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Abstract: A basic tenet of microeconomics is that for a competitive industry in equilibrium
the market price of a product will be equal to its marginal cost. This paper develops a
model framework and a corresponding empirical inference procedure for estimating long-
run marginal cost in industries where production costs decline over time. In the context
of the solar photovoltaic (PV) module industry, we rely primarily on firm-level financial
accounting data to estimate the long-run marginal cost of PV modules for the years 2008
2013. During those years, the industry experienced both unprecedented price declines and
significant expansions of manufacturing capacity. We compare the trajectory of average sales
prices with the estimated long-run marginal costs in order to quantify the extent to which
actual price declines were attributable to reductions in production costs. The trajectory of
estimated product costs is then extrapolated to forecast an equilibrium trend line for future

PV module prices.
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1 Introduction

Economic theory submits that competition drives the equilibrium price of a product to its
long-run marginal cost. This paper proposes and implements a method for estimating long-
run marginal cost on the basis of firm-level data obtained from financial statements. The
resulting trajectory of cost estimates can be compared to actually observed sales prices, with
the resulting difference serving as a measure of the extent of disequilibrium at different points
in time. In industries where costs decline over time, the time series of long-run marginal cost
estimates can then be extrapolated to forecast future costs and equilibrium product prices.

The identification and measurement of marginal cost remains a matter of debate in
industrial organization.! The principal issue in identifying a product’s long-run marginal
cost is the inclusion of capital assets such as facilities, machinery and equipment. One
common approach in economic textbooks is to assume that capital is a consumable input,
similar to raw materials or labor. In contrast, Jorgenson (1963) and Arrow (1964) pioneered
capital accumulation models in which a representative firm makes periodic investments in
new capacity and thereby creates a capital stock. In these infinite horizon models models,
it becomes possible to identify the marginal cost of one unit of capacity that is available to
the firm for one period of time.

The front part of our analysis examines a dynamic model of a competitive industry in
which firms make sequential and overlapping capacity investments and subsequently choose
their periodic output levels in a competitive fashion, taking market prices as given.? While
the long-run marginal cost contains components that are sunk in the short-run (e.g, capacity
costs), the expected market prices will nonetheless be equal to the long-run marginal cost in
equilibrium, because firms are capacity constrained in the short run. Furthermore, firms will
earn zero economic profits on their capacity investments if the market prices in future periods
are equal to the long-run marginal cost in those future periods. These characterizations apply
in particular to industries in which costs decline over time.

We describe a procedure for estimating the long-run marginal cost of a product based

1See, for instance, Carlton and Perloff (2005), Pittman (2009), McWatters and Zimmerman (2015) and

Rogerson (2011).
2Recent work in economics and accounting has built upon the framework of Jorgenson (1963) and Arrow

(1964) in connection with managerial performance evaluation and profitability analysis; see, for example,
Rogerson (2011), Rajan and Reichelstein (2009), Nezlobin (2012) and McNichols, Rajan, and Reichelstein
(2014).



primarily on firm-level financial data. We then apply the proposed procedure in the context
of the solar photovoltaic (PV) module industry which has experienced sharp price declines
and rapid output growth in recent years. Figure 1 plots the history of (the logarithm of)
average sales prices against (the logarithm of ) cumulative output for the years 1979 to 2010.
The corresponding price trajectory conforms closely to an 80% constant elasticity learning
curve, an observation that is frequently attributed to Swanson (2011).* Accordingly, prices

drop by 20% with every doubling of cumulative output, measured in megawatts (MW).
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Figure 1: Plot from Swanson (2011)

Figure 2 extends the original Swanson plot beyond 2010 and shows that between 2011
and 2013 the decline in average sales prices (ASP) for PV modules was substantially steeper
than that predicted by the historical 80% learning curve. Particularly noteworthy is the 40%
price drop in 2011 alone and the rebound in prices for late 2013. Industry analysts have
pointed out that the steep price declines in recent years may reflect at least in part that the
additions to industry-wide manufacturing capacity were excessive.*

In most manufacturing industries, including solar PV modules, long-run marginal cost

3Figure 1 shows that for the years 2008-2009, ASPs were distinctly above the trend line suggested by
the 80% learning curve. Most industry observers attribute this discrepancy to an acute polysilicon shortage

which temporarily increased the raw material cost of silicon wafers.
4Recent studies, like Candelise, Winskel, and Gross (2013), have pointed out the difficulty in attributing

the dynamics of observed sales prices to intrinsic cost reductions as opposed to broader industry level effects.
In particular, these authors state: “Overall, it is not straightforward to fully disentangle module price reduc-
tions due to reduced production costs related to device and production process improvements and economies
of scale along the PV module chain from market demand/supply dynamics, including manufacturers strate-

gies....” (page 100).
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Figure 2: Predicted and observed ASPs, 2008 — 2013. All prices are in 2013 U.S. dollars.

comprises capacity related costs for machinery and equipment, current manufacturing costs
for materials, labor and overhead as well as periodic costs related to selling and administra-
tive expenses. For the firms in our sample, we infer production costs from quarterly financial
statements, primarily based on cost of goods sold, finished goods inventory balances, cap-
ital expenditures and SG&A expenses. In addition, our cost inference procedure relies on
quarterly data for manufacturing capacity and product shipments.

In applying our cost estimation procedure to solar PV modules, we obtain a close match
between average sales prices and the estimated long-run marginal costs for the years 2008 -
2010.5 Beginning in late 2011, however, the dramatic decline in the observed ASPs for most
of the quarters in 2012-2013 result in average sales prices significantly below our estimates of
the contemporary long-run marginal costs.® In other words, the sharp drop in ASPs for those

time periods points to excessive additions in manufacturing capacity rather than solely to

5The solar PV industry satisfies the criteria of a competitive industry insofar as a large number of firms
in the industry supply a relatively homogeneous product. To note, the median market share of firms in this

industry was less than 1% in 2012.
6This conclusion is corroborated by the sharply negative earnings and declining share prices that firms

in the industry experienced during those two years.



cost reductions. The difference between the ASPs and our long-run marginal cost estimates
quantifies the price effect that is attributable to excess capacity in the industry at different
points in time.

Despite our conclusion that observed sales prices were not consistent with equilibrium
predictions for some of the quarters in our observation window, our econometric results also
point to a rate of cost reductions that is faster than suggested by the 80% learning curve.
In particular, our estimates point to a 62% constant elasticity learning curve for core man-
ufacturing costs, which comprise materials, labor, and manufacturing overhead, excluding
depreciation charges. At the same time, we find that capacity related costs for machinery
and equipment have fallen at a rate which, given recent industry output, also outperforms
the 80% learning rate benchmark. Taken together, these results yield a forecast for the
trajectory of future long-run marginal cost, and therefore also for future equilibrium module
prices, that is steeper than the traditional learning curve associated with this industry.”

Our research design is applicable beyond the solar PV industry. Since the empirical
inference procedure outlined in this paper is based on firm-level accounting data, any long-
run marginal cost estimate will, ceteris paribus, become more reliable if the product or
service in question is (i) fairly homogeneous across suppliers and (ii) constitutes the dominant
line of business for firms in the sample. From that perspective, semiconductors, chemicals,
aircraft manufacturing and steel would be other natural candidates. In industries where
firms typically deliver a heterogeneous mix of products and/or services, one would need to
conduct the empirical tests either for product aggregates or obtain access to line-of-business
segment reports.®

Our analysis is related to earlier work in managerial accounting that has sought to justify
the use of full cost for product pricing purposes; see, for instance, Banker and Hughes (1994),

Balachandran, Balakrishnan, and Sivaramakrishnan (1997), Goéx (2002), Balakrishnan and

"The cost inference method we employ to estimate the ESP complements so-called “bottom-up” cost
models, e.g., Powell et al. (2012), Powell et al. (2013), Goodrich et al. (2013a), and Goodrich et al. (2013b).
These studies estimate costs by aggregating input requirements and input prices as reported by various
industry sources. In contrast to our approach, though, these studies provide a snapshot of different costs at
particular point in time, rather than a dynamic cost model in which equilibrium prices reflect anticipated
future cost reductions. Other studies examining the costs and prices of solar PV modules include Pillai and

McLaughlin (2013) who examine the mark-up that firms charge over and above cost of goods sold (COGS).
8Previous studies in accounting, like Sridharan (2015), have used firm-level accounting information to

predict market trends and volatility. Our approach relies on firm-level income statements and balance sheet

information to identify economically relevant costs in a particular industry.



Sivaramakrishnan (2002), and Narayanan (2003). A common theme in this literature is that,
while capacity related costs are sunk in the short-run, they are nonetheless “relevant” for
operational decisions like product pricing. These studies typically have focused on a firm
with monopoly power in a static setting, that is, the firm is assumed to make a one-time
decision regarding its capacity choice.” In contrast our dynamic model of a competitive
industry departs from the hypothesis that the long-run marginal cost of a product should
be equal to the expected equilibrium price. While the long-run marginal cost does include
capacity related costs, it does not coincide with the measure of full cost, as usually defined
in managerial accounting textbooks.

Finally, our findings contribute to the well established literature on learning-by-doing; see,
for instance, Spence (1981), Lieberman (1984), Dick (1991) and Benkard (2000). Common
to these studies is the notion that production costs decline over time and that the rate of
decline is driven by cumulative industry output. For the most part, these studies seek to
infer production costs from observed prices, assuming that in an oligopolistic equilibrium
firms will be able to charge certain mark-ups on their costs. Our approach, in contrast, is to
infer production costs from firm-level financial reports and to compare these inferences with
actually observed product prices.!®

The remainder of the paper is organized as follows. Section 2 formulates the model and
derives the long-run marginal cost for an industry with declining production costs. Section
3 describes our inferential procedure for deriving the long-run marginal cost from firm-level
accounting data. We then apply this procedure in the context of solar module manufacturing
in Section 4, and compare our cost estimates to the observed ASPs. Section 5 presents our
econometric estimates of recent learning effects in PV module manufacturing and applies
these estimates to extrapolate a trajectory of future costs. We conclude in Section 6. The

Appendix presents proofs, data sources, descriptive statistics and robustness checks.

9The rationale for full cost pricing has also been examined in connection with transfer pricing, as many
companies appear to rely on full cost as the basis for valuing intracompany transfers; see, for instance,
Pfeiffer, Schiller, and Wagner (2011), Dutta and Reichelstein (2010), Bouwens and Steens (2016), and the

references therein.
10Some textbooks in managerial accounting, e.g., Hilton (2005), emphasize the need for cost analysis to

incorporate learning effects in order to obtain better forecasts of efficiency improvements.



2 Long-Run Marginal Cost and Competitive Pricing

2.1 Base Model

The model framework developed in this section identifies the trajectory of long-run marginal
costs for an industry characterized by declining production costs. We consider a model
of an industry composed of a large number of suppliers who behave competitively. Firms
are assumed to be capacity constrained in the short-run, such that output supplied to the
market in a particular period is limited to the overall capacity that the firm has installed in
previous periods. Production capacity available at any given point in time thus reflects the
cumulative effect of past investments.

Our model feature of overlapping capital investments is in the tradition of the capital
accumulation literature, as pioneered by Jorgenson (1963) and Arrow (1964). In their model
formulations the cost of acquiring new capacity is assumed to be constant over time.!' In
addition to capacity costs, our model also includes variable production costs as well as fixed
operating costs and corporate income taxes. The model presented here is arguably closest
to Reichelstein and Rohlfing (2015), except that their framework effectively allows for only
one stage of upfront capacity investments. In our infinite horizon framework with periodic
capacity investments, in contrast, the long-run marginal cost of a product must reflect the
anticipated decline in the expenditures required for future capacity additions.

In the base version of the model, firms can accurately predict future demand. Let P?(Q;)
denote the aggregate willingness-to-pay (inverse demand) curve at time ¢, where ); denotes
the aggregate quantity supplied at date t. Market demand is assumed to be decreasing in

price and, in addition, we postulate that demand is expanding over time in the sense that:

P (Q) = F(Q), (1)

for all t > 1 and all (). The significance of this condition is that if firms make investments
sufficient to meet demand in the short-run, they will not find themselves with excess capacity

in future periods.'? This condition appears plausible in the context of solar PV modules,

HRogerson (2008, 2011) generalizes the earlier studies by allowing for productive capacity to diminish in
an arbitrary (rather than geometric) fashion. Rogerson’s model also allows for the acquisition cost of new
capacity to decline over time. All of these models examine optimal investment decisions for a representative

firm, without solving for an industry equilibrium.
12Rogerson (2008) refers to (1) as the No-Excess Capacity (NEC) condition. See also Rajan and Reichel-



particularly for the time period covered in our empirical analysis.

In order to break even on their capacity investments, firms will, in equilibrium, realize
a stream of revenues that cover their long-run marginal costs at each point in time. This
cost comprises capacity related costs, periodic operating costs, and costs related to income
tax payments. At the initial date 0, the industry is assumed to have a certain capacity
stock in place. To acquire one unit of production capacity, firms must incur an investment
expenditure of v at the initial date 0. We allow for technological progress to lower the cost
of capacity acquisitions over time. For reasons of tractability, though, we confine attention
to a single “technological progress parameter”, n, leading to a pattern of geometric declines
such that ' - v denotes the acquisition cost for one unit of capacity at time ¢, with n < 1.13
Accordingly, investment decisions and the subsequent level of aggregate capacity in the
market are conditional on firms’ expectation of future decreases in capacity costs.

Investments in capacity represent a joint cost insofar as one unit of capacity acquired
at time t will allow the firm to produce one unit of output in each of the next T years.'*
To identify equilibrium prices in terms of costs, it will be useful to introduce the marginal
cost of one unit of capacity made available for one period of time. As shown by Jorgenson
(1963), Arrow (1964) and Rogerson (2008), this effectively amounts to “levelizing” the initial
investment expenditure. To that end, let v = 1—_1H denote the applicable discount factor. The

marginal cost of one unit of capacity in period ¢ then becomes:

o=—t 2)

An intuitive way to verify this claim is to assume that firms in the industry can rent
capacity services on a periodic basis. Assuming this rental market is competitive and capacity
providers have the same cost of capital, it is readily verified that the capacity provider who
invests in one unit of capacity at time ¢ and then rents out that capacity in each of the

next T years for a price of ¢;,, would exactly break even on his initial investment of n' - v.

stein (2009) and Dutta and Reichelstein (2010).
13Decreases in capacity cost as a function of time can be attributed to improvements in manufacturing

equipment.
1For simplicity, we adopt the assumption that productive capacity remains constant over the useful life

of a facility. In the regulation literature, this productivity pattern is frequently referred to as the ”one-hoss

shay” model; see, for instance, Rogerson (2008) and Nezlobin, Rajan, and Reichelstein (2012).



Accordingly, the earlier capital accumulation literature refers to ¢; as the user cost of capacity.

In any given period, firms are assumed to incur fixed operating costs, e.g., maintenance,
rent and insurance, in proportion to their incumbent production capacity. Like past in-
vestment expenditures, these costs are assumed to be “sunk” after date ¢ because they are
incurred regardless of capacity utilization. Formally, let f; represent the fixed operating cost
per unit of capacity available at time ¢, with f,,; < f; for all £ > 1. Finally, production
of one unit of output entails a constant unit variable cost, w;, which again is assumed to
be weakly decreasing over time, that is, w;y; < wy for all £ > 1. In contrast to the fixed
operating costs, variable costs are avoidable in the short-run if the firm decides not to utilize
its available capacity.

Corporate income taxes affect the long-run marginal cost of production through depre-
ciation tax shields and debt tax shields, as both interest payments on debt and depreciation
charges reduce the firm’s taxable income. Following the standard corporate finance approach,
we ignore the debt related tax shield provided the applicable discount rate, r, is interpreted
as a weighted average cost of capital. The depreciation tax shield is determined by both
the effective corporate income tax rate and the allowable depreciation schedule for the facil-
ity. The effective corporate income tax rate is represented as « (in %), and d; denotes the
percentage of the initial asset value that is the allowable tax depreciation charge in year t,
1<t <T.

The assumed useful life of an asset for tax purposes is usually shorter than the asset’s
actual economic useful life, which we denote by 7" in our model. Accordingly, we set d; = 0
for those periods that exceed the useful life of the asset for tax purposes. As shown below,
the impact of income taxes on the long-run marginal cost can be summarized by a tax factor

which amounts to a “mark-up” on the unit cost of capacity, ¢;.

T
l—a-> di-~

A = ] t_:; . (3)

To provide intuition for the expression in (3), we note that corporate income taxes would
not affect the economically sustainable price if taxable income were calculated on cash flow
basis. In that (hypothetical) case, both the present value of pre-tax cash flows and taxable
incomes would be equal to zero if the product price is equal to the economically sustainable

price. Thus firms would break even both on a pre-tax basis and after taxes. Accordingly, A



would be equal to 1 if the tax code were to allow for immediate full expensing of investments
and therefore taxable income would be equal to pre-tax cash flow. However, since the tax
code only allows for a delayed write-off of the capital expenditure, corporate income taxes
will generally introduce an additional cost factor.!®

We are now in a position to introduce the following overall measure of unit cost:

LMCt:wt+ft+Ct‘A. (4)

To justify the label long-run marginal cost (LMC;) in (4), we demonstrate below that
for a competitive industry in equilibrium the prevailing product price will indeed be equal to
LMC; at each point in time. We note that the first two terms on the right-hand side of (4)
are cash costs, while the capacity related term represents an allocated cost.!® We note that
the expression in (4) is rather similar to the levelized product cost measure introduced in
Reichelstein and Rohlfing (2015). The key difference, though, is that they consider a finite
horizon model with a single upfront investment decision. As a consequence, capacity costs
do not change over time so that the unit cost, ¢, remains time-invariant.

Given our assumption of a competitive fringe of suppliers, the investment and capac-
ity levels of individual firms remain indeterminate. Denoting the aggregate industry-wide
investment levels by I;, the “one-hoss shay” assumption that productive assets have undi-
minished productivity for 7' periods implies that the aggregate capacity at date t is given
by:

Kt — [th + [t,TJrl + I + [tfl. (5)

Equation (5) holds only for t > T. If t < T, then Ky = Ip+ I1 + ... + I;_.
Firms choose their actual output in a manner that is consistent with competitive supply

behavior. Since capacity related costs and fixed operating costs are sunk in any given period,

158pecifically, A =1 if dy = 1 and d; = 0 for ¢t > 1. Holding o constant, a more accelerated tax schedule
tends to lower A closer to one. To calibrate the magnitude of this factor, for a corporate income tax rate of
35%, and a tax depreciation schedule corresponding to a 150% declining balance rule over 20 years, the tax

factor will approximately amount to A = 1.3.
6The main contribution in Rogerson (2008) is that the capOacity related charges, as introduced in (2),

can be expressed in conventional accounting terms as “residual income” charges, that is, as the sum of
depreciation- and imputed interest charges, provided capacity investment are written off in accordance with

a properly chosen depreciation schedule.



firms will exhaust their entire capacity only if the market price covers at least the short-
run marginal cost w;. Conversely, firms would rather idle part of their capacity with the
consequence that the market price will not drop below w;. Given an aggregate capacity level,

K, in period t, the resulting market price is therefore given by:

pe(Ky, wy) = max{wy, PP(Ky)},

while the aggregate output level, Q;(K}, w;) satisfies P2(Qu( Ky, wy)) = pe( Ky, wy). We refer

to the resulting output and price levels as competitive supply behavior.

Definition 1 {K;};°, is an equilibrium capacity trajectory if, given competitive supply be-

havior, capacity investments have a net present value of zero at each point in time.

Finding 1 A capacity trajectory {K;},2, that satisfies the pricing condition:
PY(KT) =wi+ fi+ o A, (6)

at each point in time t, is an equilibrium capacity trajectory.t”

The equilibrium price characterization in Finding 1 validates our interpretation of LM C; =
wy + fr + ¢ - Ain (4) as the long-run marginal cost of one unit of output. With additional
assumptions, the capacity trajectory identified in Finding 1 is also the unique equilibrium
capacity trajectory. This is readily seen if one assumes that capacity investments are re-
versible or, alternatively, that capacity can be obtained on a rental basis for one period at a
time, with all rental capacity providers obtaining zero economic profits. Competition would
then force the market price for the product in question to be equal to LM C} in each period.

In our model framework, the unit variable costs, w;, and the unit fixed cost, f;, may
decline over time, provided the rate of decline taken is viewed as exogenous. We note that
under conditions of atomistic competition, that is, no firm can impact the prevailing market
price through its own supply decision, Finding 1 also extends to situations where the unit
costs decline as a function of the cumulative volume of past output levels. One possible

formulation is for w, = (> Q¢) - w, where §(-) < 1 is decreasing in its argument and
Z Qt = ZTSt QT'

17A formal proof of Finding 1 is presented in Appendix A. An implicit assumption here is that the

aggregate capacity in place at the initial date does not amount to excess capacity. Formally, we require
P?(Ky) > LMC;.

10



In concluding this subsection, it is instructive to ask how the LMC;, as presented in
(4), relates to the accountant’s measure of full cost. As mentioned in the Introduction,
earlier literature has argued that the full cost measure can be relevant for making capacity
acquisition decisions.'® For instance, Cooper and Kaplan (1988) state that “...full cost is
meant to be a surrogate for long-run manufacturing cost.” As conceptualized in most of
the managerial accounting literature, full cost differs from LMC,; as the former includes the
aggregate depreciation charge instead of the capacity cost term ¢; - A in (4). It is readily
verified that if (i) » = 1 and (ii) depreciation is calculated on a straight line basis, the
long-run marginal cost LMC} will exceed full cost (Reichelstein and Rohlfing, 2015). This
inequality reflects that full cost does not properly account either for the time value of money
or for the effect of income taxes. Correspondingly, the two measures coincide if (i) and (ii)
hold and there is no discounting, that is, v = 1. On the other hand, with technological
progress, that is, n < 1, the relation between the two cost measures remains indeterminate
and ultimately depends on the growth in past investments as well as the magnitude of the

parameters 7', r, and 7.

2.2 Price Volatility

The characterization of equilibrium in Finding 1 can be extended to environments with price
volatility. Suppose that, given the aggregate supply quantity ); at date t, the price in period
t is given by:

Pt(‘fta Qt) = € - Pto<Qt)7

where €; reflects volatility in the level of demand and is a random variable with mean 1. The
support of & is [, €], with 0 < € < 1. The noise terms {€}:°, are assumed to be serially
uncorrelated, such that each € is observed by all market participants at the beginning of
period t. Competitive supply behavior then requires that:

€ - Pf(-Kt) if €, > €t(Kt; wt)

pt(€t7wt7Kt) -
Wt lf €t < Et(Kt,wt),

18See, for example, Banker and Hughes (1994), Balakrishnan and Sivaramakrishnan (1996), Géx (2002),
and Narayanan (2003). In managaerial accounting, the full unit cost of a product is usually defined as Cost
of Goods Manufactured (direct materials, direct labor, manufacturing overhead) plus SG&A period costs

divided by the number of units produced.

11



where the threshold level of demand volatility is given by:

€t if & - PP(K;) < wy
(Ko wi) =\ potiey i & P(KG) > wy > ¢ - PY(KY)
€ if €, - P?(K}) > w;.

Given K; and wy, the expected market price in period ¢ then becomes:

E(Kt,wt) €
E [pt(wt, €~t, Kt)] = / Wy * ht(€t> dEt + / € Pto<Kt) . ht<€t) th. (7)

(Kt,wt)

With risk neutral firms, price volatility will not affect the capacity levels obtained in
equilibrium provided firms anticipate that they will exhaust the available capacity even for

unfavorable price shocks. To that end, we introduce a condition of limited price volatility:

€ LMOt Z Wt.

Holding the distributions h(+) of & fixed, this condition will be satisfied if the short-run
avoidable cost w,; constitutes a relatively small percentage of the long-run marginal cost,
LMC,.* The implication of this condition is that even for unfavorable price fluctuations

firms will still want to deploy their entire capacity.

Corollary to Finding 1 With limited price volatility, the trajectory identified in Finding 1

remains an equilibrium capacity trajectory. The expected market prices in equilibrium satisfy:

LMCy = E [py(wy, &, K)] . (8)

If the above condition of limited price volatility does not hold, the expected equilibrium

price will still be equal to the LMC in period ¢ under additional conditions.?® A natural

19 As will become clear in the empirical part in Section 4 below, the limited price volatility condition
appears plausible in the context of the solar PV module industry for the years 2008-2013. Our estimates
suggest that the unit variable cost, wy, accounts for less than 65% of the total ESP;. The limited price
volatility condition will therefore hold provided ¢, > 0.65. To be sure, some firms may have idled part of
their available capacity during those years, but this observation could be attributed to the industry having
been out of equilibrium, at least in parts of 2012 and 2013, rather than to more significant unfavorable price

shocks.
20Reichelstein and Rohlfing-Bastian (2015) establish this result in their one-shot investment model. In

related work, Baldenius, Nezlobin, and Vaysman (2016) examine a model of managerial performance eval-
uation in which the optimal investment policy is such that in response to negative shocks firms will leave

parts of their capacity idle in some periods.

12



candidate for an equilibrium, regardless of the degree of price volatility, is the sequence

{K?}:2, implicitly defined by the equations:

LMCy = E [pi(wy, &, K7)]. (9)

Clearly, K7 = K/ if price volatility is limited. Furthermore, the sequence {K7}:°, will
indeed be an equilibrium capacity trajectory, regardless of whether volatility is limited or not,
provided the corresponding capacity levels increase (weakly) over time, i.e., K7, > K7, so
that in equilibrium the industry will always seek to expand the aggregate capacity level.2! A
sufficient condition, in turn, for the K7 to increase monotonically is that the expected product

price satisfies the condition: ¢ (K) > ¢:(K) for any K, where ¢(K) = E [py(wy, &, K)].

3 Inferring Long-Run Marginal Cost

This section outlines a method for estimating a firm’s long-run marginal product cost from
financial accounting data in conjunction with select data frequently supplied by industry
analysts. Our model framework has conceptualized the long-run marginal cost in each period
as the sum of current operating costs and capacity related costs. Since we estimate these cost
components primarily from income statements, our approach needs to be cognizant of the
income statement separation between manufacturing (inventoriable) costs and period costs.
The former pertain to factory-related costs, including materials, labor and manufacturing
overhead which, in turn, includes depreciation charges. Inventoriable costs are reported
either as part of Cost of Goods Sold (COGS) or as additions to inventory on the balance
sheet. In contrast, period costs are expensed and comprise selling as well as general and
administrative (SG&A) expenses, including advertising and R&D. Conceptually, we think of
the cost components w; and f; from Section 2 as having two components each: w; = w;" +w;
and f; = f;” + f;, with the “+” part referring to manufacturing (inventoriable) costs and

the “-” part referring to period costs.??

210f course, this constraint is of no importance if one postulates a competitive fringe of contract man-
ufacturers that effectively provide a rental market for manufacturing capacity, as assumed in parts of the

investment literature; see, for instance, Abel and Eberly (2011).
22The cost inference procedure outlined in this section is not limited to manufacturing industries, but

applies equally to a range of service industries in which the provision of services is capacity constrained, e.g.,

transportation, health care or hospitality services.
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3.1 Operating Costs

Core Manufacturing Costs

We use the label core manufacturing costs to refer to all manufacturing (inventoriable)
costs other than depreciation, that is, w;” + f," in our notation. It will generally be difficult
to obtain separate estimates for the fixed and variable components of the core manufacturing
costs, though for the purposes of estimating the LMC only the sum of fixed and variable
inventoriable costs matters. The same need for aggregation applies to the period costs, that
is, wy + f; .

Our inferences regarding core manufacturing costs will be based on the firm-specific

variables shown in the following table.?

Variable  Description Units
Sales; Sales Revenue $
COGS;; Cost of goods sold $

Invy Finished Goods Inventory $

Dy Depreciation charge $

Sit Sales volume Output units
RD Research and development expense $
SG&A, General and administrative expenses $

Table 1: Variables used to infer core manufacturing costs.

The variables in Table 1 are obtained from firms’ financial statements, except for the
number of units sold (s;) by firm ¢ in period ¢. Fortunately, that variable will frequently
be reported as supplementary information by the firms themselves or by industry observers.
Our key variable for gauging the core manufacturing cost is Cost of Goods Manufactured
(COGM), calculated as the unit cost times the quantity of modules produced (g;;) in the

current quarter plus current depreciation charges for the use of equipment and facilities:

COGM;; = Core Manufacturing Costs + Depreciation = (wj, + fif) - ¢ + Dy (10)

The only variable that will generally be directly observable in (10) is the depreciation charge,

D;;. To infer w} + f;f in (10), we rely on several accounting identities. The chart in Figure

23The subscript 7 indicates that the variables are firm-specific.
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3 shows the sequence of steps for this inference procedure. To begin with, the quantity of
output produced, g;;, equals the number of units sold plus the difference in inventory between

the current and the prior period, i.e., n; — ng_1:

Qit = Mt — Mig—1 + Sz (11)

Units sold in period ¢ come from current production or inventory left from the prior quarter.
Given average costing for inventory valuation purposes, the unit manufacturing cost of firm

7 in period t is given by:

Imjit,l + COGMN

12
Nit—1 + Qit (12)

ac;y =

Here, ac;; is effectively the average manufacturing cost per module available for sale by firm
1 in quarter ¢, taking the arithmetic mean between the beginning balance and the current
period addition in both the numerator and the denominator. The left-hand-side of (12) can

be inferred immediately from Cost of Goods Sold (COGS) and units sold since:

COGSZt = St * ACy¢. (13)

We also make use of the following expression for the balance of ending inventory:

Invy = acy - nyy. (14)

Upon initializing the sequence via n;y (n,y = Ia"C—”OO), the identity in (14) gives us the entire
sequence of production and inventory levels, ¢;; and n;. This, in turn, identifies the values
of COGM;; in equation (12), since the remaining four variables are either observed directly
or have been identified in previous steps. The flow chart in Figure 3 illustrates the linkage

among the variables required to infer both core manufacturing costs and period costs.

Period Costs

As with our inference procedure for core manufacturing costs, we cannot identify the
remaining components w~ and f~ separately. However, since period costs are primarily
comprised of research and development (R&D) expenses and sales, general, and administra-
tive (SG&A) expenses, these costs are likely to be fixed for the most part. We treat R&D
costs as an unavoidable fixed cost that provide firms with an “entrance ticket” to participate

in industry-wide cost reductions. Firm level R&D and SG&A expenses are taken directly
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Figure 3: Flow Chart: Inferring Operating Costs

from the income statements. We divide these figures by the number of units of output

produced by the firm in the given quarter. Thus

_ _ R&Dy+ SG&A;
Wy + fiy = i :

3.2 Capacity Costs

The model in Section 2 has conceptualized capacity costs as the current “user cost of ca-

pacity”, ¢;, multiplied by the tax factor, A, which effectively summarizes the income tax

consequences of investments in productive capacity. For firm ¢ in period ¢, we then obtain:
%

T

> (yem)T

=1

Equation (16) reflects an implicit assumption that the firms in the industry in question

ci A =n"- WA (16)

employ the same discount factor, ~, face the same statutory tax rate and are subject to the
same industry-wide learning parameter, 7.24
Given an n estimate, the unit cost of new capacity acquisitions v; can be gauged at the

individual firm level. We estimate capacity acquisition costs by the relation:

24In our analysis of the solar PV module industry, we will rely on estimates regarding the dynamics of
equipment acquisition costs as reported by the research analyst Greentech Media (GTM). The dynamics

they project allow us to estimate an industry-wide learning parameter, 7.
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CAPXZt = (Ui . T]t) . Iita

where, in the notation of Section 2, I;; denotes gross capacity additions to capacity by firm ¢
in period t. If the window of observations opens at t = 0 and covers the years ¢t = 1 through
t = t, the parameter v; can be inferred from the aggregate relation:
i
Z OAPX” . T]it
V; = =1 z . (17)
> Lt
t=1

The 7" term in the numerator of (17) “scales-up” the impact of future capital expenditures

since such investments yield larger capacity additions per dollar spent. In order for equation
(17) to be operational, the gross capacity additions I;; need to be known. If only the
time-series of capacity levels K;; has been reported, either by the firms in supplementary

information or in industry reports, the relation in (17) can be replaced by:

i

Z CAPX” . 7’]_t
t=1
v = s (18)
Ki,£+1 - K;

provided the amount of “old” capacity that went off-line during the observation window is
negligible. This was definitely the case for the solar PV module manufacturers in our sample
during the years 2008-2013, largely because almost all the existing capacity has been added
after 2005.

4 Application to Solar PV Module Manufacturing

We now apply the cost inference procedure described in the previous section to solar pho-
tovoltaic module manufacturers. The major manufacturing steps include the sequential
production of polysilicon, ingots, wafers, cells, and modules. There appears to be consensus
in the industry that opportunities for continued cost reductions remain at each step.
Polysilicon is primarily produced via the so-called Siemens process, and the main cost
reduction opportunities include improvements in energy efficiency and an increase in the

scale of the Siemens chemical vapor depositor reactor. Polysilicon is used to grow ingots.
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The production of larger ingots has the potential to reduce overall manufacturing costs. Ad-
ditional savings can be realized through the use of quasicrystalline ingots, as these eliminate
a downstream processing step in which active silicon material is discarded. Ingots are sub-
sequently sliced into wafers. The bulk of silicon losses occur at this step, and the magnitude
of losses depends on the thickness of the wire saws used.

The most capital intensive step of the module production process is the conversion from
wafers to cells. During this step, the wafers are etched and doped with impurities to achieve
a desired level of electrical conductivity, metallized to facilitate the transfer of charges,
and treated with an anti-reflective coating (Lux Research, 2012b). Finally, cells are strung
together, enclosed, and appended with a junction box to build a solar module. Since module
assembly requires only one essential piece of equipment, this last step has traditionally been

labor intensive. Automation continues to reduce labor requirements (Lux Research, 2012b).

4.1 Data and Industry Specific Considerations

Our sample includes ten major module manufacturers with a combined market share of
approximately 35%. Since these firms are listed on U.S. stock exchanges, their financial
statements have been prepared in accordance with U.S. GAAP. The firms in our sample
are Yingli Green Energy, Trina Solar, Suntech Power, Canadian Solar, LDK Solar, Hanwha
SolarOne, JA Solar, ReneSola, Jinko Solar, and China Sunergy. We access financial data
through the Bloomberg terminal system, which compiles data readily available from the
firms’ annual statements. In addition, we obtain the variables s;, K, and I; introduced
above from either quarterly or annual reports by the firms in our sample, or from press
releases.

Since financial databases such as Compustat do not cover detailed production data such
as production capacity for ingots, wafers, cells, and modules, we also rely on two widely used
data sources provided by industry analysts: Lux Research and GreenTech Media (GTM).?
Almost 300 other firms supply the solar PV module market (Lux Research, 2012a), though we
excluded manufacturers based on four criteria: (i) lower than 0.5% share of global capacity
in 2012, (ii) privately held or embedded within large conglomerates, (iii) listed on exchanges

outside of the U.S, and (iv) relying on thin-film rather than crystalline silicon technology.

25Table 5 in Appendix A.2 provides summary details about the firms. The U.S. based firm SunPower
is not in our sample because its sizable downstream solar development business makes it difficult to infer

manufacturing costs from reported financial information.
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Our data span 24 quarters from Q1 2008 to Q4 2013, yielding a sample of 214 cost observa-
tions.?0 Earlier studies have pointed out that Chinese solar photovoltaic manufacturers have
enjoyed select price subsidies on some of their input purchases; see, for instance, Goodrich
et al. (2013a). Our cost estimates would reflect any such subsidies without distorting the
conclusions to the extent that all the firms in our sample were eligible for these subsidies
and that the magnitude of these subsidies did not change over time.

Following industry convention, module output is measured by the overall peak power
(in Watts (W) delivered) that can be generated by the module. For numerical convenience,
output is usually stated either in terms of Megawatts (MW) and or Gigawatts (GW). Tables
6 and 7 in the Appendix provide descriptive statistics for the variables in our data set for

the beginning and final quarters, that is, Q1-08 and Q4-13, covered in our analysis.

4.2 Estimation of Operating Costs

In order to apply the inference procedure of Section 3, we account for the sale of intermediate
products, e.g., cells and wafers. Generally, these upstream products account for a small
share of the firms’ overall revenue.?” Our adjustment translates firm-wide shipment levels to
module-equivalent figures. To do so, we multiply shipment levels for intermediate products
(i.e., wafers and cells) by the ratio of their average selling prices in a quarter to that for

modules:?®

ME __ Wafer Cell Module
Sit = CWafert " St + Cee, * S+ Cdoduler * Sit ) (19)

ASPwafer, ASPcuy . .
where Cwafer, = m’ Coelt, = m, and Cpsodule, = 1. The Online Appendix lists

the multipliers we use.?? To illustrate, consider a firm that ships 200MW of modules and
100MW of wafers in a given quarter. Assuming Cyqyer, = 0.38, we would record the firm’s
module equivalent shipment quantity as 200 + 100 - 0.38 or 238MW. Upon doing so, we can

use firm-wide COGS and inventory figures to estimate wy; + f;.

26We do not have 240 observations given the timing of listing and delisting events. For LDK Solar, Suntech
Power, and Jinko Solar, our observation windows include Q2 2009 to Q4 2012, Q1 2008 to Q1 2012, and Q3

2010 to Q4 2013, inclusive and respectively.
2"Between 2008 and 2012, 96.5% to 98.7% of Yingli’s revenues were from sales of modules.
28Units of time refer to quarters in this subsection; in contrast, a time period refers to a year in the next

subsection dealing with capacity costs.
298ee http://stanford.io/1ov1kdQ.
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Where breakdowns of inventory into finished goods, work-in-progress, and raw materials
are unavailable on a quarterly basis, we assume that the split of inventory into finished and
work-in-progress goods during the first, second, and third quarters is similar to the fourth
quarter splits reported by the firm for the current and previous year. We impute values for
finished goods and work-in-progress for Q1, Q2, and Q3 by calculating a weighted average
of the fourth quarter data points. The Q1, Q2, and Q3 estimates weigh the previous year’s
annual data by 75%, 50%, and 25%, respectively. Finally, to recover each firm’s sequence
of production and inventory levels, we index one quarter in each firm’s data series to t = 0.

The initial period is Q4-07 for most firms.3°

4.3 Estimation of Capacity Costs

The estimate of the unit capacity costs, ¢;, is anchored to the capacity acquisition cost, v,
required to put in place the manufacturing capacity for one unit of output over the next T
years. This expenditure is then “levelized” in accordance with equation (2) in Section 2 to
arrive at the cost of one unit of capacity made available for unit of output. This cost takes
into account the technological progress parameter 7, which causes the unit cost of capacity
acquisitions to decrease geometrically over time. Since we expect the rate of technological
progress to differ between manufacturing equipment and facilities, we split capacity-related
costs into two pools: manufacturing equipment (eq) and facilities (fc). In accordance with

equation (2), we have:

Veq Vfe

Ct - Ct,eq + Ct,fc - an : T‘eq— + n}c : ch ° <2O>
2 (7 Mea)? 2, (v mge)”

In evaluating (20), we assume T¢, = 10 for equipment and 7. = 30 for facilities.

Ideally, we would use firm-level data on fixed assets, depreciation, capital expenditures,
and total capacity available to construct a quarterly panel of capacity acquisition costs.
However, the data available entail several complications. First, it is unclear whether in-
vestment expenditures were directed at capacity upgrades or capacity additions. Second,
the proportion of expenditure applied to investments in facilities as opposed to equipment

is ambiguous. For these reasons, we rely on data from GTM (2012) to estimate both the

30The exceptions are LDK Solar and Jinko Solar, for which the initial periods are Q1-09 and Q2-10,

respectively.
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technical progress parameter 7, and a baseline, industry-wide capacity acquisition cost esti-
mate, ve,. In the Appendix (Section A.5), we perform the calculation of firm-level capacity
acquisition costs consistent with equations (17) and (18) in Section 3 and find that, despite
some variation in these firm-level cost estimates, the average values generate a reasonably

good match with the industry-wide values reported by GTM. 3!

Component 2009 2010 2011 2012 2013 2014 2015 2016

Facility $0.07 $0.07 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06
FEquipment
Ingot $0.21 $0.17 $0.11 $0.09 $0.06 $0.05 $0.04 $0.04
Wafer $0.24 $0.20 $0.16 $0.13 $0.08 $0.07 $0.06 $0.06
Cell $0.45 $0.30 $0.20 $0.16 $0.10 $0.08 $0.08 $0.07
Module $0.12 $0.09 $0.07 $0.05 $0.03 $0.03 $0.02 $0.02
Total $1.02 $0.76 $0.54 $0.43 $0.27 $0.23 $0.20 $0.19

Table 2: Facility related capacity acquisition cost estimates based on Powell et al. (2013).
Equipment related capacity acquisition cost estimates based on GTM (2012).

Table 2 shows equipment related acquisition cost estimates, vs., as reported by GTM
(2012). Furthermore, GTM (2012) provides equipment related costs broken down along the
major manufacturing steps. For the much smaller manufacturing facility acquisition costs,
Ueq, We rely on Powell et al. (2013).

To estimate the technological progress parameter, 7.,, we run the simple regression:

t
Vg = g Vo + &t

where & is assumed to be a log-normally distributed error term with E [In(&;) | t] = 0. Then,
ln(g—;) =t -In(neg) + In(&). Setting 2009 as year 0, the regression estimate yields 7., = 0.76
with a standard error of 0.01.

Following GTM (2012), we use the reported capacity acquisition cost for 2012, that
is v, =$0.43, as our estimate for the fourth quarter and backcast (or forecast) capacity
acquisition costs for the other quarters using our estimate of 7.,. Using the quarter-specific

capacity acquisition costs, we finally obtain quarter-specific equipment-related capacity costs,

3LGTM generates its cost estimates by consulting industry sources on both the supply- and demand side.
In particular, GTM solicits input from major equipment manufacturers such as Centrotherm and Schmid

and module manufacturers such as GCL-Poly, Renesola, Suntech Power, China Sunergy, and Canadian Solar.
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i.e., the term ¢; ., in (20). To illustrate, for the Q4 2013, we obtain an equipment capacity
cost of ¢.q = $0.16/W.

In contrast to equipment related costs, we set the technological progress parameter for
facilities, 7., equal to one. The facility costs in Table 2 are based on an estimate by Powell
et al. (2013) that a plant with an annual capacity of 395MW entails costs of approximately
$53M. After accounting for a 50% discount on capital investment in China (Goodrich et al.,
2013a), we derive a vy =$0.066/W. The numbers in Table 2 reflect an adjustment in the
facility acquisition cost to reflect efficiency increases over time, by adjusting for the power
output (in Watts) per unit of space occupied by facilities. As efficiency increases, the same
physical area can generate a larger amount of output and correspondingly the facility ca-
pacity acquisition cost per Watt decreases over time.?? These adjustments explain the slight
decrease in vy, over time despite setting 1. =1. Upon levelizing the vy, costs in Table 2, we
derive a Q4 2013 facility capacity cost of c.; =$0.01/W.

Regarding the tax factor A in the estimation of LMCs, we employ separate tax factors,
Acy and Ay, since equipment and facility assets have different useful lives. To calculate
these figures in the context of the Chinese module manufacturers in our sample, we follow
Goodrich et al. (2013b) and apply a tax rate of & = 15% and a (weighted average) cost of
capital of r = .13. Under Chinese tax rules, the useful life of equipment is 10 years and that
of facilities is 20 years (PWC, 2012). Finally, these assets are depreciated on a straight-line
basis for tax purposes. Taken together, the resulting values are A, = 1.08 and Ay, = 1.11.

We summarize our estimates regarding capacity costs in Finding 2:

Finding 2 We estimate the technological progress parameter for equipment capacity costs to
be Neg = 0.76, implying a 24% annual reduction in equipment capacity costs. Our estimated

2013 facility and equipment capacity costs are $0.01/W and $0.16/W, respectively.

4.4 Long-Run Marginal Cost Estimates for PV Modules

The preceding estimates can now be aggregated to calculate the long-run marginal cost,
LMC, for each firm and quarter in our sample. These values, in turn, yield an industry-
wide figure, LM C}, by calculating the weighted average of the firm-specific LMCs in that

period:

32 Appendix A.2 details this adjustment.
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LMCy =Y 0y - LMCy. (21)

The weights o;; in (21) are derived on the basis of firm i’s share of module-equivalent ship-
ments in quarter .

Figure 4 compares our LMC estimates with observed and in-sample ASPs.?* We note that
up to the first quarter of 2011 the ASPs and LMCs generally stayed within a narrow band
of each other. The only exception appears to be the aforementioned polysilicon shortage in
late 2008 and early 2009. However, starting in early 2011, the ASP curve starts to diverge
from the LMC curve.

ASPs / LMCs of Modules and Cumulative Module Output

Module Costs and Prices ($/W)

1.0

09

08rF et 81% learning curve

0.71 — Average sales price (ASP)
0.6 — - Long-run marginal cost (LMC)
0.5

04"

10 20 30 40 50 60 70 80 90 g9

Cumulative Output (GW)

Figure 4: LMCs and ASPs between Q1-08 and Q4-13. All prices are in 2013 U.S. dollars.

Statistical inference allows us to make a formal claim regarding the pattern shown in
Figure 4. To the extent that firm-specific LMCs and ASPs can be interpreted as draws
from a distribution around the “true” market-wide LMC and ASP, the weighted standard
deviation serves as a measure of the standard error around our LMC and ASP estimates and

permits a statistical test of their equality.3* For a given quarter, our procedure tests the null

33See Appendix A.2 for details on the ASP series.
34We only use firm-specific ASPs, which are defined as the ratio of firm-specific revenues to module-

equivalent shipments (see Appendix A.2).
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hypothesis that ASP, = LMC;. We follow Afshartous and Preston (2010) in calculating
confidence intervals around the LMC and ASP measures, and perform the equivalent of a
t-test of the null hypothesis, with the alternative hypothesis being that ASP, # LMC,.%

We summarize our inference regarding LMCs with the following result.

Finding 3 Our estimated LMCs are statistically significantly different from the observed
ASPs in Q3-11, Q1-12, Q2-12, Q3-12, Q1-13, Q2-13, and Q3-15.3¢

The Online Appendix details the weighted means, standard errors, and degrees of free-
dom used in our statistical tests.?” The statistical results also suggest that, despite a tight
polysilicon market in 2008, cost and price data from that year are consistent with a module
market in equilibrium.

In interpreting our findings, we note that in any given quarter an average ASP signifi-
cantly above the LMC could, of course, simply be the consequence of an unfavorable shock to
demand. Yet, the recurrence of this finding in six of the eight quarters in the years 2012-2013
point to the alternative explanation that the industry had accumulated too much capacity
during that period of time. The difference between the green (LMC) and the blue (ASP)
curves in Figure 4 provides a measure of the price effect that can be attributed to overcapac-
ity during our sample period. While our findings support the explanation of overcapacity,
we also note a significant fall in LMCs from $1.75/W in Q1-11 to $0.82/W in Q4-13. This
drop strongly suggests that significant intrinsic cost reductions explain a significant part of
the price decreases observed during those six years.

To conclude this section, we relate our LMC measure to the so-called “Minimum Sus-

tainable Price” (MSP) estimates in Powell et al. (2013) and Goodrich et al. (2013a,b). The

35Per standard econometric texts, the non-inclusion of zero in a confidence interval for a given significance
level of a random variable is equivalent to a formal parametric test at the same level (Greene, 2003). Thus,
the test suggested here can be implemented by comparing confidence intervals around our mean LMC and

ASP measures.
36 At the 5% significance level, we reject the equality of the ASP and LMC based on the following values:

Q3-11 (p = 0.041), Q1-12 (p < 0.010), Q2-12 (p < 0.010), Q3-12 (p = 0.017), Q1-13 (p < 0.010), Q2-13 (p <
0.010), and Q3-13 (p < 0.010). At a less stringent 10% significance level, we also reject the null hypothesis

of equality between the ASP and LMC for Q4-13.
3TInference using the simple arithmetic average of ASPs and LMCs broadly agrees with our results in

Finding 3. At the 5% level, tests based on the simple arithmetic average of the LM C;; reject the equality of
the ASP and LMC in Q4-09, Q4-10, Q2-11, Q3-11, Q1-12, Q2-12, Q3-12, Q4-12, Q1-13, Q2-13, Q3-13, and
Q4-13. At the 10% level, the test additionally rejects the null hypothesis in Q4-11.
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Minimum Sustainable Price also seeks to identify a cost-based sales price that provides an
adequate return to investors. In contrast to our top-down approach based on firm-level fi-
nancial data, Goodrich et al. (2013a,b) rely on a bottom-up cost model in which individual
cost components are assessed in 2012 on the basis of various information sources available
from industry observers. The MSP is then calculated as the derived manufacturing cost plus
a profit mark-up. These approaches essentially complement our top-down approach to the
derivation of LMCs which incorporate anticipated future cost reductions due to technological

progress.

5 Long-Run Marginal Cost Forecasts for PV Modules

This section develops a prediction model in the form of a trajectory of future LMCs assuming
that learning effects observed in the past will persist in the future. Given our estimate of
Neq from Section 3, the projection of capacity costs is straightforward: for any time period,
capacity costs are determined by the time elapsed since the period in which the baseline
cost of capacity was calculated. We project future core manufacturing costs by estimating a
constant elasticity learning curve and then combine these estimates to project LMCs through

2020.

5.1 Estimation of Core Manufacturing Costs

In the following regression analysis, the dependent variable is the aggregate core manufac-
turing cost, w} + fif. We assume that this cost measure adheres to a constant elasticity

learning curve of the form:

Qi .
wy + fip = (w + E)~(@) et (22)

In (22), @, is the industry-wide cumulative production level in period ¢, b. is the learning
elasticity, and p;; is an idiosyncratic error term, with F [ | Q] = 0V ¢, t. The corresponding
learning curve parameter, L, is given by L = 2%. Accordingly, every doubling of cumulative
output results in core manufacturing costs of only L% of what these costs were before. Given
a projected cumulative industry production level at time ¢ and an original manufacturing

cost, w;] + fif, we can use L to forecast the core manufacturing cost at time .
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We note that the assumed dynamics in (22) follows the specification of earlier studies on
learning-by-doing which have centered on cumulative production as the main driver of cost
reductions. This stands in partial contrast to the specification that the decline in capacity
costs, in particular the acquisition cost for machinery and equipment, is assumed to be a
function of calendar time. The latter choice is definitely convenient from an analytical per-
spective insofar as it allows for a relatively simple characterization of the marginal cost of
one unit of capacity in a dynamic environment. At the same time, we note that the learn-
ing processes underlying these two cost categories may be qualitatively different: reductions
in core manufacturing reflect efficiency improvements in the four main steps of the photo-
voltaic module manufacturing process, as summarized at the beginning of this section, while
reductions in capacity costs reflect changes in the upstream operations of the equipment
suppliers.

Equation (22) presents our base specification. Earlier empirical studies have found that
the effect of static scale economies is small in comparison to cumulative learning effects
(Lieberman, 1984). Nonetheless, we also control explicitly for changes in the scale of manu-
facturing facilities. Specification 2 in Table 3 below introduces scale effects by allowing for
the possibility that manufacturing costs change exponentially with the scale of plants.?® In
particular, we introduce a term, AScale;;, equal to the difference between scale at time ¢
and scale in Q1-08. Scale;; is measured in MW /year and is defined as the average capacity
per manufacturing site operated by firm i. The regression coefficient on AScale;; is denoted

by bs. Thus:

wiy + fif = (Wi + fii) - (%)*’C gheasentein gl (23)
The recent work of Pillai (2015) points to the significance of polysilicon prices for de-
creases in the unit value of COGS.?? Our Specifications 3 and 4 below seek to exploit varia-

tions in the slope of polysilicon prices over time. Though Specification 3 is structurally the

same as Specification 2, it uses data only from the time periods over which polysilicon prices

38We have tested an alternative form of Specification 2 with scale effects structurally similar to the learning
effects. This alternative form follows Lieberman (1984) and Stobaugh and Townsend (1975); it yields a poorer

fit to the observed LMC data than the one reported in Table 4 below.
39Pillai (2015) has identified several explanatory variables for the decrease in COGS among module man-

ufacturers from 2005 to 2012: (i) a reduction in input polysilicon prices, (ii) a shift in production to China,
(iii) technological innovations, including a lower polysilicon utilization rate and higher module efficiencies,

and (iv) lower capacity costs associated with larger capacity orders.
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Trends in polysilicon prices and manufacturing capacity, Q1-08 through Q4-13
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Figure 5: Between 2008 and 2013, the average size of module manufacturing facilities in-

creased and the price of polysilicon decreased.

remained relatively constant; these are labeled as (pricing) phases 2 and 4 in Figure 5.1

Specification 4 adds a phase 4 dummy term to Specification 3 and yields a learning curve
parameter estimate that can be interpreted as an upper bound. By including this dummy
term, we effectively ‘remove’ all cost reductions between the end of Phase 2 and the start
of Phase 4 from the estimate of the learning elasticity. If observed cost reductions were due
only to polysilicon price decreases, we would expect the coefficient on cumulative output to
be statistically indistinguishable from 0 in Specification 4.

Stating the equations in logarithmic form, Specification 2, for instance, becomes:

In(w + fif) = In(wf + i) — be - ln(%) + b, - AScaley + i (24)

Q1

Across all specifications, we set Q1-08 equal to £ = 1. Our cumulative output measure is
based on the quarterly industry-wide production estimates by Lux Research (2014). Re-
garding changes in scale, we use firm-level plant capacity data from Lux Research (2014).
Across all four specifications, we assume the idiosyncratic error term has mean zero and is

uncorrelated with the explanatory variables.

40Pricing phases 1, 2, 3, and 4 include quarters Q1-08 through Q2-09, Q3-09 through Q4-10, Q1-11 through
Q4-11, and Q1-12 through Q4-13, respectively.
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41 The intercept should be interpreted as the

Table 3 presents our regression results.
average of the natural logarithm of the Q1-08 core manufacturing cost across firms. Across
all specifications, the coefficient on cumulative output is significant, while that on scale is
not.*? Taken together, Specifications 1 through 4 point to significant and sustained decreases
in core manufacturing costs. Furthermore, these decreases cannot be attributed exclusively

to decreases in polysilicon prices.

Dependent variable: Log Core Manufacturing Cost/Watt

Specification 1 2 3 4
1.216™** 1.220%** 0.974*** 0.699***
Intercept
(0.102) (0.100) (0.112) (0.093)
-0.773%* -0.785** -0.699*** -0.445%*
Cumulative Production (b.)
(0.052) (0.058) (0.064) (0.087)
0.000 0.000 0.000
Firm Scale (bs) -
(0.000) (0.000) (0.000)
-0.355*
Dummy, PS phase 4 - - -
(0.129)
Learning Curve Parameter (L = 2%) 58.5% 58.0% 61.6% 73.5%
Adjusted R? 0.8012 0.8013 0.8128 0.8303
N 213 213 125 125
Firm fixed effects? Yes Yes Yes Yes

Table 3: Estimated coefficients for a constant elasticity learning curve. Entries in parentheses
are Driscoll-Kraay standard errors.
Key to statistical significance: ***: < 0.001; **: < 0.01; *: < 0.05.

Specification 3 is our preferred variant because it accounts for large swings in polysilicon
prices during Phase 1 and controls for scale. Though Specification 4 does the same, we
believe it is too conservative in excluding all cost reductions that occurred while polysilicon
prices declined in Phase 3, especially since over 90% of the demand for polysilicon is from
the solar market. By excluding these reductions, we would also risk removing other changes,
such as those in module efficiency and polysilicon utilization, which Pillai (2015) documents

as significant drivers of reductions in COGS. Nonetheless, if one believes either that the

4 0ur results reflect the exclusion of the observation of w;} + f; for SOL in Q4 2008, given the outlier
value of $57.92/W. Including this observation, we estimate a learning curve parameter of 57.4% and 57.8%

in Specifications 1 and 2, respectively.
42The magnitude of estimated coefficients and standard errors on firm scale is indeed smaller than 0.001.
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polysilicon and solar module markets are insufficiently linked or that polysilicon price dy-
namics are likely to fundamentally differ from those observed from Q2-09 through Q4-13,

Specification 4 provides a more appropriate rate of cost declines for core manufacturing costs.

Finding 4 Controlling for plant scale and excluding periods with large polysilicon price

declines, we estimate a 62% learning curve for core manufacturing costs over the period

2008-20135.

In interpreting our estimates, we note that measurement errors introduced by our cost
inference procedure are assumed to be normally distributed with mean zero and uncorrelated
with our explanatory variables. Since we use data from firms listed on U.S. exchanges, our
estimates are potentially subject to sample selection bias. Our estimates of learning effects
should be interpreted as conditional on public listing on a U.S. exchange.

With regard to the adjustments of standard errors and our inference procedure, we note
that in order to account for lack of homoskedasticity, auto-correlation within firms and cross-
sectional dependence across them, we report standard errors suggested by Driscoll and Kraay
(1998) and implemented by Hoechle (2007).** Given the small size of our dataset, we correct
the standard errors by scaling the asymptotic estimates by 4 /% . %, where N, T, and k
are the number of firms, time periods, and coefficients, respectively. Moreover, our inference
is based on a t-distribution with (N-1) degrees of freedom to account for our small sample
size.

Appendix A.6 presents robustness checks on our inference procedure. One of these checks
presents an estimation in which we explicitly adjust for increases in solar cell efficiency.

Accordingly, output is measured in $/m?, rather than on a $/W basis.

5.2 Long-Run Marginal Cost Forecasts

We are now in a position to project the future trajectory of long-run marginal costs. Our
cost forecasts include the three components: (i) capacity costs, (ii) period costs and (iii)
core manufacturing costs. For projected capacity costs, we extrapolate the estimated Q4
2013 capacity cost, using our 7.,, estimate to the years 2014 through 2020. Finally, we add
R&D and SG&A costs on a unit basis that are equal to the 2013 shipment-weighted average

43 Although the calculation of these standard errors relies on large sample asymptotics, the Driscoll-Kraay
errors have better small-sample properties than common alternatives, such as cluster robust variance esti-

mators (CRVE), when cross-sectional dependence exists (Hoechle, 2007).

29



of firms’ median R&D and SG&A costs from Q1-08 to Q4-13. For core manufacturing
costs, we use the estimated intercept and coefficient on cumulative production, i.e., b., from
Specification 3 above to project these manufacturing costs for the years 2014 through 2020.
A plausible alternative would be to project core manufacturing costs from the most recent
observation in Q4-13. However, this alternative approach would put exclusive weight on the
LMC observation from Q4-13 by shifting the forecast LMC line to overlap with this one
observation rather than the predictions based on the full LMC history from Q3-09 to Q4-13
that was used to estimate Specification 3.

The model framework in Section 2 suggests that ASPs should converge to the long-
run marginal cost over time. However, given our findings in Section 4 indicating that the
industry over-invested in capacity in 2011 and 2012, market demand needs to “catch up”
to the aggregate manufacturing capacity in place in order for the LMCs to become the
market clearing prices. For 2014 and 2015, there were 45 GW and 56 GW of new PV
module production, respectively (Bloomberg Terminal). To capture the sensitivity of LMC
projections to variations in demand, we present LMC forecasts contingent on annual industry

output of either 50 GW /year or 60 GW /year in future years.

ASPs / LMCs of Modules and Cumulative Module Output

6.0 Q1-08 A
oof ¢ X Q109
_____ - \‘(
4.0r
=
3 3.0F-....._
e
R
§ | Tl NS
Y e
Sar RSN )
=T TR e Q4-12
P TR e
| S T—
u Q3 T
i \ Qa1z T
o 0 N\
0 81% learning curve W . Q44 Q4-15
o 08f —— Average sales price (ASP) | |
= g p ‘/
071 — - Long-run marginal cost (LMC) .
0.6 Forecast LMC i -
051
0‘4‘ | | ‘ ‘ e : : : :
10 20 30 40 50 60 70 80 90 4, - b o

Cumulative Output (GW)

Figure 6: Projected LMCs through 2020, assuming a constant yearly addition of 50GW
between 2016 and 2020. All prices are in 2013 U.S. dollars.
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Figure 6 depicts the forecast trajectory of LMCs through 2020. This curve reflects both
the 62% learning curve for core manufacturing costs and the 76% annual geometric decline
in capacity costs. This trajectory represents our benchmark of the industry’s production
cost fundamentals and can be interpreted as a trend-line to which the ASPs are expected to
converge over time as market demand catches up with installed capacity. Table 4 presents
sensitivity analysis for our estimates by means of 95% prediction intervals for the years 2017

and 2020 under the two alternative industry output scenarios.**

2017 LMC 2020 LMC
Demand PE~ PE PEt  PE~ PE PET
50 GW $0.49  $0.53  $0.58 $0.39  $0.43  $0.48
60 GW $0.48 $0.52 $0.57 $0.38 $0.42  $0.47

Table 4: LMC projections under different assumptions about annual demand for solar PV

modules. All figures are in 2013 dollars.

The results in Figure 6 and Table 4 speak directly to the so-called SunShot Initiative,
articulated by the U.S. Department of Energy in 2011. According to this policy goal, the U.S.
government envisions a market price of $0.50/W for PV modules by 2020. Our econometric
estimates indicate, that even if the industry were to continue to produce at a rate of 50 GW
in the intervening years, and not experience any further output growth, the DOE target is
likely to be met provided market prices are given by the long-run marginal cost. In fact, our
confidence intervals suggest that the DOE price goal for modules is likely to be met ahead
of schedule in either 2018-2019, at least in terms of 2013 dollars.

6 Conclusion

This paper has presented a model framework and an empirical inference procedure for the
long-run marginal cost in an industry characterized by declining production costs. We have
focused our analysis on solar photovoltaic modules, an industry in which a large number of
firms supply a fairly homogeneous product. Our model framework predicts that in a dynamic
competitive equilibrium suppliers choose their aggregate capacity investments so that the

resulting market prices will in expectation be equal to the declining long-run marginal cost.

44Tn the table, “PE” indicates “point estimate”, “PE*”denotes the upper bound of the prediction interval

and “PE~" denotes the lower bound of the prediction interval.
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Since the corresponding trajectory of market prices would allow firms to recover their periodic
operating- and capacity related costs in the long-run, these prices are minimally sustainable
from an economic perspective.

Our cost inference procedure is based on firm-level financial accounting data, in particular
COGS, SG&A expenses and inventory balances. In addition, we rely on select data from
industry analysts regarding manufacturing capacity and output shipments by individual
firms in our sample. Applying our cost inference method to data from solar PV module
manufacturers enables us to estimate long-run marginal costs on a quarterly basis and to
contrast them with observed ASPs. While our findings suggest that the ASPs and LMCs are
statistically indistinguishable early on in our sample period, they are significantly different
in most quarters of the years 2012 and 2013. Our findings support the argument that during
those years the observed dramatic price reductions reflect at least in part excess capacity in
the industry rather than cost reductions only. Furthermore, the resulting difference between
average LMCs and ASPs provide a measure of the price effect associated with excess industry
capacity.

Our cost inferences also generate panel data that allow us to extrapolate how the long-run
marginal cost of PV modules will change as a function of time and experience. Controlling
for plant scale and significant drops in polysilicon prices, our findings lead to a 62% learning
curve for core manufacturing costs. Combined with our estimates for the annual capacity
cost declines, we arrive at an overall learning curve, that appears much steeper than the
traditional 80% learning curve, provided the industry continues to add at least 50 GW of
output annually.

The methods and findings of this paper have several immediate policy implications that
could be explored in future research. The pricing of solar PV modules, in particular by
Chinese suppliers, has been challenged on legal grounds in recent years. The complaint of
“dumping” modules is akin to that of predatory pricing in domestic pricing disputes and
generally refers to pricing below cost. Our results indicate that the prices in the 2011-2013
window were frequently below the LMC at the time. Yet, as argued in Section 2 above, the
long-run marginal cost includes several components that are likely to be considered “sunk”
in the short-run. If the relevant cost benchmark in legal disputes is the short-run average
variable cost, our measure of core manufacturing costs would provide an upper bound. Our

findings give no indication that at any point in time the firms in our sample were charging
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prices below their core manufacturing costs.

The demand for solar PV modules over the past decade has in significant part been driven
by public policy support in the form of feed-in tariffs, investment tax credits and renewable
energy portfolio standards. As solar system prices have dropped rapidly in recent years,
governments in many countries have scaled back these subsidies. For instance, the federal
investment tax credit in the U.S. is scheduled to decrease gradually from the current 30%
to 10% by 2024. One of the key questions in the ongoing debate is the magnitude of tax
credits or, alternatively feed-in tariffs in some countries, to sustain the recent pace of new
solar PV deployments. The debate about these policy support question hinges in large part
on whether the recent acceleration in cost reductions associated with the production of solar
modules is likely to persist.

Another promising direction for future research is to examine the link between R&D
spending and subsequent reductions in core manufacturing costs at the individual firm level.
Our framework has essentially assumed that by spending a sufficient amount on R&D, firms
gain access to the cost reduction opportunities that are available for the industry. Over
longer time horizons, it is, of course, particularly plausible that the speed of cost reductions
for an individual firm is at least partially linked to that firm’s earlier R&D spending.

The research approach taken in this paper is principally applicable in industries other
than solar photovoltaic modules. Our analysis has taken advantage of several features that
apply to the market for PV modules, including a large number of price taking firms, a fairly
homogeneous product and a significant number of “pure play” manufacturers for whom
the production of modules is the dominant line of business. In industries where the latter
condition is not met, our cost inference procedure would be diluted if one were to rely on
firm-wide financial reports. Instead one would need to either aggregate the cost inferences
across multiple products or rely on segment reports, e.g, income statement and operating
assets for a particular division within the firm. In industries where firms have significant
pricing power, the analysis in this paper could be enriched by inferring not only long-run

marginal costs but also the corresponding price mark-ups.
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A Appendix

A.1 Proof of Finding 1

We verify that the sequence of K given by:

P(K])=LMCy=c¢; - A+w + fi,

is indeed implementable by a sequence of non-negative investments I; if

Ki=L r+1Liry1+...+ L,

and Ko < K7. The non-negativity constraints are met if K ; > K for ¢t > 1. This follows

from the observation:

P (K7) = LMCyyy < LMGy = PY(KT),

combined with the NEC condition requiring that P?, ,(K) > P?(K) for all K.
It remains to verify that, given the aggregate capacity levels { K}, firms will break-
even on their investments. Without loss of generality, assume that a particular firm invests

in one unit of capacity at time ¢. The prevailing equilibrium market price in the next T

(K} ,) = LMCyy,, with 7 € [1,T]. The firm utilizes this capacity

periods is given by P/, e

t+7
over the next T" periods and the pre-tax cash flows of the investment are given by:
CFL, = —v -1,

and for 1 <7< T,

CFLtJrT = LMCtJrT — Wyr — ftJr‘r = Ctyr - A

since, by definition, LM C}y = w; + f; + ¢; - A. Taxable income in period t + 7 becomes:

It+7- = CFLt+T — d‘r U - nt.
Given a corporate income tax rate of «, the overall NPV of the investment is:
T

NPV, =) [CFLyyr — o Iipr]y =1 - 0. (25)

=1
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To see that the expression in (25) is indeed zero, we substitute the expressions for CF L, ,

and [y,

T T
NPV,=(1—=0a)- Y Avcpr-y +a-) dooyf vy =n'-v. (26)
=1 =1

The second term on the right-hand side of (26) denotes the depreciation tax shield. Dividing
by 1 — a and collecting terms yields:

T
l—a-> d. -~
1 =
o) NPV, =A- ZCHT ATt ! . (27)

l1—a
=1

The tax-factor, A, was defined in the main text as:
T
l—a-> d. -9

A= 17_:104 . (28)

Therefore equation (27) reduces to:

1

—— . NPV,=A
(1-a) '

T

S e .

T=1

It remains to show that NPV, = 0, which follows from the construction of the unit cost

of capacity because:

t

T=n"wv.

Z Ctir * T = Z ;«7
=1 =1 Z( )

]:

—_
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A.2 Data and Adjustments for Cost Inferences

1. Sample of PV Module Manufacturers

Firm Ticker 2012 Capacity % 2012 Production %
Yingli Green Energy NYSE: YGE 3.7 6.4
Trina Solar NYSE: TSL 3.7 4.6
Suntech Power NYSE: STP 4.0 5.9
Canadian Solar NASDAQ: CSIQ 3.4 4.8
LDK Solar NYSE: LDK 2.7 1.5
Hanwha Solar One NASDAQ: HSOL 2.4 2.6
JA Solar NASDAQ: JASO 3.3 3.6
ReneSola NYSE: SOL 1.6 1.7
JinkoSolar NYSE: JKS 1.9 2.7
China Sunergy NASDAQ: CSUN 1.3 1.1

Table 5: Firms included in sample, including stock tickers, capacity, and market share as of
2012 (Luzx Research, 2012a).

2. Price Data

Prominent sources of module price data (e.g., Bloomberg New Energy Finance (BNEF)
and pvXchange) began collecting price data no earlier than 3-09. The average sales price
(ASP) measure we use in our graphs is therefore a composite of several indexes. The measure
equally weighs our estimates of in-sample ASPs and a composite of price indexes that we
obtain either from Swanson (2011) or the Bloomberg terminal system. For each firm and

quarter, we derive firm-specific ASPs as the quotient of revenues and the sales volume:

Revenue
sME
These figures are aggregated into a quarter-specific average to obtain the in-sample ASP:

ASPy(firm — specific) = (29)

ASP,(in — sample) = Z wi + ASPy, (30)

where the weights, w;; in the above summation are in proportion to the firms’ share of
module-equivalent shipments across all firms in our sample for that quarter.
Our composite of indexes reflects the data available for a particular period. Prior to

Q1-10, we use price data included in Swanson (2011). After Q4-10, we use a Bloomberg
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New Energy Finance index for multi-crystalline silicon module prices. To bridge the gap
between the data from Swanson and that available from BNEF, we use the pvXchange
Crystalline Modules China Price available from the Bloomberg terminal. We chose this index
for Q1-10 through Q3-10 among those from PVXchange and PVinsights and accessible from
the Bloomberg terminal system because it offered the best match with the BNEF multi-
crystalline silicon module price index over the time periods in which we could observe both
indexes. The ASPs on our graphs equal the simple average of our composite index and
in-sample ASP measures.

We note that our tests about whether the market was equilibrium in a given quarter
use only the firm-specific ASP estimates. By using the firm-specific ASP estimates, we can
compare a distribution of estimated ASPs and inferred LMCs across firms. Overall, we
observe a relatively close match between our in-sample ASPs and the index price data across

the 24 quarters in our sample (median difference of about 12% between the two numbers.)

A.3 Descriptive Statistics

Tables 6 and 7 summarize the key variables considered in our sample.*> For 2008, we include
eight firms in the sample since only eight of ten firms released quarterly data for Q1 2008,
given the timing of their listing (except CAPX;; and Kj;, where the summary includes 10
firms). For 2013, we include 8 firms in the sample since only eight of ten firms released

quarterly data for Q4 2013. All dollar figures are in nominal terms.

45Note: The minimum LMC reported in Table 6 is an outlier; the 25th percentile of LMCs in Q1-08 across
firms is $3.95/W.
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Variable Units Min Median Max Notes
COGS;, $ (M) 69.94 131.90 338.11

sME MW 19.15 41.79 106.69
Invg $ (M) 13.82 53.02 119.42
Dy $ (M) 1.48 2.82 10.40

SG&A;, $ (M) 3.66 9.03 31.77
RDy; $ (M) 0.30 0.59 2.79
acit $/W 1.49 3.16 3.65
Ny MW 4.78 16.32 54.84
Qit MW 18.55 42.45 10.45

COGM;, $ (M) 68.94 130.61 360.44

o+ w $/W 1.16 3.13 3.64

fi +wy $/W 0.04 0.27 0.33

ASPy $/W 1.97 4.15 4.67

LMCy $/W 1.80 3.98 4.50

CAPX;; $ (M) 44.08 144.97 1297.90 Annual figure
Ky MW /year 40 210 680

Table 6: Descriptive statistics for Q1-08

Variable Units Min Median Max Notes
COGS; $ (M) 118.93 345.82 538.41

sME MW 223.36 582.83 937.18

Invy $ (M) 33.49 157.41 271.21

D;; $ (M) 5.67 22.22 58.09

SG&A;, $ (M) 12.82 40.32 154.69

RDy; $ (M) 1.07 4.92 18.08

aciy $/W 0.48 0.58 0.67

Ny MW 62.89 249.77 420.22

Qit MW 198.36 592.04 773.47

COGM;, $ (M) 109.15 336.42 423.42

o+ 4w $/W 0.45 0.52 0.60

foq +wi $/W 0.06 0.08 0.22

ASPy $/W 0.56 0.67 0.84

LMCy $/W 0.72 0.80 0.89

CAPX;; $ (M) 23.13 69.45 196.74 Annual figure
Ky MW /year 1155 1800 2800

Table 7: Descriptive statistics for QQ4-13
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A.4 Adjusting Facility Costs for Physical Efficiency Gains

In Section 4.3, we arrived at a vy, estimate of $0.066/W based on analysis reported by Powell
et al. (2013). Our estimate reflects an assumption that the manufacturing plant produces
modules with a 13.6% efficiency, where efficiency is defined as the ratio of power capacity per
physical area (i.e., ef ficiency = P25"). As the efficiency of solar modules increases, the same
physical area of output contains a greater Watt capacity and therefore the facility capacity
acquisition cost per Watt is likely to decrease. Since the efficiency of modules changed over
the course of our data window, we adjust vy, to reflect inter-temporal changes in efficiency.

In particular, we follow (31) to derive an efficiency-adjusted v s.:

o 6ff'ref
fofe = Bfe” effe

The ratio of efficiencies in (31) reflects an adjustment for improvements in cell efficiency over

(31)

time. Recalling that 7. = 1, we modify ¢ s. from its form in (20) to:

effref
Ufc : efft

Ct,fc = 30 .
Z’r:l ’YT
Here, ef f; and ef f,oy refer to average efficiency levels in the current and baseline periods,

respectively. Table 8 shows solar PV efficiency data from Fraunhofer (2012). Our estimated
facility cost estimates in Table 2 for 2013 through 2016 reflect assumptions about efficiency
improvements. Given reports by Fraunhofer that 2014 average efficiency levels had reached

16%, we assume a 15.5% efficiency level in 2013 and a steady 16% efficiency level thereafter.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
12.0% 12.5% 125% 12.7% 13.0% 13.1% 131% 134% 14.5% 14.7%

Table 8: Average crystalline silicon module efficiency(Fraunhofer, 2012).

A.5 Firm-specific Capacity Cost Estimates

While our analysis in the text relied on figures from industry analysts to derive industry-wide
capacity acquisition costs, we now illustrate the derivation of firm-level capacity acquisition
costs as outlined in Section 4.3. The direct application of (18) would entail two potential
challenges in connection with solar PV modules. First, the expression assumes that all capi-

tal expenditures were used to expand module manufacturing capacity across all four steps of
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the value chain (i.e., ingots, wafers, cells, and modules), or what we will refer to as integrated
module manufacturing capacity. However, firms could have expanded their capacity to pro-
duce only some of these components. Second, firms’ financial statements do not specify the
portion of their capital expenditures that were applied to facility improvements as opposed
to investments in new production equipment.

We address the first issue by using an integrated module-equivalent (M E) level of ca-
pacity, KME that “marks down” capacity additions that did not include all components
of module manufacturing by the ratio of the capacity costs for the components actually in-
stalled to that for all components. In practice, firms have tended to invest in capacity either
for only one of the four steps or for combinations of the four steps that are contiguous to each
other. The second observation implies that firms have invested in, for example, cell, wafer,
and ingot capacity but not in only cell and ingot capacity. This practical reality implies that
there are ten types of what we term contiguous capacity investment bundles.* Of course, the
ten capacity bundles will differ in terms of associated costs. To account for these differences,

we calculate an integrated module-equivalent (M E) level of capacity, KME:

J
j=1

Here, the index j refers to the ten contiguous capacity investment bundles. We use quarterly
firm-level capacity data from Lux Research (2014) across all steps of the value chain to
derive K; and KM¥ 47 We determine the expansion of a particular bundle by (1) taking the
minimum of the capacity expansions for all constituent value chain steps and (2) subtracting
the expansions recorded for more inclusive bundles. As an example, when calculating the
capacity expansion in the “cells and modules” bundle, we know that this increase cannot
exceed the observed expansion of either cell or module capacity (i.e., the constituent value
chain steps). We thus calculate the minimum capacity expansion level observed across these
two steps. To avoid double counting capacity expansions in cells and modules, we subtract
the capacity expansion observed across the two more inclusive bundles, namely “modules,

cells, wafers, and ingots” and “modules, cells, and wafers.”

46The ten bundles are investments in (1) ingots only, (2) wafers only, (3) cells only, (4) modules only, (5)
wafers and ingots, (6) cells, wafers, and ingots, (7) cells and wafers, (8) modules, cells, wafers, and ingots,

(9) modules, cells, wafers, and (10) modules and cells.
4TWe make several amendments to the data based on our findings from firms’ press releases and industry

analysts. The Online Appendix details the adjustment.
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The adjustment factor y; “marks down” the capacity additions for bundles that do not
include all four components of the value chain. We define x; as the ratio of the capacity
cost for bundle j to the capacity cost for the integrated module capacity investment. We
estimate x; as the average of the ratios from 2009 to 2016 implied by Table 2.

The following example illustrates the derivation of K, x; and K*¥. Our data for China
Sunergy (CSUN) indicate for the first quarter of 2008 a module capacity of 70 MW /year
and a 2014 module capacity of 1155 MW /year, for a change of 1085 MW /year. We also
observe a 2008 cell capacity of 220 MW /year and a 2014 cell capacity of 800 MW /year, for a
change of 580 MW /year.?® In this example, we seek to determine the change in K Module,Cell
Knrodue and Keey. The change in K proquie,cen 1s min(1085,580) = 580 MW /year, that in
K nfoduie 1 1085 MW /year - 580 MW /year or 505 MW /year, and in K¢y it is 580 MW /year
- 580 MW /year or 0 MW /year. The subtractions to calculate Kpogue and Keey adjust for
the increase in capacity of the more inclusive bundle, K yjoquie,cen- The capacity acquisition
costs in Table 2 imply Xarodute,Ceits XModute and Xcen coefficients of 0.50, 0.12, and 0.38,
respectively. We finally calculate the change in KM¥ for CSUN as 580-0.5 + 505-0.12 +
0-0.38 MW /year for a total of 348.13 MW /year.

The second issue in implementing (18) above concerns the split between investments
in equipment as opposed to facilities. We address this issue by defining a factor [, that

measures the share of equipment costs among the total capacity costs:

/U‘fq ' néq
/Bt - t—
Veq " Teg + Ufe
The data in Table 2 allow us to calculate 5, on an annual basis. Since GTM does not provide
capacity cost data for years preceding 2009, we backcast v., for 2008 by using our estimate

Neq = 0.79. These two adjustments lead to the following modification of (18):

6
—t
Z ﬁt . CAPXZt . neq
=1
Vieq = ME ME
Kisoia — Kizoos

Expression (33) allows us to derive a set of vg07,, values. Consistent with the model in

(33)

Section 3, we can levelize the capacity acquisition cost to derive the equipment-related cost

48Without the adjustments reflected in (32), we would infer that CSUN expanded its capacity by 1085
MW /year, that vesun2007,eq Was $0.52/W instead of $1.61/W (see Table 9) and that ccsun2013,eq Was
$0.05/W instead of $0.15/W.
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of capacity. We calculate firm-specific values v; f. in the same manner as (33), except that
(1-B;) substitutes for 5; and ns. = 1 for n.,.

Table 9 presents our estimates of levelized capacity costs, cfe, €2007,eq, a0d €2013,4. The
bottom row adjusts these values to incorporate the tax factors Ay, and A.,. The penultimate
row in Table 9 corresponds to weighted averages for vey, Vye, Ceq, and cs.. These weights of
firm-specific measures are calculated in proportion to each firm’s share of module-equivalent
capacity added between 2008 and 2014, relative to the total additions in the sample.*?

In concluding this subsection, we note that our firm-specific capacity cost estimates yield
values that align reasonably well with those in Table 2 in the main text where we followed
GTM (2012). In particular, our weighted average of v., =$1.88 for 2007 translates into a
value of v, =$1.08 for 2012, upon applying the technological progress parameter n =0.76 for
two years. We recall that the corresponding GTM (2012) estimate in Table 2 is v, =$1.01
for 2012.

Firm Ufes Cfes V2007,eqs  C2007,eqs  C2013,eqs Notes
$/W $/W $/W $/W $/W
CSUN 0.07 0.01 1.61 0.80 0.15
YGE 0.12 0.02 2.68 1.33 0.26
TSL 0.05 0.01 1.17 0.58 0.11
JKS 0.05 0.01 1.15 0.57 0.14 2009 base year
CSIQ 0.06 0.01 1.52 0.75 0.14
HSOL 0.11 0.01 2.44 1.21 0.23
LDK 0.16 0.02 3.71 1.84 0.35 2013 end year for CAPX, module K
JASO 0.07 0.01 1.70 0.84 0.16
SOL 0.11 0.01 2.58 1.28 0.25
STP 0.06 0.01 1.37 0.68 0.13 2012 end year for CAPX, module K
Weighted Avg. 0.08 0.01 1.88 0.93 0.17
With tax factor 0.01 1.01 0.19

Table 9: Estimated cost of capacity, facility and equipment for firms in our sample.

49The weighted average statistics exclude estimates for LDK because the reported equipment capacity

acquisition cost is much higher than that of its peers.
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A.6 Learning Curve Estimation: Robustness Checks

Accounting for Physical Efficiency Gains

Since a time trend would have accounted for core manufacturing cost reductions due to
improved quality, as measured by physical efficiency, we repeat Specifications 1 through 4
with data expressed on a dollar per square meter basis. We represent the effect of efficiency
improvements in solar cells via the metric ef ficiency = 27-. Accordingly, we convert
manufacturing costs from dollars per Watt to dollars per square meter by multiplying the
former by efficiency. We use average module efficiency levels from Table 8 and change the

scale and cumulative output measures to a square meter basis. Table 10 summarizes our

estimates; each specification corresponds to the numbering in Table 3.

Dependent variable: Log Core Manufacturing Cost/m?

Specification 1 2 3 4
-0.844*** -0.841*** -1.128*** 0.703***
Intercept
(0.106) (0.104) (0.104) (0.098)
-0.723*** -0.731%* -0.626%** -0.454**
Cumulative Production (b.)
(0.054) (0.059) (0.063) (0.094)
0.000 0.000 0.000
Firm Scale (bs) -
(0.000) (0.000) (0.000)
-0.371*
Dummy, PS phase 4 - - -
(0.128)
Learning Curve Parameter (L = 2%) 60.6% 60.3% 64.8% 73.0%
Adjusted R? 0.7617 0.7618 0.7648 0.8293
N 213 213 125 125
Firm fixed effects? Yes Yes Yes Yes

Table 10: Estimated coefficients on a constant elasticity learning curve. Entries in paren-
theses are Driscoll-Kraay standard errors.
Key to statistical significance: ***: < 0.001; **: < 0.01; *: < 0.05.

Comparing Tables 3 and 10, we observe that the implied learning curve parameters are
essentially the same across the two tables, with the parameters on a $/Watt basis roughly
up to 1 — 3% steeper than those on a $/m? basis. The estimates suggest that our results are

robust to the specification of output on an efficiency-adjusted basis.
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Exclusion of Select Firm-Quarter Observations

Since some firms had a small share of modules in their output mix over some of the
periods in our panel, we conducted four robustness checks in which we exclude observations
for these firms in such periods. In the first, we drop data from CSUN between Q1-08 and
Q3-10. The second drops data from JASO between Q1-08 and Q4-11, while the third drops
data from SOL between Q1-08 and Q3-10. Finally, we drop all three sets of observations. We
do not list the estimates derived upon dropping these observations, but we do not find any
material differences between the learning curve parameters estimated from the full sample
and those obtained when using the restricted samples. Though the standard errors change,

they do not change in a systematic direction with these exclusions.
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