884	3.8
Senegal	48,919	27,011	7,204	95,568	53.3
Serbia	6,974	3,083	736	32,308	9.5
Singapore	1,284	563	145	9,489	0.7
Slovak Republic	5,675	2,520	578	24,569	9.9
Slovenia	1,484	658	159	6,577	7.8
South Africa	25,913	11,129	2,505	79,305	6.0
Spain	38,371	16,922	4,052	179,007	5.8
Sri Lanka	5,957	2,568	601	18,863	2.6
Sudan	138,407	66,746	15,879	297,531	29.3
Sweden	9,343	4,107	925	49,231	7.2
Switzerland	3,498	1,539	379	20,286	3.0
Syrian Arab Republic	13,131	5,932	1,485	25,643	7.8
Tajikistan	6,619	2,984	720	16,419	8.5
Tanzania, United Republic	12,597	5,313	1,195	19,750	4.1
Thailand	39,392	17,309	4,010	144,813	5.6
Togo	20,323	10,373	2,590	30,340	40.6
Trinidad and Tobago	196	83	18	837	1.5
Tunisia	4,670	2,090	527	14,223	4.8
Turkey	42,948	19,160	4,779	163,265	4.2
Turkmenistan	4,236	1,901	455	21,155	4.9
Ukraine	71,096	32,196	7,400	283,722	20.7
United Arab Emirates	3,134	1,621	415	16,656	3.7
United Kingdom	47,788	20,475	4,450	230,364	4.9
United States of America	100,438	44,367	11,386	587,442	1.5
Uruguay	1,063	448	97	3,839	2.8
Uzbekistan	19,015	8,589	2,050	63,376	6.3
Venezuela	2,872	1,211	276	9,686	0.7
Vietnam	47,863	21,284	5,055	121,484	6.4
Yemen	43,190	20,522	4,932	67,727	25.8
Zambia	15,687	6,673	1,582	29,256	7.5
Zimbabwe	10,695	4,565	1,072	14,586	10.8
All-country sum/average	7,042,494	3,329,772	800,710	25,365,214	7.9

High, medium, and low estimates of premature mortalities in each country in 2050 are estimated by combining computer-modeled changes in $PM_{2.5}$ and ozone during 2014 due to anthropogenic sources in each country (Figure 10) with low, medium, and high relative risks and country population (Jacobson, 2010a). 2014 values are then extrapolated forward to 2050 as described in the text. Human exposure is based on daily-averaged $PM_{2.5}$ exposure and 8-hr maximum ozone each day. Relative risks for long-term health impacts of $PM_{2.5}$ and ozone are as in Jacobson (2010a). However, the relative risks of $PM_{2.5}$ from Pope et al. (2002) are applied to all ages as in Lepeule et al. (2012) rather than to those over 30 years old as in Pope et al. (2002). The threshold for

 $PM_{2.5}$ is zero but concentrations below 8 μ g/m³ are down-weighted as in Jacobson (2010a). The low ambient concentration threshold for ozone premature mortality is assumed to be 35 ppbv.

Air pollution costs are estimated by multiplying the value of statistical life (VSL) in each country by the low, medium, and high number of excess mortalities due to $PM_{2.5}$ and ozone. Estimates of the VSL are calculated as in Delucchi et al. (2015). Values for the U.S. are projected to 2050 based on GDP per capita projections (on a PPP basis) for the U.S. then scaled by country as a nonlinear function of GDP per capita in each country to the U.S. Multipliers are then used to account for morbidity and non-health impacts of air pollution.

Cost of air pollution. The total damage cost of air pollution due to conventional fuels (fossil fuel and biofuel combustion and evaporative emissions) in a country is the sum of mortality costs, morbidity costs, and non-health costs such as lost visibility and agricultural output in the country. The mortality cost equals the number of mortalities in the country multiplied by the value of statistical life (VSL). The methodology for determining the VSL by country is provided in the footnote to Table 7. The morbidity plus non-health cost per country is estimated as the mortality cost multiplied by the ratio of the value of total air-pollution damages (mortality plus morbidity plus other damages) to mortality costs alone. The result of the calculation is that the 139-country cost of air pollution in 2050 is \sim \$25.4 (\$4.3-\$69.7) trillion/yr, which corresponds to \sim 7.9 (1.3-21.6)% of 2050 global annual GDP on a PPP basis.

8.B. Global-Warming Damage Costs Eliminated by 100% WWS in Each Country

This section provides estimates of two kinds of climate change costs due to greenhouse gas (GHG) emissions from energy use (Table 8). GHG emissions are defined here to include emissions of carbon dioxide, other greenhouse gases, and air pollution particles that cause global warming, converted to equivalent carbon dioxide. A 100% WWS system in each country will eliminate such damages. The cost calculated is the cost of climate change impacts to the world *attributable to* emissions of GHGs from each country.

Costs of climate change include coastal flood and real estate damage costs, agricultural loss costs, energy-sector costs, water costs, health costs due to heat stress and heat stroke, influenza and malaria costs, famine costs, ocean acidification costs, increased drought and wildfire costs, severe weather costs, and increased air pollution health costs. These costs are partly offset by fewer extreme cold events and associated reductions in illnesses and mortalities and gains in agriculture in some regions. Net costs due to global-warming-relevant emissions are embodied in the social cost of carbon dioxide. The range of the 2050 social cost of carbon from recent papers is \$500 (282-1,063)/metric tonne-CO₂e in 2013 dollars (Jacobson et al., 2015a). This range is used to derive the costs in Table 8.

Table 8. Percent of 2013 world CO_2 emissions by country (GCP, 2014) and low, medium, and high estimates of avoided 2050 global climate-change costs due to converting each country to 100% WWS for all purposes. All costs are in 2013 dollars.

	2013	2050 avoided global climate cost (\$2013 bil./yr)				
Country	Percent of world CO ₂ emissions	Low	Medium	High		
Albania	0.014	4.9	2.3	1.3		
Algeria	0.419	152.1	71.4	40.3		
Angola	0.092	33.2	15.6	8.8		
Argentina	0.577	209.3	98.3	55.4		
Armenia	0.012	4.2	2.0	1.1		

Australia	1.000	362.6	170.3	96.0
Austria	0.184	66.6	31.3	17.6
Azerbaijan	0.154	55.9	26.2	14.8
Bahrain	0.073	26.5	12.4	7.0
Bangladesh	0.191	69.1	32.5	18.3
Belarus	0.183	66.4	31.2	17.6
Belgium	0.290	105.3	49.4	27.9
Benin	0.016	5.8	2.7	1.5
Bolivia	0.054	19.5	9.2	5.2
Bosnia and Herzegovina	0.094	33.9	15.9	9.0
Botswana	0.015	5.5	2.6	1.5
Brazil	1.413	512.2	240.6	135.7
Brunei Darussalam	0.031	11.2	5.3	3.0
Bulgaria	0.122	44.1	20.7	11.7
Cambodia	0.014	5.2	2.4	1.4
Cameroon	0.022	8.1	3.8	2.1
Canada	1.476	534.9	251.3	141.7
Chile	0.262	95.0	44.6	25.2
China	29.265	10608.0	4983.5	2809.5
Chinese Taipei	0.776	281.2	132.1	74.5
Colombia	0.259	93.9	44.1	24.9
Congo	0.007	2.5	1.2	0.7
Congo, Dem. Republic	0.009	3.2	1.5	0.8
Costa Rica	0.023	8.4	3.9	2.2
Cote d'Ivoire	0.018	6.5	3.1	1.7
Croatia	0.060	21.8	10.3	5.8
Cuba	0.116	41.9	19.7	11.1
Cyprus	0.022	8.1	3.8	2.2
Czech Republic	0.296	107.3	50.4	28.4
Denmark	0.118	42.7	20.1	11.3
Dominican Republic	0.064	23.2	10.9	6.2
Ecuador	0.107	38.7	18.2	10.2
Egypt	0.629	228.1	107.2	60.4
El Salvador	0.018	6.7	3.1	1.8
Eritrea	0.002	0.7	0.3	0.2
Estonia	0.055	20.0	9.4	5.3
Ethiopia	0.020	7.2	3.4	1.9
Finland	0.148	53.6	25.2	14.2
France	1.009	365.7	171.8	96.8
Gabon	0.008	2.9	1.4	0.8
Georgia	0.018	6.5	3.1	1.7
Germany	2.225	806.6	378.9	213.6
Ghana	0.029	10.4	4.9	2.7
Gibraltar	0.001	0.5	0.2	0.1
Greece	0.217	78.7	37.0	20.8
Guatemala	0.033	12.0	5.6	3.2
Haiti	0.006	2.3	1.1	0.6
Honduras	0.024	8.6	4.0	2.3
Hong Kong, China	0.115	41.6	19.5	11.0
Hungary	0.121	43.9	20.6	11.6
Iceland	0.006	2.1	1.0	0.6
India	7.059	2558.7	1202.0	677.7
Indonesia	1.448	525.0	246.6	139.0
Iran, Islamic Republic	1.793	649.9	305.3	172.1
Iraq	0.360	130.4	61.3	34.5
Ireland	0.108	39.1	18.3	10.3
Israel	0.210	76.1	35.7	20.1
Italy	1.034	375.0	176.2	99.3
Jamaica	0.021	7.6	3.6	2.0

Japan	3.655	1325.0	622.5	350.9
Jordan	0.066	23.9	11.2	6.3
Kazakhstan	0.903	327.2	153.7	86.7
Kenya	0.039	14.1	6.6	3.7
Korea, Dem. People's Rep.	0.224	81.3	38.2	21.5
Korea, Republic of	1.805	654.4	307.4	173.3
Kosovo	0.025	9.0	4.2	2.4
Kuwait	0.295	107.0	50.2	28.3
Kyrgyzstan	0.019	6.9	3.2	1.8
Latvia	0.022	7.9	3.7	2.1
Lebanon	0.064	23.3	10.9	6.2
Libya	0.175	63.6	29.9	16.8
Lithuania	0.038	13.7	6.5	3.6
Luxembourg	0.031	11.4	5.3	3.0
Macedonia, Republic of	0.032	11.7	5.5	3.1
Malaysia	0.672	243.7	114.5	64.5
Malta	0.008	2.7	1.3	0.7
Mexico	1.366	495.3	232.7	131.2
Moldova, Republic of	0.014	5.1	2.4	1.4
Mongolia	0.037	13.3	6.3	3.5
Montenegro	0.008	2.8	1.3	0.7
Morocco	0.153	55.5	26.1	14.7
Mozambique	0.009	3.4	1.6	0.9
Myanmar	0.030	11.0	5.2	2.9
Namibia	0.010	3.5	1.6	0.9
Nepal	0.013	4.5	2.1	1.2
Netherlands	0.484	175.3	82.4	46.4
Netherlands Antilles	0.014	5.0	2.4	1.3
New Zealand	0.095	34.4	16.2	9.1
Nicaragua	0.013	4.9	2.3	1.3
Nigeria	0.244	88.4	41.5	23.4
Norway	0.170	61.6	28.9	16.3
Oman	0.174	62.9	29.5	16.7
Pakistan	0.482	174.9	82.2	46.3
Panama	0.028	10.0	4.7	2.6
Paraguay	0.015	5.3	2.5	1.4
Peru	0.190	68.9	32.4	18.3
Philippines	0.274	99.2	46.6	26.3
Poland	0.914	331.2	155.6	87.7
Portugal	0.152	55.2	25.9	14.6
Qatar	0.256	92.9	43.6	24.6
Romania	0.221	80.3	37.7	21.3
Russian Federation	5.315	1926.5	905.1	510.2
Saudi Arabia	1.523	552.1	259.4	146.2
Senegal	0.022	7.9	3.7	2.1
Serbia	0.111	40.4	19.0	10.7
Singapore	0.051	18.6	8.7	4.9
Slovak Republic	0.100	36.1	17.0	9.6
Slovenia	0.045	16.5	7.7	4.4
South Africa	1.314	476.1	223.7	126.1
Spain	0.704	255.0	119.8	67.5
Sri Lanka	0.043	15.5	7.3	4.1
Sudan	0.045	16.1	7.6 22.5	4.3
Sweden	0.132	48.0		12.7
Switzerland Syrian Arab Republic	0.118 0.188	42.8 68.3	20.1 32.1	<u>11.3</u> 18.1
Tajikistan	0.188	3.0	32.1	0.8
Tajikistan Tanzania, United Republic	0.008	7.7	3.6	2.0
Thailand	0.959	347.7	163.3	92.1
i nananu	0.737	547.7	103.3	74.1

Uzbekistan Venezuela	0.302	234.9	51.5	62.2
Uruguay	0.020	7.1	3.3 51.5	1.9 29.0
United States of America	15.350	5564.1	2614.0	1473.6
United Kingdom	1.355	491.3	230.8	130.1
United Arab Emirates	0.543	196.8	92.4	52.1
Ukraine	0.885	320.8	150.7	85.0
Turkmenistan	0.158	57.4	27.0	15.2
Tunisia Turkey	0.079 0.954	28.7 345.7	13.5 162.4	7.6 91.6
Trinidad and Tobago	0.143	52.0	24.4	13.8
Togo	0.005	1.8	0.9	0.5

Table 8 indicates that the sum of the 139-country greenhouse gas and particle emissions may cause, in 2050, \$17 (9.6-36) trillion/year in climate damage to the world. Thus, the global climate cost savings per person, averaged among these countries, to reducing all climate-relevant emissions through a 100% WWS system, is ~\$2,520/person/year (in 2013 dollars) (Table 6).

9. Impacts of WWS on Jobs and Earnings in the Energy Power Sector.

This section provides estimates of job and revenue creation and loss due to implementing WWS electricity. The analysis does not include the job changes in industries outside of electric power generation, such as in the manufacture of electric vehicles, fuel cells or electricity storage because of the additional complexity required and greater uncertainty as to where those jobs will be located.

9.A. JEDI Job Creation Analysis

Changes in jobs and total earnings are estimated here first with the Jobs and Economic Development Impact (JEDI) models (NREL, 2013). These are economic input-output models with several assumptions and uncertainties (e.g. Linowes, 2012). They incorporate three levels of impacts: 1) project development and onsite labor impacts; 2) local revenue and supply chain impacts; and 3) induced impacts. Jobs and revenue are reported for two phases of development: 1) the construction period and 2) operating years.

Scenarios for WWS powered electricity generation are run for each country assuming that the WWS electricity sector is fully developed by 2050. The calculations account for only new WWS jobs associated with new WWS generator capacity as identified in Table 2 and corresponding new transmission lines. As construction jobs are temporary in nature, JEDI models report construction job creation as full-time equivalents (FTE, equal to 2,080 hours of work per year). We assume for the jobs calculation that each year from 2015 to 2050, 1/35th of the WWS infrastructure is built.

The number of jobs associated with new transmission lines assumes 80% of new lines will be 500 kV high-voltage direct current (HVDC) lines and 20% 230 kV alternating current (AC) lines. Total line length is simplistically assumed to equal five times the circular radius

of a country. The transmission line JEDI model is used to calculate construction FTE jobs and annual operations jobs for the 230 kV AC lines for each country. For HVDC lines, the actual average numbers of construction FTE jobs and annual operation jobs among five proposed projects in the U.S. (Clean Line Energy Partners, 2015) are multiplied by the ratio of JEDI-model predicted number of jobs in a given country to that in the U.S. assuming 500 kV HVDC lines.

Table 9. Estimated new 35-year construction jobs, new 35-year operation jobs, 35-year construction plus operation jobs minus jobs lost, annual earnings corresponding to new construction and operation jobs, and net earnings from new construction plus operation jobs minus jobs lost (current jobs plus future jobs lost due to not growing fossil-fuel infrastructure), by country, due to converting to 100% WWS, based on the number of new generators needed of each type for annual average power and peaking/storage (Table 2). Earnings include wages, services, and supply-chain impacts.

wages, services, and	11 7						
Country	35-year	35-year	Job losses in	35-year net	Annual	Earning	Net earnings
	construction	operation	fossil-fuel	construction	earning	s from	from new
	jobs	jobs	and nuclear	plus	s from	new 40-	construct-ion
			energy	operation	new 40-	year	plus operation
			industries	jobs created	year	operatio	jobs minus
				minus jobs	constru	n jobs	jobs lost
				lost	ction	(bil	(bil 2013-
					jobs	2013-	\$/yr)
					(bil	\$/yr)	
					2013-\$/		
	< 10 -	6.100	6.610		yr)	o 1 -	
Albania	6,187	6,133	6,619	5,700	0.31	0.47	0.29
Algeria	132,730	131,815	328,769	(64,224)	5.64	7.07	-4.57
Angola	31,697	17,825	274,881	(225,360)	0.95	0.69	-9.01
Argentina	117,016	115,046	171,709	60,354	6.64	8.06	2.98
Armenia	6,771	7,186	4,213	9,744	0.29	0.47	0.52
Australia	160,274	253,941	212,231	201,984	12.82	24.61	17.17
Austria	66,180	96,174	38,847	123,507	5.72	10.16	11.89
Azerbaijan	22,283	22,671	83,443	(38,488)	1.49	2.31	-4.58
Bahrain	13,458	18,340	44,380	(12,582)	0.93	1.25	-0.85
Bangladesh	128,102	98,072	205,298	20,877	2.82	3.02	-0.17
Belarus	96,367	129,650	35,672	190,345	6.58	13.52	16.55
Belgium	138,494	230,177	40,724	327,947	11.42	23.26	30.69
Benin	7,680	6,990	40,413	(25,743)	0.13	0.16	-0.63
Bolivia	17,276	12,482	49,459	(19,701)	0.50	0.47	-0.86
Bosnia and Herzegovina	11,005	10,795	9,434	12,366	0.52	0.79	0.69
Botswana	6,154	7,728	6,320	7,562	0.28	0.44	0.36
Brazil	805,170	773,637	999,444	579,364	39.37	52.11	28.67
Brunei Darussalam	5,634	7,021	29,350	(16,694)	0.79	1.23	-3.08
Bulgaria	40,203	52,452	27,158	65,498	2.61	5.21	5.37
Cambodia	13,708	8,746	46,227	(23,773)	0.31	0.27	-0.85
Cameroon	16,725	16,243	85,257	(52,289)	0.34	0.44	-1.47
Canada	292,986	463,322	580,544	175,765	23.40	44.28	13.67
Chile	87,315	119,086	118,784	87,617	5.42	10.09	6.17
China	6,695,881	6,492,101	4,175,098	9,012,884	425.66	613.69	681.99
Chinese Taipei	257,718	165,443	130,932	292,229	39.41	36.13	51.51
Colombia	68,993	78,200	161,054	(13,861)	2.82	4.05	-1.33
Congo	4,026	3,331	57,148	(49,791)	0.11	0.12	-1.84
Congo, Dem. Republic	69,678	69,145	510,596	(371,773)	0.87	1.17	-6.50
Costa Rica	8,373	5,151	10,603	2,922	0.36	0.28	0.09
Cote d'Ivoire	20,346	19,054	127,848	(88,449)	0.43	0.53	-2.56
Croatia	21,457	31,025	15,622	36,860	1.61	3.54	3.43
Cuba	20,219	19,151	19,483	19,887	1.08	1.27	1.11
Cyprus	5,366	6,247	2,873	8,740	0.52	0.92	1.06

Czech Republic	74,716	81,158	37,396	118,479	4.90	6.65	8.60
Denmark	18,552	31,663	32,560	17,654	1.58	3.29	1.53
Dominican Republic	14,202	7,540	14,363	7,380	0.58	0.39	0.27
Ecuador	24,209	19,155	66,306	(22,942)	0.91	0.92	-1.29
Egypt	200,576	174,629	341,151	34,053	7.28	8.10	0.47
El Salvador	6,218	3,516	10,329	(595)	0.20	0.15	-0.07
Eritrea	2,006	1,172	13,576	(10,397)	0.03	0.02	-0.23
Estonia	4,450	6,245	7,370	3,325	0.27	0.48	0.21
Ethiopia	89,505	60,372	633,140	(483,263)	1.41	1.27	-10.57
Finland	47,316	82,222	38,261	91,277	3.75	8.02	8.15
France	320,178	329,457	173,156	476,479	24.80	31.45	40.44
Gabon	7,377	10,216	36,164	(18,571)	0.37	0.64	-1.23
Georgia	8,663	9,003	8,403	9,263	0.35	0.57	0.44
Germany	786,658	1,203,675	229,418	1,760,914	67.56	126.27	170.58
Ghana	23,965	23,005	76,632	(29,661)	0.56	0.70	-1.00
Gibraltar	2,884	3,179	1,651	4,412	0.28	0.36	0.46
Greece	32,152	29,511	26,081	35,582	1.91	2.21	2.25
Guatemala	21,538	11,805	45,431	(12,089)	0.65	0.46	-0.64
Haiti	5,903	3,670	35,591	(26,019)	0.10	0.08	-0.60
Honduras	10,167	7,760	22,133	(4,206)	0.25	0.25	-0.19
Hong Kong, China	63,420	88,748	28,433	123,735	6.94	12.43	15.81
Hungary	57,634	61,612	24,034	95,212	3.35	4.52	6.15
Iceland	1,277	3,125	3,770	632	0.11	0.32	0.07
India	1,905,892	1,698,048	2,508,442	1,095,497	66.46	85.26	34.89
Indonesia	542,376	500,691	812,101	230,966	21.18	26.76	5.74
Iran, Islamic Republic	428,126	505,881	758,697	175,310	16.35	20.67	6.19
Iraq	56,028	57,091	333,803	(220,684)	2.00	2.20	-8.63
Ireland	11,375	16,049	10,844	16,579	1.03	1.76	1.64
Israel	35,321	37,484	18,138	54,667	2.44	3.22	4.20
Italy	367,618	510,080	133,351	744,347	26.37	45.39	60.28
Jamaica	5,666	4,756	6,159	4,263	0.19	0.21	0.14
Japan	609,972	775,535	216,731	1,168,776	42.28	59.71	85.73
Jordan	11,438	11,082	16,051	6,468	0.37	0.39	0.21
Kazakhstan	133,237	186,358	198,466	121,129	10.97	23.28	9.98
Kenya	33,780	23,761	184,209	(126,668)	0.68	0.64	-3.56
Korea, Dem. People's Rep.	60,011	89,493	80,135	69,369	1.01	2.02	1.35
Korea, Republic of	554,236	696,549	218,433	1,032,352	40.61	61.54	84.24
Kosovo	4,499	3,927	6,163	2,263	0.15	0.17	0.07
Kuwait	41,772	61,753	230,457	(126,932)	4.21	5.81	-11.74
Kyrgyzstan	12,599	11,926	11,264	13,261	0.34	0.50	0.42
Latvia	13,249	21,899	14,758	20,390	1.07	2.69	1.99
Lebanon	12,090	15,144	12,802	14,433	0.48	0.64	0.59
Libya	28,804	36,810	189,158	(123,544)	1.29	2.07	-7.08
Lithuania	15,343	22,630	12,922	25,050	1.36	3.03	2.69
Luxembourg	10,474	13,682	3,153	21,003	1.52	2.32	3.31
Macedonia, Republic of	6,642	6,964	4,597	9,009	0.37	0.59	0.60
Malaysia	201,726	249,037	242,179	208,584	12.97	21.29	14.59
Malta	4,416	7,730	2,271	9,875	0.44	1.16	1.27
Mexico	357,982	276,549	681,535	(47,004)	18.55	19.76	-7.89
Moldova, Republic of	7,506	7,904	6,329	9,081	0.25	0.40	0.35
Mongolia	14,981	18,296	20,772	12,506	0.63	1.04	0.53
Montenegro	1,862	2,302	2,655	1,509	0.11	0.21	0.10
Morocco	50,417	47,700	50,580	47,538	1.52	1.86	1.58
Mozambique	20,054	17,820	235,785	(197,911)	0.29	0.34	-3.77
Myanmar	47,164	44,916	132,282	(40,202)	1.19	1.57	-1.80
Namibia	6,297	8,612	40,507	(25,597)	0.22	0.38	-1.19
Nepal	29,159	25,110	89,848	(35,579)	0.57	0.69	-1.18
Netherlands	130,655	202,498	104,308	228,844	11.54	21.80	22.27
Netherlands Antilles	5,867	6,931	4,992	7,806	0.36	0.53	0.51

World total or average	23,985,454	26,497,510	28,412,244	22,070,720	1519.11	2280.44	1870.41
Zimbabwe	21,438	20,643	129,473	(87,392)	0.36	0.46	-2.00
Zambia	20,105	17,405	93,112	(55,602)	0.46	0.52	-1.72
Yemen	19,712	14,400	72,518	(38,406)	0.39	0.33	-0.93
Vietnam	167,279	153,198	298,885	21,592	4.78	6.07	-0.28
Venezuela	108,932	140,706	303,086	(53,448)	5.18	8.39	-4.23
Uzbekistan	166,410	173,563	131,200	208,772	5.79	9.34	8.25
Uruguay	7,644	8,903	12,523	4,023	0.40	0.58	0.19
United States of America	2,254,009	2,771,668	2,086,077	2,939,600	227.25	342.64	319.25
United Kingdom	148,349	209,933	197,164	161,118	11.57	20.17	13.28
United Arab Emirates	247,340	364,159	299,639	311,859	21.86	30.62	27.20
Ukraine	225,210	266,730	141,324	350,616	9.90	18.09	19.13
Turkmenistan	81,962	106,809	97,413	91,358	5.06	10.10	6.04
Turkey	183,724	192,954	86,934	289,744	9.34	12.51	16.51
Tunisia	31,825	34,375	45,219	20,982	1.22	1.67	0.81
Trinidad and Tobago	14,818	24,200	58,525	(19,508)	1.01	2.00	-1.80
Togo	5,590	5,203	48,900	(38,107)	0.09	0.11	-0.82
Thailand	343,836	379,740	344,050	379,526	16.05	24.02	19.42
Tanzania, United Republic	53,197	49,937	239,353	(136,218)	1.02	1.28	-3.77
Tajikistan	6,028	4,438	8,429	2,037	0.15	0.17	0.06
Syrian Arab Republic	23,685	26,787	73,418	(22,946)	0.62	0.79	-0.71
Switzerland	43,674	69,983	24,050	89,607	4.46	8.59	10.21
Sweden	24,468	47,846	61,730	10,584	2.12	5.06	0.89
Sudan	32,384	20,603	126,111	(73,125)	0.75	0.63	-2.40
Sri Lanka	29,656	22,127	49,676	2,107	1.16	1.18	-0.22
Spain	146,725	153,638	106,276	194,087	10.36	13.47	14.90
South Africa	261,253	341,308	364,605	237,955	10.62	17.58	10.80
Slovenia	10,412	19,428	7,819	22,021	0.67	1.57	1.64
Slovak Republic	23,182	27,182	13,929	36,435	1.44	2.12	2.52
Singapore	148,437	184,238	63,317	269,358	22.01	34.12	44.97
Serbia	32,840	39,094	27,110	44,825	1.85	3.38	3.06
Senegal	8,927	6,829	40,397	(24,641)	0.16	0.17	-0.63
Saudi Arabia	203,791	291,192	850,553	(355,569)	15.34	21.35	-25.77
Russian Federation	775,287	1,270,480	1,284,150	761,617	53.88	110.92	55.14
Romania	67,470	87,289	68,808	85,952	4.81	9.49	7.14
Qatar	51,961	74,198	233,790	(107,631)	8.21	10.22	-13.89
Portugal	17,745	16,422	25,104	9,062	1.10	1.27	0.49
Poland	106,619	90,548	83,788	113,379	6.25	6.69	6.96
Philippines	122,836	52,732	137,230	38,338	3.89	2.31	0.66
Peru	43,738	34,599	70,724	7,613	1.69	1.70	0.01
Paraguay	6,315	6,187	39,111	(26,609)	0.21	0.26	-1.06
Panama	12,875	15,229	11,295	16,809	0.68	1.00	0.96
Pakistan	291,110	239,989	415,745	115,354	7.75	8.89	1.82
Oman	68,007	137,045	126,186	78,866	4.45	8.91	5.15
Norway	6,846	20,905	167,568	(139,817)	0.77	2.81	-18.70
Nigeria	297,339	267,408	1,055,358	(490,611)	8.69	10.83	-23.01
New Zealand Nicaragua	17,908 4,883	22,400 3,044	28,140 11,775	12,168 (3,848)	1.47 0.13	2.41 0.11	0.95

Table 9 indicates that 100% conversion to WWS across 139 countries may create ~24.0 million new 35-year construction jobs and ~26.5 million new 35-year operation and maintenance jobs for the WWS generators and transmission proposed. These employment numbers do not include all external jobs created in areas such as research and development, storage development, and local economy improvement.

Table 10 provides a summary among 139 countries of job loss in the oil, gas, coal, nuclear, bioenergy industries. Job loss is calculated as the product of jobs per unit energy in each employment category and total energy use. Total energy use is the product of energy use in 2012 from IEA World Energy Balances, by country, and the ratio of energy use in the target year to energy use in 2012 (from IEO projections by region, extrapolated past 2040, and mapped to individual countries). Jobs per unit energy are calculated as the product of jobs per unit energy unit in the U.S. in 2012, the fraction of conventional-fuel jobs lost due to converting to WWS (Table 10), a multiplier for jobs associated with the jobs lost but not counted elsewhere, and country-specific adjustment factors accounting for the relationship between jobs per unit energy and GDP per capita and total energy use.

The fraction of fossil-fuel jobs lost in each job sector (Table 10), accounts for the fact that some non-energy uses of fossil fuels will be retained (e.g., the use of some petroleum products will be used as lubricants, asphalt, petrochemical feedstock, and petroleum coke) or that transportation categories include transportation of goods other than fossil fuels.

Job losses include construction jobs lost from not building future fossil, nuclear, and biopower plants because WWS plants are built instead. Job losses from not replacing existing conventional plants are not treated to be consistent with the fact that jobs created by replacing WWS plants with other WWS plants are not treated.

The shift to WWS is estimated to result in the loss of ~ 28.4 million jobs in the current fossilfuel, biofuel, and nuclear industries in the 139 countries. The job loss represents $\sim 1\%$ of the total workforce in the 139 countries.

Table 10. Estimated 139-country job losses due to eliminating energy generation and use from the fossil fuel and nuclear sectors. Also shown is the percent of total jobs in the sector that are lost. Not all fossil-fuel jobs are lost due to non-energy uses of petroleum, such as lubricants, asphalt, petrochemical feedstock, and petroleum coke. For transportation sectors, the jobs lost are those due to transporting fossil fuels; the jobs not lost are those for transporting other goods.

Energy sector	Jobs lost in sector	Percent of jobs in sector that are lost
Oil and gas extraction	2,272,000	87
Coal mining	987,000	97
Uranium mining	110,500	100
Support for oil and gas	3,412,000	87
Oil and gas pipeline construction	1,543,000	87
Mining & oil/gas machinery	1,101,000	87
Petroleum refining	561,000	93
Asphalt paving and roofing materials	0	0
Gas stations with stores	1,544,000	30
Other gas stations	361,000	50
Fossil electric power generation utilities	884,000	100
Fossil electric power generation non-utilities	154,000	100

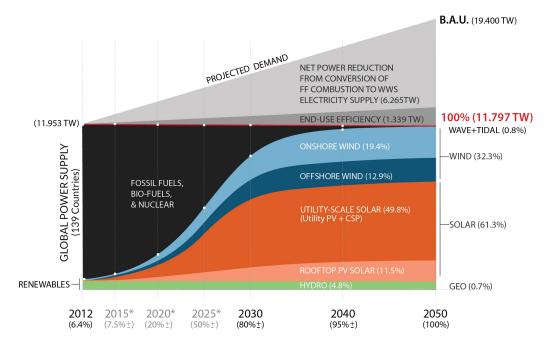
Nuclear and other power generation	1,038,000	100
Natural gas distribution	1,033,000	100
Auto oil change shops/other repair	51,900	10
Rail transportation of fossil fuels	649,000	52
Water transportation of fossil fuels	211,600	23
Truck transportation of fossil fuels	758,700	8
Bioenergy except electricity	7,089,000	100
Total current jobs lost	23,762,000	
^h Jobs lost from not growing fossil fuels	4,650,000	
All jobs lost	28,412,000	
ⁱ Total labor force	2.87 billion	
Jobs lost as percent of labor force	0.99%	

^aSee Delucchi et al. (2015) for detailed calculations and referencing.

^bJobs lost from not growing fossil fuels are additional construction and operation jobs that would have accrued by 2050 if BAU instead of WWS continued.

"The total labor force in each country is obtained from World Bank (2015b).

Subtracting the number of jobs lost across the 139 countries from the number of jobs created gives a net of ~22.1 million 35-year jobs created due to WWS. Although all countries together are expected to gain jobs, some countries, particularly those that currently extract significant fossil fuels (e.g., Kuwait, Iraq, Nigeria, Qatar, Saudi Arabia, Sudan, Venezuela, Yemen) may experience net job loss in the energy production sector. However, such job loss in many of those countries can potentially be made up in the manufacture and service of storage technologies, hydrogen technologies, electric vehicles, electric heating and cooling appliances, and industrial heating equipment, although such job creation numbers were not determined here.


The direct and indirect earnings from producing WWS electricity amount to \sim \$1.52 trillion/year during the construction stage and \sim \$2.28 trillion/yr during the operation stage. The annual earnings lost from the fossil-fuel industries total \sim \$1.93 trillion/yr giving a net gain in annual earnings of \sim \$1.87 trillion/yr.

10. Timeline for Implementing the Roadmaps

Figure 11 shows the mean proposed timeline for the complete transformation of the energy infrastructures of the 139 countries considered here. The timeline assumes 100% WWS by 2050, with 80-85% WWS by 2030. To meet this timeline, rapid transitions are needed in each technology sector. Whereas, much new infrastructure can be installed upon retirement of existing infrastructure or devices, other transitions will require aggressive policies (Section 11) to meet the timeline. Below is a list of proposed transformation timelines for individual sectors.

Figure 11. Mean change in 139-country end-use power demand for all purposes (electricity, transportation, heating/cooling, industry, agriculture/fishing/forestry, and other) and its supply by conventional fuels and WWS generators over time based on the country roadmaps proposed here. Total power demand decreases upon conversion to WWS due to the efficiency of electricity over combustion and end-use energy efficiency measures. The percentages next to each WWS source are the final (2050) estimated percent supply of end-use

power by the source. The 100% demarcation in 2050 indicates that 100% of all-purpose power is provided by WWS technologies by 2050, and the power demand by that time has decreased.

Development of super grids and smart grids. As soon as possible, countries should develop plans for long-term power-transmission-and-distribution systems to provide "smart" management of energy demand and supply at all scales, from local to international (e.g., Smith et al., 2013; Blarke and Jenkins, 2013; Elliott, 2013).

Power plants: by 2020, no more construction of new coal, nuclear, natural gas, or biomass fired power plants; all new power plants built are WWS. This is feasible because few power plants are built annually, and most WWS electric power generator technologies are already cost competitive.

Heating, drying, and cooking in the residential and commercial sectors: by 2020, all new devices and machines are powered by electricity. This is feasible because the electric versions of these products are already available, and all sectors can use electricity without adaptation (the devices can be plugged in or installed).

Large-scale waterborne freight transport: by 2020-2025, all new ships are electrified and/or use electrolytic hydrogen, all new port operations are electrified, and port retroelectrification is well underway. This should be feasible for relatively large ships and ports because large ports are centralized and few ships are built each year. Policies may be needed to incentivize the early retirement of ships that do not naturally retire before 2050.

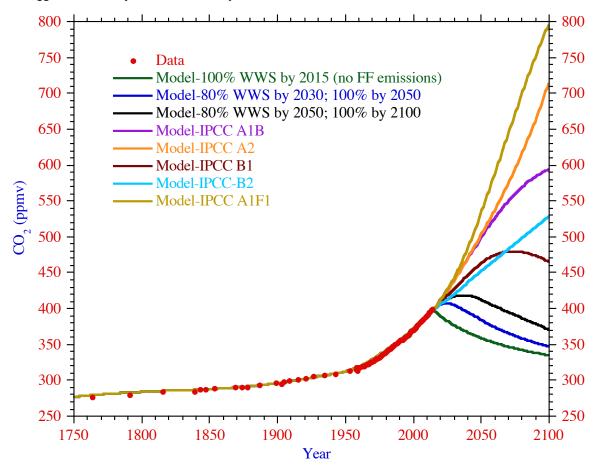
Rail and bus transport: by 2025, all new trains and buses are electrified. This requires changing the supporting energy-delivery infrastructure and the manufacture method of transportation equipment. However, relatively few producers of buses and trains exist, and the supporting energy infrastructure is concentrated in cities.

Off-road transport, small-scale marine: by 2025 to 2030, all new production is electrified.

Heavy-duty truck transport: by 2025 to 2030, all new heavy-duty trucks and buses are electrified or use electrolytic hydrogen. It may take 10-15 years for manufacturers to retool and for enough of the supporting energy-delivery infrastructure to be put in place.

Light-duty on-road transport: by 2025-2030, all new light-duty onroad vehicles are electrified. Manufacturers need time to retool, but more importantly, several years are needed to get the energy-delivery infrastructure in place for a 100% WWS transportation fleet..

Short-haul aircraft: by 2035, all new small, short-range aircraft are battery- or electrolytichydrogen powered. Changing the design and manufacture of airplanes and the design and operation of airports are the main limiting factors to a more rapid transition.


Long-haul aircraft: by 2040, all remaining new aircraft use electrolytic cryogenic hydrogen (Jacobson and Delucchi, 2011, Section A.2.7) with electricity power for idling, taxiing, and internal power. The limiting factors to a faster transition are the time and social changes required to redesign aircraft and airports.

During the transition, conventional fuels and existing WWS technologies are needed to produce the remaining WWS infrastructure. However, much of the conventional energy would be used in any case to produce conventional power plants and automobiles if the plans proposed here were not implemented. Further, as the fraction of WWS energy increases, conventional energy generation will decrease, ultimately to zero, at which point all new WWS devices will be produced with existing WWS. In sum, the creation of WWS infrastructure may result in a temporary increase in emissions before they are ultimately reduced to zero.

Figure 12 illustrates the impact on global carbon dioxide levels of the aggressive goals proposed here (80% WWS by 2030 and 100% by 2050) as well as of a less aggressive scenario that provides 80% WWS by 2050 and 100% by 2100. Both scenarios reduce CO₂ levels below those today. The 100% by 2050 scenario reduces CO₂ to just below 350 ppmv by 2100, a level last seen around 1987. The 100% by 2100 scenario reduces CO₂ to ~ 370 ppmv by 2100. All IPCC (2000) emission scenarios similarly result in CO₂ levels much higher than in WWS scenarios through 2100, ranging from 460 to 800 ppmv. Such scenarios are certain to drive temperatures up further. WWS scenarios will stabilize and ultimately reduce temperatures.

The WWS plans proposed here will also eliminate emissions of energy-related black carbon, the second-leading cause of global warming after carbon dioxide, and of energy-related methane, the third-leading cause, as well as tropospheric ozone precursors, carbon monoxide, and nitrous oxide from energy. As such the aggressive worldwide conversion to WWS proposed here will avoid exploding levels of CO_2 and other global warming contaminants, potentially avoiding catastrophic climate change.

Figure 12. Comparison of historic (1751-2014) observed CO_2 mixing ratios (ppmv) from the Siple ice core (Neftel et al., 1994) and the Mauna Loa Observatory (Tans and Keeling, 2015) with GATOR-GCMOM model results (Jacobson et al., 2005) for the same period plus model projections from 2015-2100 for five Intergovernmental Panel on Climate Change (IPCC) scenarios (IPCC, 2000) and three WWS cases: an unobtainable 100% WWS by 2015 case; a 80% WWS by 2030 and 100% by 2050 case (from Figure 11), and a less-aggressive 80% by 2050 and 100% by 2100 case.

The model is set up as in Jacobson (2005) with two columns (one atmospheric box over 38 ocean layers plus one atmospheric box over land). It treats full ocean chemistry in all layers, vertical ocean diffusion with canonical diffusion coefficients, ocean removal of calcium carbonate for rock formation, gas-ocean transfer, and emissions from fossil fuels. It also accounts for photosynthesis, plant and soil respiration, and removal of carbon dioxide from the air by weathering. Fossil-fuel emissions from 1751-1958 are from Boden et al. (2011); from 1959-2014 are from Le Quere et al. (2015), and for 2015 onward from the WWS scenarios scaled from 2014 emission and from the individual IPCC scenarios. Land use change emissions per year were 300 Tg-C/yr for 1751-1849; from Houghton (2015) for 1850-1958; from Le Quere et al. (2015) for 1959-2014; from the IPCC (2000) A1B scenario for the WWS cases for 2015-2100 and from the individual IPCC scenarios for the remaining cases. The net carbon sink over land from 1751-2100 was calculated from the time-dependent photosynthesis, respiration, and weathering processes mentioned.

<u>11. Recommended First Steps</u>

The policy pathways necessary to transform the 139 countries treated here to 100% WWS will differ by country, depending largely on the willingness of the government and people in each country to affect rapid change. This study does not advocate specific policy measures

for any country. Instead, it provides a set of policy options that each country can consider. The list is by no means complete. Within each section, the policy options are listed roughly in order of proposed priority.

12.1. Energy Efficiency Measures

- Expand clean, renewable energy standards and energy efficiency standards.
- Incentivize conversion from natural gas water and air heaters to electric heat pumps (air and ground-source) and rooftop solar thermal hot water pre-heaters.
- Promote, though municipal financing, incentives, and rebates, energy efficiency measures in buildings and other infrastructure. Efficiency measures include, but are not limited to, using LED lighting; evaporative cooling; ductless heating and air conditioning; energy-storing materials in walls and floors to modulate temperature changes, water-cooled heat exchanging; night ventilation cooling; combined space and water heating; improved data center design; improved air flow management; advanced lighting controls; variable refrigerant flow; improved wall, floor, ceiling, and pipe insulation; double- and triple-paned windows; and passive solar heating. Additional measures include sealing windows, doors, and fireplaces; and monitoring building energy use and performing energy audits to find energy waste.
- Revise building codes to incorporate "green building standards" based on best practices for building design, construction, and energy use.
- Incentivize landlord investment in energy efficiency. Allow owners of multi-family buildings to take a property tax exemption for energy efficiency improvements in their buildings that provide benefits to their tenants.
- Create energy performance rating systems with minimum performance requirements to assess energy efficiency levels and pinpoint areas of improvement.
- Create a green building tax credit program for the corporate sector.

12.2. Energy Supply Measures

- Increase Renewable Portfolio Standards (RPSs).
- Extend or create state WWS production tax credits.
- Streamline the permit approval process for large-scale WWS power generators and highcapacity transmission lines. Work with local and regional governments to manage zoning and permitting issues within existing planning efforts or pre-approve sites to reduce the cost and uncertainty of projects and expedite their physical build-out.
- Streamline the small-scale solar and wind installation permitting process. Create common codes, fee structures, and filing procedures across a country.

- Lock in fossil fuel and nuclear power plants to retire under enforceable commitments. Implement taxes on emissions by current utilities to encourage their phase-out.
- Incentivize clean-energy backup emergency power systems rather than diesel/gasoline generators at both the household and community levels.
- Incentivize home or community energy storage (through garage electric battery systems, for example) that accompanies rooftop solar to mitigate problems associated with grid power losses.

12.3. Utility Planning and Incentive Structures

- Incentivize community seasonal heat storage underground using the Drake Landing solar community as an example.
- Incentive the development of utility-scale grid electric power storage, such as in CSP, pumped hydropower, and more efficient hydropower.
- Require utilities to use demand response grid management to reduce the need for short-term energy backup on the grid.
- Incentivize the use of excess WWS electricity to produce hydrogen to help manage the grid.
- Develop programs to use EV batteries, after the end of their useful life in vehicles, for local, short-term storage and balancing.
- Implement virtual net metering (VNM) for small-scale energy systems.

12.4. Transportation

- Promote more public transit by increasing its availability and providing compensation to commuters for not purchasing parking passes.
- Increase safe biking and walking infrastructure, such as dedicated bike lanes, sidewalks, crosswalks, timed walk signals, etc.
- Adopt legislation mandating BEVs for short- and medium distance government transportation and using incentives and rebates to encourage the transition of commercial and personal vehicles to BEVS.
- Use incentives or mandates to stimulate the growth of fleets of electric and/or hydrogen fuel cell/electric hybrid buses starting with a few and gradually growing the fleets. Also incentivize electric and hydrogen fuel cell ferries, riverboats, and other local shipping.

- Adopt zero-emission standards for all new on-road and off-road vehicles, with the percentage of new production required to be zero-emission increasing to 100% by 2030 at the latest.
- Ease the permitting process for installing electric charging stations in public parking lots, hotels, suburban metro stations, on streets, and in residential and commercial garages.
- Set up time-of-use electricity rates to encourage charging at night.
- Incentivize the electrification of freight rail and shift freight from trucks to rail.

12.5. Industrial Processes

- Provide financial incentives for industry to convert to electricity and electrolytic hydrogen for high temperature and manufacturing processes.
- Provide financial incentives to encourage industries to use WWS electric power generation for on-site electric power (private) generation.

12. Summary

Roadmaps are presented for converting the energy systems for all purposes (electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing) of 139 countries into clean and sustainable ones powered by wind, water, and sunlight (WWS).

For each country, the study estimates 2050 BAU power demand from current data, converts the supply for each load sector to WWS supply, and proposes a mix of WWS generators within each the country that can match projected 2050 all-sector power demand. The conversion from BAU combustion to WWS electricity for all purposes is calculated to reduce 139-country-averaged end-use load by \sim 39.2%, with \sim 82% of this due to electrification and eliminating the need for mining, transport, and refining of conventional fuels, and the rest due to end-use energy efficiency improvements.

Remaining all-purpose annually-averaged end-use 2050 load over the 139 countries is proposed to be met with ~1.17 million new onshore 5-MW wind turbines (providing 19.4% of 139-country power for all purposes), 762,000 off-shore 5-MW wind turbines (12.9%), 496,900 50-MW utility-scale solar-PV power plants (42.2%), 15,400 100-MW utility-scale CSP power plants with storage (7.7%), 653 million 5-kW residential rooftop PV systems (5.6%), 35.3 million 100-kW commercial/government rooftop systems (6.0%), 840 100-MW geothermal plants (0.74%), 496,000 0.75-MW wave devices (0.72%), 32,100 1-MW tidal turbines (0.07%), and 0 new hydropower plants. The capacity factor of existing hydropower plants will increase slightly so that hydropower supplies 4.8% of all-purpose power. Another estimated 9,300 100-MW CSP plants with storage and 99,400 50-MW solar thermal collectors for heat generation and storage will be needed to help stabilize the grid. This is just one possible mix of generators.

The additional footprint on land for WWS devices is equivalent to about 0.29% of the 139country land area, mostly for utility scale PV. This does not account for land gained from eliminating the current energy infrastructure. An additional on-land spacing area of about 0.65% for the 139 countries is required for onshore wind, but this area can be used for multiple purposes, such as open space, agricultural land, or grazing land.

The 2013 LCOE for hydropower, onshore wind, utility-scale solar, and solar thermal for heat is already similar to or less than the LCOE for natural gas combined-cycle power plants. Rooftop PV, offshore wind, tidal, and wave presently have higher LCOEs. However, by 2050 the LCOE for all WWS technologies is expected to drop, most significantly for offshore wind, tidal, wave, rooftop PV, CSP, and utility PV, whereas conventional fuel costs are expected to rise.

The 139-country roadmaps are anticipated to create 24.0 million 35-year construction jobs and 26.5 million 35-year operation jobs for the energy facilities alone, the combination of which would outweigh by \sim 22.1 million the 28.4 million jobs lost in the conventional energy sector.

The 139-country roadmaps will eliminate ~4.6 (1.3-8.0) million premature air pollution mortalities per year today and 3.3 (0.8-7.0) million/yr in 2050, avoiding ~\$25.4 (\$4.3-\$69.7) trillion/year in 2050 air-pollution damage costs (2013 dollars), equivalent to ~7.9 (1.3-21.6) percent of the 2050 139-country GDP.

Converting will further eliminate ~\$17 (9.6-36) trillion/year in 2050 global warming costs (2013 dollars) due to 139-country greenhouse-gas and particle emissions.

These plans will result in the average person in 2050 saving \$170/year in fuel costs compared with conventional fuels, ~2,880/person/year in air-pollution-damage cost and \sim \$1,930/person/year in climate costs (2013 dollars).

Many uncertainties in the analysis here are captured in broad ranges of energy, health, and climate costs given. However, these ranges may miss costs due to limits on supplies caused by wars or political/social opposition to the roadmaps. As such, the estimates should be reviewed periodically.

The timeline for conversion is proposed as follows: 80% of all energy to be WWS by 2030 and 100% by 2050. As of the end of 2014, three countries -- Norway (67%), Paraguay (54%), and Iceland (39%) – have installed more than 35% of their projected all-purpose 2050 needed nameplate capacity of WWS energy. The world average conversion to date is 3.8%.

The major benefits of a conversion are the near-elimination of air pollution morbidity and mortality and global warming, net job creation, energy-price stability, reduced international conflict over energy because each country will largely be energy independent, increased accessed to distributed energy and reduced energy poverty to the 4 billion people worldwide who currently collect their own energy and burn it, and reduced risks of large-scale system disruptions because much of the world power supply will be decentralized. Finally, the aggressive worldwide conversion to WWS proposed here will avoid exploding levels of CO_2 and catastrophic climate change.

The study finds that the conversion to WWS is technically and economically feasible. The main barriers are still social and political.

Acknowledgments

We would like to thank The Solutions Project for partial funding of three students. We would like to thank Karl Burkart for developing the timeline graphic for this paper. The spreadsheets for this paper can be found in Delucchi et al. (2015).

References

- Anenberg, S.C., D. Shindell, M. Amann, G. Faluvegi, et al., 2012. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, *Environmental Health Perspectives*, 120, 831-839.
- Arent, D., P. Sullivan, D. Heimiller, A. Lopez, K. Eurek, J. Badger, H.E. Jorgensen, and M. Kelly, 2015, 2012, Improved offshore wind resource assessment in global climate stabilization scenarios, NREL/TP-6A20-55049, <u>http://www.nrel.gov/docs/fy13osti/55049.pdf</u>, Accessed June 11, 2015.
- Bertani, R., 2015. Geothermal Power Generation in the World 2010-2014 Update Report, World Geothermal Congress 2015 Conference Proceedings, Melbourne, Australia, 19-25 April 2015.
- Beyond Zero Emissions, Zero Carbon Australia Stationary Energy Plan, Melbourne Energy Institute, University of Melbourne, July, 2010. <u>http://media.bze.org.au/ZCA2020_Stationary_Energy_Report_v1.pdf</u>, Accessed May 2, 2015.
- Blarke, M. B., and B. M. Jenkins, 2013. SuperGrid or SmartGrid: Competing Strategies for large-scale integration of intermittent renewables?, Energy Policy 58: 381-390.
- Boden, T., B. Andres, and G. Marland, 2011. Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751-2011, <u>http://cdiac.ornl.gov/ftp/ndp030/global.1751_2011.ems</u>, Accessed November 27, 2015.
- Buonocore, J.J., P. Luckow, G. Norris, J.D. Spengler, B. Biewald, J. Fisher, and J.I. Levy, Health and climate benefits of different energy efficiency and renewable energy choices, *Nat. Clim. Change*, doe:10.1039/NCLIMATE2771, 2015.
- Clean Line Energy Partners, 2015, Projects, <u>http://www.cleanlineenergy.com/projects</u>, Accessed Sept. 20, 2015.
- Connolly, D., and B.V. Mathiesen, 2014, A technical and economic analysis of one potential pathway to a 100% renewable energy system, Intl. J. Sustainable Energy Planning & Management, 1, 7-28.
- CSP World, 2015. CSP world map. http://www.cspworld.org/cspworldmap. Accessed July 22, 2015.
- Delucchi, M.A., Jacobson, M.Z., 2011. Providing all global energy with wind, water, and solar power, Part II: Reliability, System and Transmission Costs, and Policies. Energy Policy, 39, 1170-1190, doi:10.1016/j.enpol.2010.11.045.
- Delucchi, M.A., M.Z. Jacobson, Z.A.F. Bauer, S. Goodman, and W. Chapman, 2015. Spreadsheets for 139country 100% wind, water, and solar roadmaps, <u>http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html</u>. Accessed November 18, 2015.
- DOE (Department of Energy, U.S.), 2012. An Assessment of Energy Potential at Non-Powered Dams in the United states, <u>http://nhaap.ornl.gov/system/files/NHAAP_NPD_FY11_Final_Report.pdf</u>. Accessed December 17, 2012.
- Dulac, J., 2013. Global Land Transport Infrastructure Requirements, *International Energy Agency*, <u>https://www.iea.org/publications/freepublications/publication/TransportInfrastructureInsights_FINAL_WEB</u>.pdf, Accessed September 9, 2015.
- Dvorak, M., C.L. Archer, and M.Z. Jacobson, 2010. California offshore wind energy potential, *Renewable Energy*, 35, 1244-1254, doi:10.1016/j.renene.2009.11.022.
- ECF (European Climate Foundation), 2010, Roadmap 2050: A Practical Guide to a Prosperous, Low-Carbon Europe, http://www.roadmap2050.eu/project/roadmap-2050, Accessed May 2, 2015.
- EIA (Energy Information Agency), 2015. International Energy Outlook, 2014, <u>http://www.eia.gov/forecasts/ieo/</u>, Accessed November 17, 2015.

- Eiffert, P., 2003. Non-technical barriers to the commercialization of PV power systems in the built environment, NREL/TP-550-31976, <u>http://www.nrel.gov/docs/fy03osti/31976.pdf</u>, Accessed September 8, 2015.
- Elliott, D., 2013. Emergence of European supergrids Essay on strategy issues, Energy Strategy Reviews 1: 171-173.
- ELTE/EENA (ELTE University sustainable energy research group/Environmental education network association), 2014, Hungarian sustainable energy vision, <u>http://inforse.dk/europe/VisionHU.htm</u>, Accessed May 2, 2015.
- Entranze Data Tool, 2015. Intelligent Energy Europe Program, European Union. http://www.entranze.enerdata.eu/, Accessed September 8, 2015.
- EPIA (European Photovoltaic Industry Association) 2014. Global Market Outlook for Photovoltaics 2014-2020, <u>http://www.epia.org/fileadmin/user_upload/Publications/44_epia_gmo_report_ver_17_mr.pdf</u>, Accessed 27 July 2015.
- EREC (European Renewable Energy Council), 2010, *RE-Thinking 2050: A 100% Renewable Energy Vision for the European Union*,

http://www.erec.org/fileadmin/erec_docs/Documents/Publications/ReThinking2050_full%20version_final.p df, Accessed May 2, 2015.

- GCP (Global Carbon Project), Global Carbon Budget 2014 spreadsheet, Territorial Emissions, http://www.globalcarbonproject.org/carbonbudget/14/data.htm, Accessed August 12, 2015.
- GWEC (Global Wind Energy Council), 2015. Global wind report annual market update 2014, <u>http://www.gwec.net/wp-content/uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.pdf</u>, Accessed July 15, 2015.
- Hooker-Stroud, A., P. James, T. Kellner, and P Allen, 2015. Understanding the challenges and opportunities in managing hourly variability in a 100% renewable energy system for the UK, Carbon Management, doi:10.1080/17583004.2015.1024955.
- Houghton, R.A., 2015. Annual net flux of carbon to the atmosphere from land-use change: 1850-2005, http://cdiac.ornl.gov/trends/landuse/houghton/1850-2005.txt, Accessed November 27, 2015.
- IEA (International Energy Agency), 2005, Energy use in the new millennium, <u>https://www.iea.org/publications/freepublications/publication/millennium.pdf</u>, Accessed Sept. 8, 2015.
- IEA (International Energy Agency), 2014a. 2014 Key world energy statistics, <u>http://www.iea.org/publications/freepublications/publication/keyworld2014.pdf</u>, Accessed August 1, 2015.
- IEA (International Energy Agency), 2014b, Renewable energy medium-term market report 2014.
- IEA (International Energy Agency), 2015, Statistics, <u>http://www.iea.org/statistics/statisticssearch/</u>, Accessed June 10, 2015.
- IEA-PVPS (International Energy Agency-Photovoltaic Power Systems Programme) 2015, PVPS Annual report 2014, <u>http://iea-pvps.org/index.php?id=6&eID=dam_frontend_push&docID=2557</u>, Accessed 25 July 2015.
- IHA (International Hydropower Association), 2015, Country profiles, <u>http://www.hydropower.org/country-profiles</u>, Accessed August 1, 2015.
- IPCC (Intergovernmental Panel on Climate Change), 2000. Special Report on Emission Scenarios (SRES), http://sres.ciesin.org/final_data.html, Accessed November 19, 2015.
- Jacobson, M.Z., 2005. Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry, J. Geophys. Res., 110, D07302, doi:10.1029/2004JD005220.
- Jacobson, M.Z., W.G. Colella, and D.M. Golden, 2005. Cleaning the air and improving health with hydrogen fuel cell vehicles, *Science*, 308, 1901-1905.
- Jacobson, M.Z., Y.J. Kaufmann, Y. Rudich, 2007, Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions, J. Geophys. Res., 112, D24205, doi:10.1029/2007JD008922.

Jacobson, M.Z., 2009. Review of solutions to global warming, air pollution, and energy security, *Energy & Environmental Science*, 2, 148-173, doi:10.1039/b809990c.

- Jacobson, M.Z., and M.A. Delucchi, November 2009. A path to sustainable energy by 2030, Scientific American.
- Jacobson, M.Z., 2010a. Enhancement of local air pollution by urban CO₂ domes, *Environmental Science*, and *Technology*, 44, 2497-2502.
- Jacobson, M.Z., 2010b, Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795.
- Jacobson, M.Z., and M.A. Delucchi, 2011. Providing all Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials, *Energy Policy*, 39, 1154-1169, doi:10.1016/j.enpol.2010.11.040.
- Jacobson, M. Z., 2012. Air Pollution and Global Warming: History, Science, and Solutions, Second Edition, Cambridge University Press, Cambridge, 375 pp.

- Jacobson, M.Z., R.W. Howarth, M.A. Delucchi, S.R. Scobies, J.M. Barth, M.J. Dvorak, M. Klevze, H. Katkhuda, B. Miranda, N.A. Chowdhury, R. Jones, L. Plano, and A.R. Ingraffea, 2013. Examining the feasibility of converting New York State's all-purpose energy infrastructure to one using wind, water, and sunlight, *Energy Policy*, 57, 585-601.
- Jacobson, M.Z., M.A. Delucchi, A.R. Ingraffea, R.W. Howarth, G. Bazouin, B. Bridgeland, K. Burkhart, M. Chang, N. Chowdhury, R. Cook, G. Escher, M. Galka, L. Han, C. Heavey, A. Hernandez, D.F. Jacobson, D.S. Jacobson, B. Miranda, G. Novotny, M. Pellat, P. Quach, A. Romano, D. Stewart, L. Vogel, S. Wang, H. Wang, L. Willman, T. Yeskoo, 2014. A roadmap for repowering California for all purposes with wind, water, and sunlight, *Energy*, 73, 875-889, doi:10.1016/j.energy.2014.06.099.
- Jacobson, M.Z., M.A. Delucchi, G. Bazouin, Z.A.F. Bauer, C.C. Heavey, E. Fisher, S. B. Morris, D.J.Y. Piekutowski, T.A. Vencill, T.W. Yeskoo, 2015a, 100% clean and renewable wind, water, sunlight (WWS) all-sector energy roadmaps for the 50 United States, *Energy and Environmental Sciences*, 8, 2093-2117, doi:10.1039/C5EE01283J.
- Jacobson, M.Z., M.A. Delucchi, M.A. Cameron, and B.A. Frew, 2015b. A low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes, *Proc. Nat. Acad. Sci.*, 112, doi: 10.1073/pnas.1510028112.
- Jacobson, M.Z., M.A. Delucchi, G. Bazouin, M.J. Dvorak, R. Arghandeh, Z. A.F. Bauer, A. Cotte, G.M.T.H. de Moor, E.G. Goldner, C. Heier, R.T. Holmes, S.A. Hughes, L. Jin, M. Kapadia, C. Menon, S.A. Mullendore, E.M. Paris, G.A. Provost, A.R. Romano, C. Srivastava, T.A. Vencill, N.S. Whitney, and T.W. Yeskoo, 2016a, A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State, *Renewable Energy*, 86, 75-88.
- Jacobson, M.Z., C. Clack, M.A. Delucchi, M.A. Cameron, 2016b, 100% grid reliability in 20 regions of the world with 100% penetration of intermittent wind, water, and solar for all purposes, in preparation.
- JPL (Jet Propulsion Laboratory), 2010, Dataset Discovery, <u>http://podaac.jpl.nasa.gov/datasetlist?ids=Platform&values=QUIKSCAT</u>, Processed by D. Whitt and M. Dvorak, Accessed February 23, 2012.
- Lepeule, J., F. Laden, D. Dockery, and J. Schwartz, 2012. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard six cities study from 1974 to 2009, *Environmental Health Perspectives*, *120*, 965-970.

LeQuere et al., 2015, Global carbon budget 2014, Earth Syst. Sci. Data 7, 47-85, 2015.

- Linowes, L., 2012. Wind Benefit Inflation: JEDI (NREL) Model Needs Reality Check. http://www.masterresource.org/2012/12/wind-benefit-inflation-jedi-nrel-2/, Accessed Dec. 16, 2012.
- Lund, J. W. and T.L. Boyd, 2015. Direct Utilization of Geothermal Energy 2015 Worldwide Review, World Geothermal Congress 2015 Conference Proceedings, Melbourne, Australia, 19-25 April 2015.
- Marine Renewables Canada, 2013. Marine renewable energy in Canada and the global context, <u>http://www.marinerenewables.ca/wp-content/uploads/2012/11/State-of-the-Canadian-MRE-Sector-</u>20131.pdf, Accessed August 1, 2015.
- Mathiesen, B.V., H. Lund, D. Connolly, H. Wenzel, P.A. Ostergaard, B. Moller, S. Nielsen, I. Ridjan, P. Kamoe, K. Sperling, F.K. Hvelplund, 2015, Smart energy systems for coherent 100% renewable energy and transport solutions, Applied Energy, 145, 139-154.
- Neftel, A., H. Friedli, E. Moor, H. Lotscher, H. Oeschger, U. Siegenthaler, and B. Stauffer, 1994. Historical CO2 record from the Siple station ice core, <u>http://cdiac.ornl.gov/ftp/trends/co2/siple2.013</u>, Accessed November 27, 2015.
- Negawatt Association, 2015. The Negawatt 2050 scenario, <u>http://www.negawatt.org/english-presentation-</u>p149.html, Accessed July 31, 2015.
- NREL (National Renewable Energy Laboratory), 2012a. Wind resources by class and country at 50 m, http://en.openei.org/datasets/dataset/wind-resources-by-class-and-country-at-50m, Accessed June 11, 2015.
- NREL (National Renewable Energy Laboratory), 2012b. Global Solar Opportunity Tool, <u>http://maps.nrel.gov/global_re_opportunity#</u>, Accessed September 9, 2015.
- NREL (National Renewable Energy Laboratory), 2013, Jobs and Economic Development Impact Models (JEDI). <u>http://www.nrel.gov/analysis/jedi/download.html</u>. Accessed October 27, 2013.
- NREL (National Renewable Energy Laboratory), 2015, Concentrating Solar Power Projects by Country. http://www.nrel.gov/csp/solarpaces/by_country.cfm. Accessed July 22, 2015.
- OECD (2014), The Cost of Air Pollution: Health Impacts of Road Transport, OECD Publishing, Paris. DOI: http://dx.doi.org/10.1787/9789264210448-en.
- Parsons-Brinckerhoff, *Powering the Future: Mapping our Low-Carbon Path to 2050*, Dec. (2009). https://www.pbworld.com/pdfs/powering_the_future/pb_ptf_full_report.pdf, Accessed May 2, 2015.

- Pope, C.A. III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, and G.D. Thurston, 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Journal Amer. Med. Assoc., 287, 1132-1141.
- Price-Waterhouse-Coopers, 100% Renewable Electricity: A roadmap to 2050 for Europe and North Africa, 2010, www.pwcwebcast.co.uk/dpliv_mu/100_percent_renewable_electricity.pdf, Accessed May 2, 2015.
- REN21 (Renewable Energy Policy Network for the 21st Century), 2015, Renewables 2015 Global Status Report, <u>http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low_nolinks.pdf</u>, Accessed 1 August 2015.
- Shindell, D., J.C.I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann et al., 2012. Simultaneously mitigating near-term climate change and improving human health and food security, *Science*, 335, 183-189.
- Smith, J. C., et al., 2013. Transmission planning for wind energy in the United States and Europe: status and prospects, WIREs Energy Environ 2: 1-13.
- Tans, P., and R.F. Keeling, 2015. Trends in atmospheric carbon dioxide, http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_full, Accessed November 27, 2015.
- Teske, S., S. Sawyer, O. Schafer, T. Pregger, S. Simon, and T. Naegler, 2015, Energy revolution: A sustainable world energy outlook 2015, <u>http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/Energy-Revolution-2015/</u>, Accessed Sept. 22, 2015.
- WHO (World Health Organization), 2014a. 7 million premature deaths annually linked to air pollution, http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/, Accessed June 15, 2015.
- WHO (World Health Organization), 2014b, Global Health Observatory Data Repository, http://apps.who.int/gho/data/node.main.156 Accessed 2 July 2015.
- World Bank, 2014, Infrastructure, Passenger cars (Per 1000 people), http://data.worldbank.org/indicator/IS.VEH.PCAR.P3, Accessed Fall 2014
- World Bank, 2015a, World development indicators: Contribution of natural resources to gross domestic product, http://wdi.worldbank.org/table/3.15#, Accessed June 17, 2015.
- World Bank, 2015b, Labor force, total, http://data.worldbank.org/indicator/SL.TLF.TOTL.IN/countries, Accessed June 17, 2015.
- World Bank, 2015c, Urban population (% of total), <u>http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS</u>, Accessed September 8, 2015.
- World Bank, 2015d, Electricity production from hydroelectric sources, http://data.worldbank.org/indicator/EG.ELC.HYRO.ZS, Accessed August 1, 2015.
- Zero Carbon Britain, 2013, Zero Carbon Britain: Rethinking the future, http://zerocarbonbritain.org/images/pdfs/ZCBrtflo-res.pdf, Accessed May 2, 2015.