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Abstract

In this short article, we discuss a simple method for assessing sample

size requirements in microarray experiments. Our method starts with

the output from a permutation-based analysis for a set of pilot data, e.g.

from the SAM package. Then for a given hypothesized mean difference

and various samples sizes, we estimate the false discovery rate and false

negative rate of a list of genes; these are also interpretable as per gene

power and type I error. We also illustrate our method on other kinds of

response variables, for example survival outcomes.

1 Introduction

Assessment of sample sizes for microarray data is a tricky exercise. The data
are complex, as are the biological questions that one might try to answer from
such data. What assumptions should one make, and what quantities should be
provided as output?

There have been a number of recent papers that address this problem. Lee
& Whitmore (2002) utilize an ANOVA model and provides power calculations
for various alternative models. Muller et al. (2004) use a decision-theoretic
approach and a hierarchical Bayes model. Wei et al. (2004) examine the roles of
technical and biological variability, in determining sample size. Pawitan et al.
(2005) assume that the genes are independent and have equal variance, and
report false discovery rates and sensitivities. The ssize package (Warnes &
Liu 2004) also assumes that the genes are independent, but uses pilot data to
estimate the variance. It focuses on power and type I error.

All of these approaches may have shortcomings, namely the assumption of
equal variances or independence of genes (or both). These assumptions are
often violated in real microarray data and can have a real impact on sample size
calculations.
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Table 1: Possible outcomes from m hypothesis tests of a set of genes. The

rows represent the true state of the population and the columns are the result a

data-based decision rule.

Called Called
Not Significant Significant Total

Null U V m0

Non-null T S m1

Total m − R R m

We avoid these assumptions in our proposal. We start with the output from
a permutation-based analysis for a set of pilot data. From this we estimate the
standard deviation of each gene, and the overall null distribution of the genes.
Then for a given hypothesized mean difference, we estimate the false discovery
rate (FDR) and false negative rate (FNR) of a list of genes. Many authors now
favor the FDR over the family-wise error rate (FWER) as the appropriate error
measure for microarray studies. The latter is the probability of at least one false
positive call, given that we expect many false positive calls among thousands of
genes, the FWER does not seem to be as relevant.

Since the calculation is based on the gene scores from permutations of the
data, the correlation in the genes is accounted for. Use of the permutation
distribution avoids parametric assumptions about the distribution of individual
genes. And by working with the scores rather than the raw data, we avoid the
difficult task of simulating new data from a population having a complicated
(and unknown) correlation structure.

We provide interpretation of our results both in terms of FDR and FNR, and
in terms power and type I error. Our proposal is implemented in the current
version of the SAM package (Chu et al. 2002)

Our main focus is on microarray experiments for determining which genes
are differentially expressed across two different experimental conditions, like
treatment versus control. However our approach is also applicable to other
settings, for example studies that correlate survival time with gene expression.

2 The proposed method

First we need some definitions. Table 1 summarizes the outcomes of m hypoth-
esis tests on a set of m genes.

We have FDR = V/R and FNR = T/(m − R), power = S/m1 and type
1 error = V/m0. For simplicity, for assessing sample sizes we choose our rule
so that the number of genes called significant (R) is the same as the number
of non-null genes in the population (m1). This implies that 1 − power = FDR
and type I error=FNR. Hence conveniently, the FDR can be interpreted as one
minus the power per gene, and similarly for the FNR.
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Here are the details of the calculation for the two-class unpaired case (below
we indicate changes necessary for other data types). Let xij be the expression
for gene i in sample j; Cj is the set of indices for the nj samples in group j, for
j = 1 or 2. The two-sample unpaired t-statistic is

di =
x̄i2 − x̄i1

si
(1)

where

si = [(1/n1 + 1/n2){
∑

j∈C1

(xij − x̄i1)
2 +

∑

j∈C2

(xij − x̄i2)
2}/(n1 + n2 − 2)]1/2

Note that this is the gene score used in the SAM method; see the Remark
below regarding the exchangability constant. If σi is the true within-group
standard deviation for gene i (assumed to be the same for each group), then si

2

estimates
var(x̄i2 − x̄i1) = σ2

i (1/n1 + 1/n2)

Hence a shift of δ units in one gene for each sample in group 2 causes an average
increase in the score di of δ/(σi

√

1/n1 + 1/n2) (we assume that the proportion
of samples in groups 1 and 2 remains the same as we vary the sample size). This
suggests the following procedure for assessing sample sizes:

1. Estimate the null distribution of the scores, and the per gene standard
deviation σi, by randomly permuting the class labels and recomputing
the gene scores for the permuted data.

2. For k (the number of truly changed genes) running from (say) 10 to m/2,
do the following:

• Sample a set of m scores from the permutation distribution of the
scores

• Add δ/(σ̂i

√

1/n1 + 1/n2) in class 2 to a randomly chosen set of k of
these scores.

• Find the cutpoint c equal to the kth largest score in absolute value

• Estimate the FDR and FNR of the rule |di| > c. This is straight-
forward since we know which genes are truly non-null (they are the
ones that were incremented above).

3. Repeat Step 2 B times and report the median result for each k. We also
report the 10th and 90th percentiles of the FDR across the B permuta-
tions.

In our examples we use a relatively small number of repetitions (B = 20);
this makes the procedure fast and gives sufficiently accurate estimates.

The results of this process provide information on how the FDR and FNR
will improve if the sample size were to be increased. To get an idea of what
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values of the mean difference δ are appropriate or reasonable, one can look at
the values x̄i2 − x̄i1 among the significant genes in the pilot data.

This approach can be easily applied to other designs and other types of
response parameters. For paired data, we take n1 = n2 = n/2 (remember n is
the total sample size). and all of the above recipe is the same. For one class
data var = σ2

i /n. For survival data with ri equal to the numerator of the Cox
score statistic, we assume that var(ri) = σ2

i /n and we interpret δ relative to ri.
That is for example, if in our pilot data the genes that we call significant have
|ri| > 100 (roughly), we might set δ = 100 in our sample size assessment.

Remark: In the SAM approach, the denominator si in the score (1) is replaced
by si+s0, where s0 is an exchangeability constant. It shrinks the scores of genes
with expression near 0 (having s0 ≈ 0).

3 An example

We generated some pilot data in two classes: there were a total of 1000 genes and
20 samples, with 10 samples in each of class. Each measurement was standard
Gaussian (i.e. there was no difference between the groups in the pilot data). We
ran a SAM permutation analysis, assuming the data are in a log base 2 scale
and specifying a mean difference of log

2
2 = 1.0. This corresponds to a mean

difference of 2 fold for class 1 versus class 2. The results are shown in Figure 1.

Remember that the quantity on the horizontal axis— number of genes—
refers to both the hypothesized number of truly non-null genes, and the number
of genes called significant.

We see that, depending on the number of genes truly changed at 2-fold, the
sample size should be increased to 60 or 100, in order to get the FDR down to
10% or 5%. The false negative rate is consistently low throughout, when n = 60
or 100.

Does our approach provide accurate estimates of FDR and FNR? For the
setup of the previous example, we estimated FDR and FNR directly from re-
peated simulations of data from the underlying model. The results are shown
in Figure 2. Note the similarity between Figures 1 and 2. Of course with real
data, the second method— generating data from the underlying model— would
not be available, since the underlying model is unknown.

Figure 3 shows a second example. Here there are 20 samples, and 10 blocks
of 100 genes, with genes having pairwise correlation 0.5 in in each block. The
mean structure is the same as in the previous example. We see that the FDR
and FNR curves are similar to those in Figure 1, but the 10% and 90% curves
are much wider. With less certainty in the estimate, it would be advisable to
take a large sample size to ensure a reasonably low FDR. This illustrates the
importance of preserving the correlation structure of the genes, i.e. it is not safe
to make the (unrealistic) assumption of independence between the genes.
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Sample size= 60
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Figure 1: Results for simulated data. The genes are generated independently. Each
panel shows the estimated FDR and FNR (solid red and green curves) as well as the 10
and 90th percentiles, using the proposed method (remember that in our setup FDR=1-
power and FNR=type I error). A horizontal line is drawn at 0.05. The quantity on the
horizontal axis— number of genes— refers to both the hypothesized number of truly
non-null genes, and the number of genes called significant. We see that the FDR is
probably too high for the pilot data sample size of 20, but improves considerably when
the sample size is doubled to 40.

5



10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of genes

FD
R

, 1
−P

ow
er

FN
R

, T
yp

e 
1 

er
ro

r

Sample size= 20

10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of genes

FD
R

, 1
−P

ow
er

FN
R

, T
yp

e 
1 

er
ro

r

Sample size= 40

10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of genes

FD
R

, 1
−P

ow
er

FN
R

, T
yp

e 
1 

er
ro

r

Sample size= 60
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Figure 2: Results for first simulation study. Here the FDR and FNR are estimated
by direct simulation from underlying model.
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Figure 3: Results for second simulated example (correlated genes).

4 Discussion

We have presented a simple method for assessing sample sizes, that starts with
a permutation-based analysis for some pilot data. The method gives reasonably
accurate estimates of false discovery rates and false negative rates, as a function
of the total number of samples. Our proposal is implemented in the SAM
package- the Excel add-in and the R package samr (Chu et al. 2002).
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