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Abstract. A condition is derived for consistency of the standard e-equation with Monin—Obukhov
(MO) similarity theory of the stably-stratified surface layer. The condition is derived by extending
the procedure used to derive the analogous condition for neutral theory to stable stratification. It
is shown that consistency with MO theory requires a function of flux Richardson number, Riy, to
be absorbed into either of two closure parameters, c¢| or c¢. Inconsistency, on the other hand,
results if constant values of these are maintained for all Riy, as is done in standard application
of the equation, and the large overpredictions of turbulence found in such application to the one-
dimensional stable atmospheric boundary layer (1D-SBL) are traced to this inconsistency. Guided
by this, we formulate a MO-consistent e-equation by absorbing the aforementioned function into
ce1, and combine this with a Level-2.5 second-order closure model for vertical eddy viscosity and
diffusivities. Numerical predictions of the 1D-SBL by the modified model converge to a quasi-steady
state, rectifying the predictive failure of the standard e-equation for the case. Quasi-steady predictions
of non-dimensional variables agree strongly with Nieuwstadt’s theory. Qualitative accuracy of pre-
dictions is inferred from comparisons to field data, large-eddy simulation results and Rossby-number
similarity relationships.

Keywords: e-Equation, Level-2.5 model, Stable boundary layer, Turbulence parameterization.

1. Introduction

In modelling turbulence in stably-stratified conditions, the eddy viscosity, K,,,
and heat diffusivity, Kj, must be decreased with increasing stability to account
for buoyant suppression of vertical turbulent motion. The suppression of turbu-
lent vertical velocity, w, is represented in second-order closure (SOC) models
by explicitly appearing buoyancy destruction terms in the Reynolds stress and
heat flux transport equations. In the Level-2.5 SOC model (Mellor and Yamada,
1982; hereafter MY82), elimination of growth rate and transport terms in these
equations and use of the “boundary layer” assumption as well as others lead to
K,, = Sylg and K;, = Sylq. Here, ¢* is twice the turbulent kinetic energy (TKE),
[ is an independently modelled turbulent length scale, and S, and Sy are ‘stability
functions’, derived from algebraic forms of the SOC equations resulting from the
above eliminations and assumptions. Most of the suppression of w by the buoyancy
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terms in the original SOC equations becomes in this model absorbed into S,; and
Sy through their decreasing functionalities with respect to gradient Richardson
number. The remainder is in the buoyancy term in the TKE equation.

Whereas the suppression of w is represented explicitly in the Level-2.5 model,
the decision and manner to suppress [ are at the discretion of the modeller. In
addition to leaving / unchanged from traditional neutral algebraic forms, modellers
have made various modifications to algebraic formulations for stable conditions,
generally achieved by extending surface-layer profiles into the body of the ABL
with limits proportional to local stability scales (e.g., Brost and Wyngaard, 1978;
Lacser and Arya, 1986; Delage, 1997). Difficulties in formulating an algebraic /
expression suitable for arbitrary geometries and/or turbulence state, however, have
led to more wide use in engineering flow computation of a transport equation for a
chosen scale quantity, of which the TKE dissipation rate, €, is the most common.
Because of the intractability of term-by-term closure of the exact transport equation
for € (Tennekes and Lumley, 1972), a standard modelled equation (referred to as
the ‘e-equation’) constructed by direct analogy to the TKE equation is employed
for this purpose. Unreasonably large K,, and K, however, are predicted when the
e-equation is applied to the one-dimensional, horizontally homogeneous, stable
atmospheric boundary layer (1D-SBL) (Wyngaard, 1975; Duynkerke, 1988; An-
drén, 1991; Apsley and Castro, 1997). Because of this and other predictive errors in
the neutral and unstably stratified horizontally homogeneous ABL (see Freedman
and Jacobson (2002) for rectification of the former and Andrén (1991) for demon-
stration of the latter), the e-equation has not seen wide use in meteorological flow
computation in spite of its potential advantages in predicting ABLs whose structure
diverges from classical 1D prototypes.

In this paper, we investigate the cause for the e-equation’s turbulence over-
predictions of the 1D-SBL by deriving a condition for consistency of the equation
with Monin—Obukhov (MO) similarity theory of the stably-stratified surface layer.
MO theory is an extension of classical neutral surface-layer theory to account for
stratification. Our consistency condition is thus the appropriate extension of that
previously derived for consistency with neutral theory. In the neutral case, consist-
ency is enforced by using the previously derived condition to set the value of the
equation closure parameter o,. In the stable case, our generalized condition instead
yields a function of flux Richardson number, Ri ;, that must be absorbed into either
of two closure parameters, c.; Or ¢y, to enforce consistency. Inconsistency oth-
erwise results if constant values for these are maintained for all Riy, as is done in
standard application, and the aforementioned turbulence overpredictions of the 1D-
SBL are traced to this inconsistency. Guided by this, we develop a MO-consistent
e-equation by absorbing the aforementioned function into ¢, and combine this
with the Level-2.5 formulation of Andrén (1990) to yield a modified model for
K,, and K. The model is evaluated by checking for convergence of its numerical
1D-SBL predictions to a quasi-steady state, not achieved with the standard form of
the e-equation. Additional predictive behaviour as well as accuracy is diagnosed
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through comparing predictions with a variety of theoretical, observational and
large-eddy simulation (LES) results.

2. Background

2.1. BASIC EQUATIONS

The 1D-SBL is governed by the following equations for mean horizontal stream-
wise (in the direction of the geostrophic wind) and cross-stream (perpendicular and
to the left of the geostrophic wind) velocity components, U and V, respectively,
and potential temperature, ®,

U ouw

— = fy - = 1
ot ! 0z M
A% vw

— = _—f(U=G) - — 2
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90 dwo

— = 3)
ot 70z

Here, G is the geostrophic wind speed (taken independent of height), f is the

Coriolis parameter, uw and vw are the u and v components of the vertical turbulent

momentum flux (Reynolds stress), respectively, wé is the vertical turbulent heat

flux, ¢ is time and z is height. Diabatic sources and sinks are neglected in (3).
Fluxes are represented by gradient-diffusion expressions,

E?3U
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From these, expressions for eddy viscosity, K,, = c,, E*/e, and heat diffusivity,
K, = c,E?/e, are apparent. The turbulence Prandtl number, Pr, = K,,/K; =
cm/cn, follows from these. Here, E is the turbulent kinetic energy (TKE), € the
TKE dissipation rate, and ¢, and c;, are stability functions. The above expressions
for K,, and K, can be cast in the form given in Section 1 by defining o« E3/?/e
and associating Sy o ¢, and Sy < ¢j,.
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The equation for E maintains its prognostic form,

oE 0 (K, 0E
ot 0z
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where P and B,
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are TKE shear and buoyancy production rates, respectively, o is a closure para-
meter, g is the gravitational acceleration and ®, a background value of ®. Equation
(7) is written in terms of the flux Richardson number, Ri; = —B/ P, on the far right
side. The local equilibrium assumption

P+B=P(—Rij) =¢ (10)

results from conditions where the local source and sink terms in (7) dominate.

For ¢,, and c¢;, we use the Level-2.5 formulation of Andrén (1990), based on
the “full” (prior to elimination of terms in the second-moment transport equations)
SOC of Gibson and Launder (1978, hereafter GL78). For simplicity, we neglect the
parameterization of wall-proximity effects utilized by GL78 and Andrén (1990).
The GL78 SOC differs from that used by MY82 in that additional terms are used in
the former to represent the rapid part of pressure redistribution. Predictive advant-
ages of the GL78 over MY82 SOC are shown in Speziale and MacGiolla-Mhuiris
(1989); additional comments supporting the former are made by Andrén (1990).

The equations for ¢, and ¢, are given in Appendix A by (Al) and (A2),
along with their local equilibrium forms, ¢, g and ¢, g, by (A6) and (A7). It
is seen that the latter two are a function only of gradient Richardson number, Ri
= —[g/©,30/3z]/[(dU/3z)> + (dV /dz)?], and are thus determined solely from
the mean variables. The local equilibrium form of flux Richardson number, Ri; ; g,
is given by (A8), and is also only a function of Ri.

The model is closed by the standard e-equation,

— Cor—, 11
ot 0z ce2 (i
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whose form is a dimensionally consistent analogy to (7). Rationale and addi-
tional ideas behind this are given in Launder (1989), Speziale and Bernard (1992),
Speziale and Gatski (1996) and Wilcox (1998). Closure parameters c.i, ¢, and
o, are generally taken as constant values empirically determined to match labor-
atory flow data. The ‘standard’ values c¢.; = 1.44 and ¢, = 1.92 in particular
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were set to match data for neutrally-stratified unbounded turbulent flows (Durbin
and Pettersson-Reif, 2001). It is shown below, however, that assigning constant
values for both leads to an inconsistency with MO theory. The calibration of o, is
discussed in the next subsection. Finally, some modellers separate the shear and
buoyancy contributions in (11) by introducing an additional closure parameter, c.3,
multiplying the buoyancy term. For reasons discussed later, we choose not to make
this separation.

2.2. CONSISTENCY CONDITION — NEUTRAL CASE

The value of o, is set by enforcing consistency of (11) with classical theory for
a steady, neutrally-stratified surface layer (see Garratt, 1992, for a summary of
the theory). The layer is characterized by constant shear stress and a logarithmic,
unidirectional mean velocity profile, and hence

—uw = u? (12)
dU U (13)
dz  kz’

where u, is the surface friction velocity and k =~ 0.4. Dividing (12) by (13) gives
K,, = u,kz. (14)

In (12) and (13), the coordinate system is rotated so that « is along the surface shear
stress. Since the flow is unidirectional, V and vw are thus zero in this coordinate
system.

Since the surface layer is assumed in local equilibrium, consistency with neutral
theory requires that the model’s local equilibrium form is matched to (12)—(14).
Inserting (12) and (13) into (8) and equating to € gives

€ =ul/kz. (15)
Substituting (12), (13) and (15) into (4) then yields
E=c,%u?, (16)

where ¢, 0, defined in (A6), is the value of ¢, for neutral, local equilibrium
conditions. Inserting (12)—(16) into the steady, neutral form of (11) then leads to

kzc—l/Z

Car— Ca = (;"’0 : (17)
€

Consistency with neutral theory is enforced by solving (17) for o, with a priori
determined values of k, c.1, c.2 and ¢, 0. Taking the values above for the first three
and the standard engineering value c,, o = 0.09 gives o = 1.1.
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2.3. MONIN-OBUKHOV SIMILARITY THEORY

The following discusses elements of MO similarity theory (see Garratt (1992)
for further details) needed for deriving an expression analogous to (17) for stable
conditions. The flow architecture is as the neutral case but with a height-invariant
surface heat flux (wf), < O and associated stable stratification d® /dz > O.
Dimensional arguments then suggest the following stability modification to (13),

e ® (18)

dZ - kZ m ’
where & = z/L is defined in terms of the Obukhov length,

ule,
kg(wb)o

Dividing (12) by (18) gives

Ky = ukz/ . (20)
Scaling arguments then suggest

om =1+ B§. (21)
The traditional value B = 4.7 was determined from the Kansas atmospheric

surface-layer observations (Businger et al., 1971). Slightly higher values are sug-
gested by more recent field measurements (Hogstrom, 1988; Howell and Sun,
1999).

We seek a consistency condition in terms of Riy rather than &, since the former
is suitable for both surface-bounded and free shear flows. Taking P = u?dU/dz
and utilizing (18) and (19), it can be shown that

§ = puRiy. (22)

Substituting (22) into (21) then gives

¢m = 1/(1 — BRiy), (23)
which, when reinserted into (22), gives
— 24)
~ 1-BRi;’
Differentiating (24) then yields
dRiy
d§ : (25)

T (- BRip*
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These expressions will be used to map z = &L to Riy in the derivation to follow.
From (24), £ — oo corresponds to Ri; — 1/B. The domain space of our consist-
ency condition is therefore 0 < Riy < 1/8. Using the traditional value 8 = 4.7
gives an upper limit Ri; = 0.213.

3. Consistency Condition — Stable Case

3.1. DERIVATION

Our derivation is analogous to that outlined in Section 2.2, but using (18) instead
of (13). Inserting (12) and (18) into (8) and substituting into (10) gives

W3
=[-—=)¢,(1 —Ripf). 26
€ ( kz) o i) (26)
Substituting (12), (18) and (26) into (4) then yields
E =ulc,]3(1 —Rip)'. 27)

Regarding (26) and (27), note first that ¢, g rather than c¢,, o (see (16)) appears,
since we now account for stability. Because of the local equilibrium assumption,
Riy; g rather than Ri, should likewise appear in these and equations to follow in
this section. To simplify the appearance of the equations, however, we defer until
Section 4 explicit use of this notation. Secondly, it is seen from (27) that E is a func-
tion Riy, which since this is a non-linear function of z implies a non-zero transport
term in (7). This leads to an inconsistency with the local equilibrium assumption.
Evaluation (Appendix B) of the TKE-transport term a posteriori using (26) and
(27), however, shows that the transport term is less than 1% of total production,
P(1 — Riy). The inconsistency with local equilibrium is thus negligible.

Proceeding with the derivation, rearranging the steady form of (11) for local
equilibrium conditions gives

LEd( de 08)
Caa—Cg=———|Kn—).
2T T el dg dz

By then substituting into (28)

1. (20), (26) and (27),

2. (23) for ¢y,

3. (24) and (25) tomap z = EL to Riy,
the equation expands to
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—1/2
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Working out the derivatives within the bracketed factor [-] in (29) gives Ri?[-] =
1— ﬂ2Ri3, = (1 — BRiy)(1 + BRiy), reducing the equation to

Ce2 — Ce1 =

K2c m‘éé[(l—ﬂRm 1+ ﬂRif)} 0

a (1 —Riy)3/?
Equation (30) is the sought consistency condition, again valid only for 0 < Riy <
1/B. Since the bracketed factor on the right side equals one and c,, g = ¢ 0 for
Ri; = 0, (17) is recovered for neutral conditions. In general, however, the right
side of (30) is a function of Ri;. Constant values of c¢.; and c.,, though, render the
left side constant, independent of Ri. This shows that (11) as standardly applied
is inconsistent with MO theory.

3.2. EFFECTS OF INCONSISTENCY

The effects of the inconsistency can be understood by first considering the neutral
case, where consistency is enforced by using (17) to set the value of o.. This spe-
cification controls the magnitude of the transport term in (11), which in the surface
layer is a source owing to € flux convergence in the layer. Specifically, using (17)
to set the value of o, enforces exact balance between the transport source and net
local sink from the production and dissipation terms in (11) implied in local equil-
ibrium by the specification c¢., > ¢,;. The transport source and local sink terms are
represented non-dimensionally by the right and left sides of (17), respectively. The
balancing of the two in neutral conditions by appropriately setting o, thus ensures
consistency with the steady-state assumption of surface-layer theory. This, along
with proper representation of turbulence profiles near the upper edge of the bound-
ary layer (Freedman and Jacobson, 2002), leads to generally accurate computation
by (11) of neutral boundary layers as a whole, since turbulence dynamics in their
outer portions are largely (i.e. in the traditional case of weak to moderately strong
outer layer mean forcing and laminar/quasi-laminar upper boundary conditions)
similar to those in the surface layer.

To see the effects of the inconsistency for the stable case, we rewrite the gener-
alized expression, (30), as 1 = T, = (¢in.0/Cm.LE) 172 £, where f. is the bracketed
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factor on the right side of (30) and (17) was used to eliminate remaining paramet-
ers. T, is thus the Ri r-dependent part of the non-dimensional e-transport term in
the stable surface layer, normalized to equal one in neutral conditions. We plot the
quantity in Figure 1 using (A6) and the more commonly used MY82 model for
¢m,E- For the former, we plot up to Riy = 1/8 = 0.213 (8 = 4.7), the upper
domain limit of f, whereas in the latter we plot up to Ri; = 0.19, the approximate
value of Riy, . (the upper domain limit of ¢,, ; £, see Appendix A) in MY 82’s model.
As stated before, the dependency of T, on Ri 1 (seen graphically now) leads to an
inconsistency with MO theory, since the left side of (30) does not depend of Riy.
Specifically, however, the fact that (for both c,, 1 r models) Te decreases strongly
with Riy indicates a strong reduction with stability of the e-transport term. This
is a consequence of (25), from which d/dz ~ d/dé = (1 — BRiy)*d/dRi; — 0
as Riy — 1/B. Because of this reduction, the transport term in (11) becomes
more and more unable (with increased stability) to balance the net sink from the
local terms resulting from c., > c¢;. This leads to a net € sink, inconsistent
with the steady-state assumption of surface-layer theory, and we believe in turn
to the strongly time-decreasing € and large K, and K, (o 1/¢) found in previous
applications of (11) to the 1D-SBL.

4. Development of MO-Consistent e-Equation

Since the e-transport term is decreasingly unable with increased stability to provide
the € necessary for bounded turbulence in the stable surface layer and apparently
1D-SBL, attempts at rectifying the problem should be directed at altering the local
production and/or dissipation terms in (11) in such a manner to incorporate an addi-
tional € source with increased stability. This has been the strategy used to produce
modified forms of (11) in the previous investigations referenced in Section 1. Here,
we produce a similar modification by explicitly using (30) to enforce consistency
with MO theory

Consistency of (11) with MO theory is enforced by solving (30) for either ¢, or
¢e2- Solving for o, as done for the neutral case using (17), would demand that this
approach zero as Riy approaches 1/8, unreasonable since this implies an approach
towards infinite € transport. Carrying out the solution for c.; thus gives

(3D

—-1/2 . .
ce1(Ri) = car Ky [(1 — BRi;Lp)’(1+ ﬂRl_f,LE)]
€l — Cte2 — ’

Oc (1 _Rif,LE)3/2

where the notation Ri; = Riy ;g is now explicitly used. Through (A6) and (AS),
enforcement of consistency thus leads to an Ri dependence in this parameter. An
analogous dependence in c., is obtained if enforced through that parameter. The
effect of the dependencies on turbulence development, however, would be different
since c.; multiplies P+ B, zero in isotropic turbulence (zw = 0, w6 = 0), whereas
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Figure 1. T, = (c,,l_o/c,,l,LE)l/zf6 vs. Riy, where fe is the bracketed factor on the right side of
(30). Solid, ¢y, 1 g from (A6); dashed, c;, 1 g from Mellor and Yamada (1982) Level-2 model. See
text for further explanation.

ce» multiplies €, nonzero in isotropic turbulence. Since the MO analysis basing
our modification applies to anisotropic turbulence, due to preferential streamwise
TKE production from the mean shear and vertical TKE suppression from the mean
stratification, we felt it best to restrict the effects of the modification only to this
case, not affecting isotropic turbulence. We therefore enforce consistency through
c¢1 rather than c,,.

We maintain ¢, = 1.92 and o, = 1.1. With these, the value o = 1.6 is then
set to give k = c0./op = 1.3, necessary for accurate prediction of the neutral
ABL (Freedman and Jacobson, 2002). With ¢, o = 0.115 from (A6),* this yields
cc1(0) = 1.51. Although higher than the standard engineering value c¢.; = 1.44,
the difference c., — c.; remains adequate for reasonable predictions of turbulence

* This is higher than the typical engineering value 0.09, a result of GL78’s procedure for cal-
ibrating closure parameters in their SOC. The value is also much greater than ~ 0.03 required
to capture the much lower —ww/E measured in atmospheric relative to laboratory neutral surface
layers. Inclusion of GL78’s wall parameterization helps rectify this as well as the lower neutral value
of turbulence Prandtl number, Pr; o = ¢;,,0/cp,0 = 2/3, predicted by (A6) and (A7) compared to
that (~ 1) measured in atmospheric surface layers (Hogstrom, 1988).
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Figure 2. c¢y vs. Ri, computed from (31).

1.3

growth rates in neutral free shear flows (Durbin and Pettersson-Reif, 2001). We
employ the traditional value 8 = 4.7 in (31), with ¢, ¢ and Riy,; g computed as
a function of Ri from (A6) and (A8), respectively. The equation is then substituted
for c¢; in (11) to yield a form consistent with MO theory.

A plot of (31) is shown in Figure 2. The increase of c.; with Ri suggests
increasing relative (per unit total TKE production) local € production with increas-
ing stability. The variation thus reflects the additional local € source necessary to
balance the stable surface layer TKE budget, in turn hypothesized necessary for
bounded turbulence in the 1D-SBL. Although other modifications producing an ad-
ditional source have been proposed in the aforementioned previous investigations,
the advantage of ours is that the source is implemented gradually with increasing
stability in a manner consistent with established theory. On a practical level, the
leveling off ¢.y — ce» as Rigr g — 0.213 (corresponding to Ri = 0.263 from
(AB)) suggests c.; = ce» for Riy g > 0.213, which we employ in application
(Section 5).
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Finally, if the effects of shear and buoyancy are separated in (11) by including a
parameter c.3 multiplying the buoyancy term, it can be shown that (30) changes to

1—caRis\ k22T (1 = BRip)3( + BRI
Ce2 Cel( ces 1f> = cm,LE[( ﬁ lf)( +IB 1f):| (32)

1 —Ri; o (1 —Rij)3?2

It is seen that simply setting c.3 to a constant value (various ones have been used,
see Baumert and Peters (2000)) does not remove the need to enforce consistency,
since the functionalities of Ri; on the left and right sides of (32) are not identical.
Seeing this, we simplified matters by setting c.3 = 1, eliminating the factor
multiplying c.; on the left side, and directed consistency enforcement towards
absorbing the functionality on the right side into c.

5. Application to 1D-SBL

We turn now to the 1D-SBL predictions of our modification. Of particular interest
is its ability to yield a ‘quasi-steady’ solution (hereafter the QSSBL), charac-
terized by steady boundary-layer depth, surface drag variables, and mean wind
and turbulence profiles in the main body of the boundary layer. The unsteadi-
ness is manifested only in the continual cooling of the boundary layer (vertical
® gradients, however, are approximately steady) and in phenomena near the
boundary-layer top (e.g., inertial oscillation of the mean wind). Such a solution
is readily converged to by models employing algebraic ! formulations (Brost and
Wyngaard, 1978; Lacser and Arya, 1986) as well as by large-eddy simulation
(LES) (Brown et al., 1994; Kosovic and Curry, 2000), with many features deducible
from the analytical solutions of Nieuwstadt (1985) and Derbyshire (1990). Often
long turbulence time scales in stable atmospheric field conditions, however, lead
to large times (on the order of several hours) to reach a quasi-steady state, and for
this reason other processes, associated for example with terrain, surface heterogen-
eity, mesoscale motions and waves, may strongly affect or dominate a given field
SBL. Although the QSSBL is thus probably never strictly observed in the field
(Derbyshire, 1995; Mahrt, 1999), select field observations (e.g., Nieuwstadt, 1984)
support its relevance to SBLs found in the field. As such, the case is a useful bench-
mark to assess turbulence model predictions for stable atmospheric application, and
is particularly useful here since previous applications of (11) using constant values
of closure parameters have failed to yield this solution, giving instead unphysical
predictions associated with continually growing turbulence.

5.1. DESIGN

Model solutions are obtained by finite-difference numerical integration on a
staggered vertical grid (mean quantities held at grid layer midpoints and turbulence
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quantities at grid levels). The lower boundary condition on (3) is externally spe-
cified through Fy = g/0,(wh)y < 0. For (1) and (2), surface Reynolds stresses,
(uw)o and (vw)y, are computed by first solving the cubic for u, that results from
integrating (18) from zg to 4, and W(zp) = 0to W(hy) = Wy,

) Fo(hy —
L—u2+'3 0(hy —20) _

0, 33
Uy 0 * W, %3)

where (19) and (21) were used. Here, W = (U? + V?)!/? is the wind speed
(interchangeable with U in Section 2.3), zj is the surface roughness length (ex-
ternally specified), A, the midpoint of the grid layer adjacent to the surface,
and u, o = kW,/In(hy/zp).* Surface Reynolds stresses are then computed via
(uw)y = —u>cos(ap) and (vw)y = —u?sin(ap), where oy = tan~!(V,/U>) is
the mean wind direction at /5.

The lower boundary condition on E is computed from (16), to which (27) col-
lapses at Ri; = 0 (z = 0). That for € is specified by computing its vertical flux at

ha,
- s
oc 92/ |y, ocha(l + Bha/L)

derived by substituting (20)—(22) and (26) into the left side of (34). For upper
boundary conditions, we specify £ = 107 m? s72 and € = 10~"* m? s at the
computational domain top, H,and U = G,V = 0and ® = ©, a half grid distance
below H.

We employ 118 levels to H = 5 km with Az = 10 m adjacent to the surface,
stretching to Az & 20 m at z ~ 500 m. This places roughly 30 levels in the region
z < 500 m, where the bulk of boundary-layer development takes place in our cases
(the additional layers above are needed to accommodate the neutral ABL initializ-
ing the simulations). Central space differencing is employed to compute diffusion
terms. Values of K, and K}, for evaluating these in (1)—(3) are weighted averages of
values at the grid level and at the two adjacent layer midpoints, weighted by 0.8 at
the level and 0.1 at the midpoints. This was found necessary for numerical stability
in the ® profile near the boundary-layer top, where an inflection point develops
over time (see, for example, Figure 4b, solid line at z &~ 150 m). Like terms
in (7) and (11), on the other hand, employ values of K,, computed only at layer
midpoints, the location of TKE and € fluxes. First-order implicit time advancement
is used with At = 5's. Values of g = 9.81 m s~2 and ®, = 300 K are specified.

The computational cases (Table I) are characterized by increasing values of
Fy and corresponding case-to-case increase in surface cooling rate and stratifica-
tion. We also list the ratio Fyy/ Finax, Where Fi.x = Ri fG2| fl/ /3 is a theoretical

* It can be shown that the physical root of (33) is in the range (2/3)u, o < ux < u, o provided

BFo(hy —z9)/ Wa < (4/ 27)143 o- satisfied in our computational cases. No physical root exists when
this inequality is not satisfied. ’

u4
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TABLE I

Computational cases and bulk predictions at r = 8.2

Case  Fy(m?>s™3)  Fo/Fmax us (ms™')  ag(deg) h(m)

A 27x107% 022 0.349 31.7 409
B 50x 1074 041 0.290 36.9 214
c 6.0x 1074 0.49 0.260 39.0 160
D 8.0x 107%  0.65 0.200 43.6 88
E 1.0x 1073 081 0.163 46.7 52

aG=10m s_l, f= 10~4 s_], zg = 0.10 m for each case. See text for
definition of symbols.

absolute upper limit supporting a QSSBL (Derbyshire, 1990). In all cases, G =
10ms™!, f =1.0x107* s and zo = 0.1 m. A value Ri; = 1/8 = 0.213 is used
to compute Fi,.x, a choice whose reasoning will be apparent from Section 5.2.2.
Initial profiles were obtained from the final results of a three hour neutral integra-
tion (Fy = 0) starting from uniform profiles U(z) = G, V(z) = 0, ©(z) = O,
E(z) = 107° m? s72 and €(z) = 10713 m? s73. After this (designated t = 0), F,
was set to the appropriate fixed value for a given case and computations proceeded
for eight hours (designated t = 8).

5.2. RESULTS

5.2.1. Approach to Quasi-Steady State

Time plots of predicted boundary-layer depth, %, surface friction velocity, u,, and
surface-layer mean wind direction, ¢, for each case are shown in Figure 3. Here,
h = hy/0.95 with hy the height at which wé falls to 5% of its surface value.
Values at + = 0 are those after the three-hour neutral integration initializing the
runs; 4 = 0 at ¢+ = 0 is therefore a consequence of defining 4 in terms of wé.
It is seen that predictions correctly converge to an approximate steady-state by
t = 8; the predicted values at this time are listed in Table I. Computations made
by us with ¢, held constant, on the other hand, fail to converge to a steady-state,
giving instead completely unphysical results associated with growing turbulence,
in concurrence with previous applications. These computations are not shown for
brevity.

The associated approach to steady-state of profiles of mean quantities, W and
® (shown dimensionally to convey overall magnitudes), and turbulence fluxes,
T, = (@w> + vw?)'/? and w, for case C are shown in Figures 4 and 5, re-
spectively. The development of a wind speed maximum atop the boundary layer
(Figure 4a) appears reasonable and the transition of the ® profile from a concave
to convex shape (Figure 4b) is consistent with expectations for a turbulence, rather
that radiatively, driven SBL (André and Mahrt, 1982). Concerning fluxes, fits to
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Figure 3. Time plots of model-predicted (a) boundary-layer depth, (b) surface friction velocity and
(c) surface-layer mean wind direction. Solid, case A; solid-x, case B; dashed, case C; solid-O, case
D; dashed-dot, case E.

field observations as well as theoretical predictions of Nieuwstadt (1985) suggest
rm/uf = (1 —2z/h)" and W/(W)o = (1 — z/h)", where m and n are constants.
Sorbjan (1989), fitting these to the Minnesota field data (Caughey et al., 1979),
representative of an early evening, evolving SBL, deduced m = 2 and n = 3, i.e.,
concave profiles. Grant (1997) also found concave shapes in his early-evening field
data. Nieuwstadt’s theory, on the other hand, valid for a QSSBL, predicts m = 3/2
and n = 1; profiles with these exponents are plotted as the dashed-dot lines in
Figure 5. Taken together, these findings support evolution towards less concave
flux profile shapes, a behaviour with which our predictions are consistent. Profile
behaviour of cases not shown is similar to that just described.

We note that similar predictions at ¢+ = 8 were found from runs made with the
Level-2.5 model for stability functions replaced with a constant, typical engineer-
ing value ¢,, = ci,Le = ¢4 = i, = 0.09. This leads to Riy 1 g = Pr;iERi =Ri
(since Pr; 1 g = cpre/choe = 1) for use in (31) and to the typical engineer-
ing value c.(0) = 1.44 from solving the equation for neutral conditions. These
runs were performed to examine the change in results if our SOC model was
replaced with constant, user-specified values of stability functions, more common
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Figure 4. Model-predicted profiles (case C) of mean (a) wind speed and (b) potential temperature.
Dashed-dot, t = 0; dashed, t = 4; solid ¢t = 8. Dotted line in (a) denotes geostrophic wind speed.

in practical engineering use of ‘two-equation’ (i.e. for TKE and turbulence scale)
turbulence models. Since similar quasi-steady predictions were obtained, the ar-
rival at steady-state thus appears not to depend on the use of SOC, but rather on
proper representation of physics in (11). The only major difference appeared in
the approach to steady-state, where with this constant stability function value the
early-time & values were roughly twice those obtained with our Level-2.5 model
(shown for the latter at # < 1 in Figure 3a). The use of SOC may thus be important
in accurately predicting the approach to steady-state. Specifying different values of
stability functions than used here may, however, bring the early-time evolution of
runs with constant stability functions closer to that shown in Figure 3.

5.2.2. Consistency with Nieuwstadt’s Analytical Solutions

To this point, we have made passing allusion to Nieuwstadt’s analytical profiles
of the QSSBL. We now pursue further the consistency of our predictions with
these. The analytical solutions are derived from the steady form of (1) and (2)
and unsteady form of (3) under constant G and f. The key assumption allowing
a solution is a height-invariant Ri and Ri, (we call the latter Ri ;). By imposing
these to the surface, thereby not allowing Richardson numbers to approach zero
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Figure 5. Model-predicted profiles (case C) of non-dimensional (a) turbulent momentum flux mag-
nitude and (b) turbulent heat flux. Dashed, t = 4; solid, t = 8; dashed-dot, Nieuwstadt’s theoretical
predictions.

at the surface as MO theory demands, the profiles become representative of the
QSSBL in the ‘strong-stability’ limit L/h — 0. It is in this limiting sense that the
parameter Fi,,, in Table I applies. To generalize for weak to moderate stabilities,
the profiles therefore need to be matched to MO theory in the mutual limitz/ k2 — O
and & — oo. Matched profiles for key variables are given in Nieuwstadt (1985)
while Derbyshire (1990) addresses others. From this matching, it is apparent that
Ris ., = 1/B (the value from MO theory as £ — o0); the value 0.2 imposed by
Nieuwstadt (1985) is consistent with typical 8 values. Aside from the need for
matching, another weakness of the constant Ri/Ri; assumption is that it cannot
capture effects near the boundary-layer top, where Richardson numbers generally
increase to large values due to the local wind speed maximum often found there. In
fact, the constant Ri/Ri; assumption, coupled with the use of completely laminar
upper boundary conditions (zero Reynolds stresses and heat flux at z = h), leads
to singularities in analytical mean profiles at z = h. For the purpose of comparing
to model results, the solutions are therefore most appropriate (if matched to MO
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Figure 6. Plot vs. Fy/ Fmax of non-dimensional boundary-layer depth ¢ = h(f/usL)1/2; (-x) model
predictions (¢ = 8); (O) Brown et al. (1994) LES results; () Kosovic and Curry (2000) LES results;
(V) Lenschow et al. (1988) field data; (&) Caughey et al. (1979) field data. Dashed line is ¢ = 0.38,
predicted by Nieuwstadt’s theory. See text for discussion.

theory) in the surface layer and main body of the QSSBL. Full details of the theory
are available in Nieuwstadt (1985), Derbyshire (1990) and Garratt (1992).

Predictions of non-dimensional boundary-layer depth, ¢ = h(f/u,L)"/?, by
our model are shown in Figure 6 (solid-x line). Nieuwstadt’s theory predicts ¢ =
(v/3kRif.5)'/?; taking Rijo = 1/8 = 0.213 and k = 0.4 gives ¢ = 0.38. It
is seen that model predictions agree very well with this theoretical value, with
slight increase with stability apparent (also apparent in the LES results shown in
the figure). In Figure 7 we show predicted profiles of the non-dimensional eddy
viscosity, K,,/u,L, for cases A, C and E. Nieuwstadt’s theory, matched to MO
theory at the surface, predicts

K,  (ke/L)(1 — z/h)
u,l 1+ pz/L

The theoretical profiles for each case (generated by plugging the predicted L at
t = 8 for each case into (35)) are also plotted in the figure. Again, good corres-
pondence between model predictions and theory is seen, although less so for case

(35)
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Figure 7. Model-predicted profiles (+ = 8) of non-dimensional eddy viscosity. (x) case A; (O) case
C; (%) case E. Nieuwstadt’s theoretical expression, (35), for each case (as noted) plotted as dashed-dot
lines.

E since, as seen in the figure, the grid is too course to resolve the lower part of the
analytical profile. The theoretical solution for non-dimensional K is analogous
to (35), but with the denominator replaced by Pr,o + Bz/L, where Pr, is the
neutral surface layer value of Pr;. Our predictions (not shown) likewise agree well
with this theoretical expression in spite of the overly low model value of Pr, o (see
footnote 1). Theoretical agreement is also seen in quasi-steady profiles of vertical
fluxes (Figure 5) as well as in those for other variables (e.g., E and €, not shown).

The strong agreement of model predictions with Nieuwstadt’s theory suggests
that this is not a coincidence but instead a result of overlap of the model formulation
with the theory. We believe this overlap results in some way from our explicit
implementation of (21) into the model. This first allows the near-surface solutions
of the model and theory (if MO-matched) to be consistent. Secondly, and perhaps
more importantly, since (21) implies Riy — 1/8 for & — oo, the approach to
constant Ri/Riy in the body of the QSSBL underlying Nieuwstadt’s theory is ap-
parently incorporated into the model design. Derbyshire (1995, 1999) also reports
strong agreement of 1D model results with idealized theories. While this does not
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necessarily imply predictive accuracy (addressed in the next subsection), it does
lend a desirable coherence and understandability to model predictions.

5.2.3. Accuracy of Predictions

It was established in the previous subsection that quasi-steady predictions non-
dimensionally coincide very closely with Nieuwstadt’s theory. The accuracy of
predictions thus relies on (a) the accuracy of Nieuwstadt’s theory in describing the
QSSBL and (b) the accuracy of predictions of u,, the only internal variable in the
non-dimensionalization. Assuming the first, the second assures correct translation
from non-dimensional to dimensional accuracy.

Predictions of the geostrophic drag coefficient, C, = (u./G)?, and surface-
layer mean wind direction, «, plotted against uy = ku,/fL, are shown in
Figure 8. Also shown are several LES predictions, field data of Caughey et al.
(1979) and Lenschow et al. (1988), and Rossby-number similarity relationships of
Arya (1975). The empirical functions A (o) and B(up) in Arya’s relationships are
formed from fitting the Wangara data, thereby indirectly supplying additional field
data to the comparison. Since u( involves u, in its definition, the assessment of
accurate u, prediction unfortunately is not made with respect to a fully external
variable. Also, the scatter in the LES (probably due to the different subgrid para-
meterizations and domain sizes used among these) and field data warrants some
uncertainty in using these to deduce model accuracy. Nonetheless, it is seen that
our predictions broadly reproduce the decrease (increase) of C, (ap) with stability
found in the data. Slight overall underprediction of turbulence effects (lower C,,
higher «), more so with respect to LES, is suggested.

Concerning the accuracy of Nieuwstadt’s theory, the above mentioned scatter in
SBL LES and field data also hampers this assessment. This is seen in Figure 6 for
non-dimensional boundary-layer depth, c, in which the data scatter is too large to
confirm the theoretical value (dashed line). The range of ¢ values among these data
is similar to that reported in Brown et al. (1994). Field profiles of non-dimensional
eddy viscosity from Nieuwstadt (1984) and Lenschow et al. (1988) (redrawn from
data presented in these papers) are plotted in Figure 9 along with the case A pre-
diction at t+ = 8, of similar /4 /L to that of the data. Both sets of field data show
smaller overall non-dimensional K, than predicted by the model (and theory by
virtue of Figure 7). Lenschow et al. (1988), however, mention the possibility of
terrain-induced wave effects in their data. The Nieuwstadt points reflect averages
of roughly 100 profiles taken from the Cabauw tower. A fairly substantial variation
among profiles, however, is suggested from the bars (representing 41 standard de-
viation from the average) drawn around the points in Nieuwstadt’s (1984) figures.
Based on this, it is difficult to say whether the implied overprediction of non-
dimensional K,, by model and theory is real or whether the smaller values in both
data profiles is a coincidental occurrence within the natural variability of SBL field
data (Derbyshire, 1995). Given the near impossibility of ‘clean” QSSBL field data
(see opening paragraph of this section), further refined LES, direct-numerical sim-
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Figure 8. Plots vs. o = ku,/f L of (a) geostrophic drag coefficient and (b) surface-layer mean wind
direction. Symbols as in Figure 6. The dashed lines are Rossby-number similarity relationships of
Arya (1975).

ulation (extending the work of Coleman et al. (1992) to higher Reynolds number)
and/or laboratory (extending the work of Ohya (2001) to include rotation) results
are needed to more clearly determine the accuracy of Nieuwstadt’s theory.

6. Conclusion

The central result of this paper is consistency condition (30), which the values of
closure parameters in the standard e-equation, (11), must obey for consistency with
Monin—Obukhov (MO) similarity theory of the stably-stratified surface layer. The
condition was derived by extending the procedure used to derive (17) to account
for the MO modification of the mean wind profile. Examination of (30) shows
that inconsistency with MO theory results if constant values of closure parameters
ce1 and ¢, are maintained for all Riz, and the large overpredictions of turbulence
reported in previous applications of the e-equation to the 1D-SBL are traced to this
inconsistency. Consistency, on the other hand, is achieved by absorbing the Ri,
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Figure 9. Profiles of non-dimensional eddy viscosity. Solid, case A (t = 8); (O) field data of
Nieuwstadt (1984); (x) field data of Lenschow et al. (1988). Field data redrawn from figures
presented in above papers.

functionality on the right side of (30) into either c,; or c.,. By absorbing it into ¢,
in (31) and reinserting this into (11), a MO-consistent e-equation is produced. The
equation is combined with Andrén’s (1990) Level-2.5 model (neglecting its wall
parameterization) to yield a modified parameterization for vertical eddy viscosity
and diffusivities.

The modified model is evaluated by testing (through numerical computation)
its ability to reproduce accurately the quasi-steady 1D-SBL (QSSBL). The fact
that the model produces a QSSBL is its main success, since previous 1D-SBL
applications (as well as ours) of (11) with closure parameters held constant at
typical engineering values do not converge to steady-state, giving instead com-
pletely unphysical results associated with growing turbulence. This success by
itself is an encouraging step towards ultimately replacing algebraic [/ formulations
currently employed in 3D meteorological flow prediction codes with a more gen-
erally applicable transport equation for the turbulence scale. Model predictions
of the QSSBL non-dimensionally show particularly strong correspondence with
Nieuwstadt’s (1985) analytical solutions. The broad agreement found in predicted
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u, (the only internal non-dimensionalizing variable) with respect to field and LES
data as well as to Rossby-number similarity relationships then implies dimensional
accuracy of model predictions, assuming Nieuwstadt’s theory accurately describes
the QSSBL. Given the difficulty in obtaining field data strictly valid for a QSSBL,
future refined LES, direct-numerical simulation and/or laboratory data are needed
to ascertain the latter.
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Appendix A: Level-2.5 Model for ¢, and ¢,

Applying the Level-2.5 simplification procedure to GL78’s SOC (neglecting its
wall parameterization) yields

_ Xs5Xa + Xe X2 (A1)
X1Xa+ X3X2
cp = X6 — X3Cm ) (A2)
X4
where
2(1 = ¢y)? 1—c¢
X1 = 1+(—22)Gm_( 3)(;h
3C] C1Clp
41 —c)(1 — ¢ 1—c3)(1—c
0 = ( 2)5 3)Gh+ ( 3)( 29)Gh
3¢y C1Cig
2(1 —¢p)
6= S —>G,
3cicig
4(1 — 1-—
o= 1 (3 c3) G, — Ces ( Cse)Gh
CiCig Cip
_ 2(1 =)
X5 = 3,
2
X6 = 57—

3C10.
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Linkage of c,, and ¢, to the mean fields is thus provided through non-dimensional
vertical gradients G,, and G, defined, respectively, as

EX | (0UN® [V’
-z|(5) (%) ] "

G — E? g 00 (Ad)
T e, 0
The gradient Richardson number, Ri = —G,,/G,,, can be written in terms of these.

From Section 2.1, this is related to the flux Richardson number through

. Ch .

Ri; = C—Rl. (AS5)
Closure parameters cj, cjg, €3, Ca, C3, C39 and c.e arrive from models for
pressure redistribution and potential temperature variance dissipation terms in
the GL78 SOC. We maintain the GL78 values [cy, cg, C2, C2g, C3,C30] =
[1.8,3.0,0.6,0.33,0.5,0.33].

A special case of the Level-2.5 model (termed Level-2 in Mellor and Ya-
mada’s terminology) is that for local equilibrium, in which (7) reduces to (10).
Inserting (4) and (5) into (8), substituting into (10) and rearranging leads to
Gure =1/(cne(l —Rif,LE)) and Gy, 1g = —Rif,LE/(Ch,LE(1 —Rif,LE)), where
Gu,Es GhLE> Cm,LE> Ch,LE and Riy g are the local equilibrium forms of these
variables. Substituting these for G, and G, into the yx; functions in (A1) and (A2)
then leads after algebra to

1 —TRi 1 —TZRi

Cm,LE = Cm,0 |:< : . fLE)( 2 . fLE):| (A6)
(I =Risr )1 —T3Rif p)

1—-TRi,

Ch,LE = Ch,0 M ) (A7)

1— le,LE
where
20 —c)er+ea— 1)
Cm,0 =

3¢?

cho = | ———— | e,

0 c1p(1 —c2) ‘

r c1+2(1 —c3) 4+ 1.5¢c1ceo(1 — c39)
1 =

cit+c—1
a1 +2(1 —c3) L5ci(1 —c3)(1 — c29)
cr+c—1 cig(l1 =c))(c1 +c2— 1)

—c3
rs =Iri—-15({—).
} ! C1+Cz—1

r, =
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Substituting (A6) and (A7) for ¢,, and ¢y, respectively, into (AS), setting Ri; =
Riy ;£ on the left side, and solving the resulting quadratic then gives

1
Rifre =50 (1 + T'sRi — \/1 +2(I's — 2T4)Ri + rgRP), (A8)
2

where I'y = I'y/Pry 9, I's = I's/Pr, ¢ and Pr, g = ¢,.0/cn.0- The two independent
variables (G,, and G;) in (A1) and (A2) therefore reduce to one (Ri) in (A6) and
(A7), i.e., when local equilibrium is assumed. Using the above closure parameter
values, it can be shown that I"'; > I', and I'y > I'3. As such, it is seen from (A6)
and (A7) that Ris. = 1/T"; defines a ‘critical’ value at which ¢,, 1 £ and ¢, 1 g are
zero. The domain of (A6)-(A8) is thus 0 < Ris; g < Riy,, with the above closure
parameter values giving Riy . = 0.247.

Appendix B: Analysis of the TKE Transport Term

In steady-state, (7) can be rearranged and expressed symbolically as

T
0=Rm<1+ E)—e, (B1)

tot

where P,y = P(1 —Riy) and Tp = d/dZ(GE]Km dE /dz). The local equilibrium
assumption, P, = €, therefore requires Tg/ Py << 1.

Letting P = € and applying to T the enumerated procedure leading to (29),
the following a posteriori approximation of Tg/ Py is obtained,

2\ Ri C N2 3
p e () =R 1 = 3Rig 1 - pRip
tot OF (1 - le) def
. ., I°E
+Rif(1 — BRiy) dRifz]’ (B2)
where E = ¢, '/5.(1 — Ri;)"/2. A plot of (B2) for 0 < Ri; < 1/8 (8 = 4.7)
is shown in Figure B1. Here, E is computed using (A6) for ¢, . Although the
first and second derivatives of E appearing in (B2) can be worked out analytic-
ally, we instead for simplicity computed these numerically using a node spacing
ARiy = 0.001; doubling and halving this yielded results that are graphically
indistinguishable from those in the figure.
It is seen that T/ P, &~ O(1073) over the entire Ri ¢ range, sufficiently small
to justify the local equilibrium assumption on (7).
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Figure BI. Ratio of TKE transport to total production term as a function of Ri s, as computed from
(B2). See Appendix B for details.
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