Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 49

1.

Global regulation of a differentiation MAPK pathway in yeast.

Chavel CA, Caccamise LM, Li B, Cullen PJ.

Genetics. 2014 Nov;198(3):1309-28. doi: 10.1534/genetics.114.168252. Epub 2014 Sep 3.

2.

Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth.

Song Q, Johnson C, Wilson TE, Kumar A.

PLoS Genet. 2014 Aug 21;10(8):e1004570. doi: 10.1371/journal.pgen.1004570. eCollection 2014 Aug.

3.

Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium.

Scherz K, Andersen, Bojsen R, Gro L, Rejkjær, Sørensen, Weiss M, Nielsen, Lisby M, Folkesson A, Regenberg B.

G3 (Bethesda). 2014 Jul 9;4(9):1671-80. doi: 10.1534/g3.114.010892.

4.

Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.

Nasuno R, Hirano Y, Itoh T, Hakoshima T, Hibi T, Takagi H.

Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11821-6. doi: 10.1073/pnas.1300558110. Epub 2013 Jul 1.

5.

Global gene deletion analysis exploring yeast filamentous growth.

Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras AC, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C.

Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.

6.

The Saccharomyces cerevisiae W303-K6001 cross-platform genome sequence: insights into ancestry and physiology of a laboratory mutt.

Ralser M, Kuhl H, Ralser M, Werber M, Lehrach H, Breitenbach M, Timmermann B.

Open Biol. 2012 Aug;2(8):120093. doi: 10.1098/rsob.120093.

7.

Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.

Barrett L, Orlova M, Maziarz M, Kuchin S.

Eukaryot Cell. 2012 Feb;11(2):119-28. doi: 10.1128/EC.05061-11. Epub 2011 Dec 2.

8.

Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of Saccharomyces cerevisiae.

Raithatha S, Su TC, Lourenco P, Goto S, Sadowski I.

Mol Cell Biol. 2012 Feb;32(3):664-74. doi: 10.1128/MCB.05420-11. Epub 2011 Nov 28.

9.

Multiple TORC1-associated proteins regulate nitrogen starvation-dependent cellular differentiation in Saccharomyces cerevisiae.

Laxman S, Tu BP.

PLoS One. 2011;6(10):e26081. doi: 10.1371/journal.pone.0026081. Epub 2011 Oct 17.

10.

Efficient construction of homozygous diploid strains identifies genes required for the hyper-filamentous phenotype in Saccharomyces cerevisiae.

Furukawa K, Furukawa T, Hohmann S.

PLoS One. 2011;6(10):e26584. doi: 10.1371/journal.pone.0026584. Epub 2011 Oct 21.

11.

The influence of microgravity on invasive growth in Saccharomyces cerevisiae.

Van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RG, Nielsen J, Delvaux FR, Willaert R.

Astrobiology. 2011 Jan-Feb;11(1):45-55. doi: 10.1089/ast.2010.0518.

PMID:
21345087
12.

Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources.

Strudwick N, Brown M, Parmar VM, Schröder M.

Mol Cell Biol. 2010 Dec;30(23):5514-30. doi: 10.1128/MCB.00390-10. Epub 2010 Sep 27.

13.

Sporulation patterning and invasive growth in wild and domesticated yeast colonies.

Piccirillo S, Honigberg SM.

Res Microbiol. 2010 Jun;161(5):390-8. doi: 10.1016/j.resmic.2010.04.001. Epub 2010 Apr 24.

14.

Genotype to phenotype: a complex problem.

Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Bernstein DA, Rolfe PA, Heisler LE, Chin B, Nislow C, Giaever G, Phillips PC, Fink GR, Gifford DK, Boone C.

Science. 2010 Apr 23;328(5977):469. doi: 10.1126/science.1189015.

15.

The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride.

Obłak E, Gamian A, Adamski R, Ułaszewski S.

Cell Mol Biol Lett. 2010 Jun;15(2):215-33. doi: 10.2478/s11658-010-0002-8. Epub 2010 Jan 29.

PMID:
20140761
16.

Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

Sasano Y, Takahashi S, Shima J, Takagi H.

Int J Food Microbiol. 2010 Mar 31;138(1-2):181-5. doi: 10.1016/j.ijfoodmicro.2010.01.001. Epub 2010 Jan 11.

PMID:
20096471
17.

MPR1 as a novel selection marker in Saccharomyces cerevisiae.

Ogawa-Mitsuhashi K, Sagane K, Kuromitsu J, Takagi H, Tsukahara K.

Yeast. 2009 Nov;26(11):587-93. doi: 10.1002/yea.1708.

PMID:
19750564
18.

Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.

Iinoya K, Kotani T, Sasano Y, Takagi H.

Biotechnol Bioeng. 2009 Jun 1;103(2):341-52. doi: 10.1002/bit.22247.

PMID:
19170243
19.

Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth.

Bharucha N, Ma J, Dobry CJ, Lawson SK, Yang Z, Kumar A.

Mol Biol Cell. 2008 Jul;19(7):2708-17. doi: 10.1091/mbc.E07-11-1199. Epub 2008 Apr 16.

20.

Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis.

Kotani T, Takagi H.

FEMS Yeast Res. 2008 Jun;8(4):607-14. doi: 10.1111/j.1567-1364.2008.00374.x. Epub 2008 Mar 27.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Loading ...
Write to the Help Desk