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Abstract. We discuss different methods to compute geodesic
paths on surfaces using methods from graph theory and numer-
ical analysis.

1. Introduction

This paper focuses on the problem of computing geodesics on smooth
surfaces. In the first few sections we assume we are given an approx-
imate path to start from when attempting to compute a geodesic be-
tween two points. In section 2 we attempt to compute the geodesic
between two points iteratively using the midpoints of an approximate
path between them. In section 3 we explore a similar method, gradi-
ent descent, to iteratively update the path approximating the geodesic.
In section 4 we compute geodesics by numerically solving the system
of differential equations governing them. In section 5 we model the
surface as a finite graph and apply graph search methods to find an
approximate geodesic. In section 6 we test the methods on different
surfaces and compare the results.

The following terminology will be used regularly throughout this
paper. In these definitions, I refers to the closed interval [0, 1]. A
surface is a smooth function from an open set U ⊂ R

2 to R
3 where

I2 ⊂ U . A path γ is a piecewise smooth map defined on I. We will
sometime refer to a sequence of points as a path, this refers to the path
constructed by connecting consecutive points. If γ is a path from I to
I2 and S is a surface, then S ◦ γ is a path from I to R

3. The arc length

of the path defined by S ◦ γ is denoted Ls(γ), where

Ls(γ) =

∫ 1

0

∥

∥

∥

∥

d(S ◦ γ)(t)

dt

∥

∥

∥

∥

dt

. A path γ is a geodesic of a surface S if Ls(γ) is locally minimized.
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2. Midpoint Method

In this section our goal is to find an intuitive method for iteratively
computing a geodesic from a point p to another point q on a surface S
when we are given an approximate path γ to start from. We start by
considering this problem in R

2 in hopes of discovering a method which
can be easily generalized to the problem of computing a geodesic on
any surface.

2.1. Geodesics on a Plane. To begin, we attempt to compute a
geodesic from a point p to another point q, for p, q ∈ R

2. We know
that this path should be the straight line between p and q.

The midpoint method of computing a geodesic between two distinct
points p and q in R

2 can be described as follows:

(1) Start with a given approximation γ1 = p1, . . . , pn made up of a
finite set of points in R

2 such that pi and pi+1 are seperated by
a small distance and the endpoints are p1 = p and pn = q.

(2) Compute the midpoints of each segment, and connect them to
get a new path. Place p1 at the beginning of this path and pn

at the end of it. We call the resulting path γ2.
(3) Iteratively perform step 2 to each new γ, until you have a path

close enough to the geodesic.

Lemma 2.1. Let γ be a path of length l1 defined by a finite series

of points in R
2 that has distinct endpoints p and q. Let length l2 of

the path produced by an iteration of the midpoint method applied to γ.

Then l2 ≤ l1.

This lemma follows directly from the triangle inequality.

Theorem 2.2. Let γ be a path defined by a finite series of points in R
2

that has endpoints p and q. Performing the midpoint method on this

path will produce a series of points defining the straight line connecting

p and q.

Proof. Without loss of generality consider the path defined by the finite
set of points p1, . . . , pn where pi = (xi, yi) and in particular p1 = (0, 0)
and pn = (a, 0). The path resulting from m iterations of the midpoint

method is made up of the points (xi, y
′
i) where y′

i =
Pmin(m,n−i)

j=0 yi+j(m

j )
2m .

Because the geodesic connecting p1 and pn should be a segment of the
x-axis, we say that the error of this approximation is the magnitude of
the y value furthest from 0. So since,
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lim
m−→∞

∑min(m,n−i)
j=0 yi+j

(

m
j

)

2m
= 0

we know that by performing the midpoint method on our path, as
the number of recursive calls increases the path returned approximates
the straight line connecting (0, 0) and (a, 0) with an error that goes to
0.

In particular, we note that:

∣

∣

∣

∣

∣

∑min(m,n−i)
j=0 yi+j

(

m
j

)

2m

∣

∣

∣

∣

∣

≤
∑min(m,n−i)

j=0

∣

∣

∣yi+j

(

m
j

)

∣

∣

∣

2m

≤
min(m,n−i)

∑

j=0

|yi+j| ·
(

m
m/2

)

2m

≤
n

∑

j=1

|yj| ·
(

m
m/2

)

2m

So since
∑n

j=1 |yj| is just a constant, the midpoint method’s x-th
iteration produces an approximation of the geodesic whose error di-
minishes as (

(

x
x/2

)

/2x), which goes to 0. �
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(b) Iteration 100

Figure 1. Midpoint Method on plane.

2.2. Generalizing the Midpoint Method to R
3. While this mid-

point method works well in R
2, it does not work on a curved surface

S because the midpoint m of any two consecutive points on our path
is not guaranteed to be on S. To remedy this problem, we calculate
the point m′ on S closest to m in space and use that point in our
path approximation instead of m. For simple surfaces such as spheres
and toruses, m′ can be calculated easily. On a random surface, m′
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can be much more difficult to find so we use the built-in malab func-
tion fminsearch to compute it. Now we can iterate with the midpoint
method as before to compte the geodesic on an arbitrary surface. Based
on our test cases, this method continues to be effective.

(a) Initial Path (b) Iteration 100 (c) Iteration 200

Figure 2. Midpoint Method on sphere.

Consider the case of a sphere. The geodesic between two points
on a sphere is always a segment of a great circle. Recall that a great
circle on a sphere is one whose diameter passes through the center
of the sphere. In the scope of our testing on spheres, the midpoint
method consistently produced paths which approached the geodesic;
see Figure 2 for an example. After 200 iterations, the path produced
by the midpoint method appears much closer to the geodesic than the
initial path provided.

(a) Initial Path (b) Iteration 100

Figure 3. Midpoint Method on torus.

It is important to note that a geodesic is not necessarily the global
shortest path between p and q. Take as an example the torus in Figure
3. While the path our algorithm produced approachs a geodesic, it is
clearly not the global shortest path between p and q over our surface.
Because the original path wrapped around the torus, so does our final
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path. This method has the same effect as looping a string around the
torus following the original path given, and then pulling the string taut.
The string will find the shortest path in a neighborhood of the original
path, but the structure of the surface prevents it from moving to the
global shortest path from its starting point.

Overall, the midpoint method generalizes rather intuitively to be
used in calculating geodesics over curved surfaces, and will often find
a good approximation of a geodesic after a relatively small number of
iterations.

3. Gradient Descent

In this section we again attempt to iteratively compute a geodesic
from an approximate path using a method similar to that described in
Section 2.2. Now, instead of examining the midpoint of each segment
of the path, we examine the middle point of each consecutive sequence
of three points defined by the path and attempt to improve the path’s
approximation of the geodesic by altering points one by one.

Let us consider a simple model of iterative refinement of a path
defined by three consecutive points. We call this sequence pi, pi+1, pi+2

in I2. This section’s method involves first fixing pi and pi+2, and then
selecting a new middle point u from a neighborhood of the original pi+1

which allows the path to better approximate the geodesic connecting
pi and pi+2.

The lower bound on the arc length of the geodesic connecting S(pi)
and S(pi+2) where S is a surface is the Euclidean distance ‖S(pi) −
S(pi+2)‖. Assuming that this path must also contain pi+1, the lower
bound becomes LB(pi+1) where

LB(x) = ‖S(pi)− S(x)‖+ ‖S(x)− S(pi+2)‖.
If the surface S is locally planar, and the points in the sequence are
close enough, this lower bound will actually approximate the minimal
geodesic length. Therefore, it would give us a better approximation of
the minimal geodesic length if we decreased this lower bound on our
arc length by choosing u that minimizes LB(u).

To minimize LB(u) with respect to u, we employ gradient descent;
that is, an iterative method in which u is updated in the direction
opposing the gradient∇LB at the current value of u, using some weight
α > 0:

u ←− u− α∇LB(u).

In our implementation, α is chosen such that it minimizes the fol-
lowing sum:
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‖S(u− α∇LB(u))− S(pi)‖+ ‖S(u− α∇LB(u))− S(pi+2)‖.

To extend this method from our short path to a path of arbitrary
length, we consider three consecutive points at a time and update the
middle point of each of these subsequences pi, pi+1, pi+2 of the path as
we go.

(a) Initial Path on tt
plane

(b) Initial Path on tt
sphere

(c) Initial Path on tt
torus

(d) Iteration 500 (e) Iteration 500 (f) Iteration 500

Figure 4. Gradient Descent on plane, sphere and torus.

We empirically observed that the gradient descent is effective only
when ‖S(pi)−S(pi+1)‖ and ‖S(pi+1)−S(pi+2)‖ are comparable. Oth-
erwise, the update is very slow. Hence, it is beneficial to drop pi+1 from
the sequence if one leg becomes too small, and instead add a point to
the part of the sequence that contains a long leg. In Figure 4 we see
the results of using the gradient descent method on a random path over
a plane, sphere and torus after 500 iterations. In general, while each
individual iteration of the gradient descent method is much faster than
the midpoint method, it overall takes many more iterations than the
midpoint method to compute similarly accurate approximations of a
geodesic on any given surface.
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4. Differential Equation Approach

In this section we formulate the problem of finding geodesics on
a surface as the problem of solving a system of ordinary differential
equations. Although we treat the case of surfaces in R

3 in this paper,
we can easily generalize it to arbitrary submanifolds of R

N .

4.1. The Geodesic Equation. Consider a smooth surface M ⊂ R
3

given by a parametric map

S : U → R
3,

where U ⊂ R
2 is an open set. We assume that S is a smooth immersion.

In other words, we assume that dSx is injective for all x ∈ U . A path
γ : I → U gives a path S ◦ γ : I → M on the surface. The length of
this path is given by

LS(γ) =

∫ 1

0

∥

∥

∥

∥

d(S ◦ γ)

dt
(t)

∥

∥

∥

∥

dt.

By the chain rule, we obtain

LS(γ) =

∫ 1

0

‖dSγ(t) · dγt‖dt

=

∫ 1

0

√

dγT
t · dST

γ(t)dSγ(t) · dγt dt

(1)

Define an inner product on the tangent space to M at p = S(u) by

gu(v, w) = 〈 dSuv, dSuw〉
= vT dST

u dSuw

Using this inner product (1) can be rewritten as

LS(γ) =

∫ 1

0

√

gγ(t)(γ̇(t), γ̇(t)) dt.

For u ∈ U , we let Gu be the 2 by 2 matrix dαT
x dαx corresponding to

the inner product gu. Observe that, Gu is invertible since it corresponds
to a positive definite (and hence nondegenerate) inner product. Denote
the entries of G by gij and the entries of G−1 by gij.

For 1 ≤ i, j, k ≤ 2, define the Christoffel symbols Γk
ij as follows

(2) Γk
ij =

1

2

n
∑

l=1

gkl

(

∂gjl

∂xi

+
∂gli

∂xj

− ∂gij

∂xl

)

.

The system of differential equations satisfied by geodesic paths can be
given in terms of the Christoffel symbols.
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Theorem 4.1. Let γ : I → U be a smooth map. Denote the coordi-

nates of γ by x1 and x2. Then the path S ◦ γ is a geodesic on M if γi

satisfy the differential equations

(3) ẍk +
∑

i,j

Γk
ijẋiẋj = 0.

Example 4.2. Let us calculate the Christoffel symbols and the equa-

tions (3) for a sphere. Recall that the unit sphere in R
3 can be given

paratemrically using the spherical coordinates by

α : (0, 2π)× (0, π)→ R
3

α : (θ, φ) 7→ (cos θ sin φ, sin θ sin φ, cos φ)

Then the Jacobian matrix dα and the inner product matrix G are given

by

dα =





− sin θ sin φ cos θ cos φ
cos θ sin φ sin θ cos φ

0 sin φ



 G =

(

sin2 φ 0
0 1

)

The Christoffel symbols are

Γ1 =

(

0 cot φ
cot φ 0

)

Γ2 =

(

− sin φ cos φ 0
0 0

)

Hence, a path γ : I → (0, 2π) × (0, π) represents a geodesic on the

sphere if the coordinates (θ, φ) of γ satisfy the differential equations

given by

θ̈ + 2θ̇φ̇ cot φ = 0

φ̈− θ̇2 sin φ cos φ = 0.

Having obtained the differential equation for geodesics, we turn to
the numerical solution of the differential equation. Assume the setup
described at the beginning of this section. Given two points p and q in
U , the task is to find a geodesic on M joining S(p) to S(q). Equiva-
lently, we want to find a path γ : I → U whose coordinates satisfy the
differential equations (3). Namely, for 1 ≤ k ≤ 2 we must have,

ẍk +
∑

i,j

Γk
ijẋiẋj = 0.

We solve the system using the method of finite differences. We choose
a large positive integer N and subdivide the interval I into N equal
parts in order to replace derivatives by finite differences. For notational
simplicity, define ǫ = 1/N . Furthermore, let xp = γ(pǫ) and xp

j be the
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jth coordinate of xp for 1 ≤ j ≤ 2 and 1 ≤ p ≤ N . For brevity, we let
∆xp

k = xp+1
k − xp−1

k . Observe that

ẋk(pǫ) =
1

2ǫ
∆xp

k + O(ǫ2), ẍk(pǫ) =
1

ǫ2
(xp+1

k + xp−1
k − 2xp

k) + O(ǫ2)

We approximate the first derivative as ẋk(pǫ) ≈ ∆xp
k/2ǫ and the second

derivative as ẍk(pǫ) ≈ (xp+1
k + xp−1

k − 2xp
k)/ǫ

2. Substituting in (3), we
obtain the system

xp
k =

xp+1
k + xp−1

k

2
+

1

4

∑

k,j

Γk
i,j(x

p)∆xp
i ∆xp

j(4)

subject to the boundary conditions x0 = p and xN = q. We discuss two
iterative methods to solve (4): one using functional iteration and one
using Newton-Raphson method. We approximate a path γ : I → U
by the N + 1 tuple (γ(0), . . . , γ(iǫ), . . . , γ(1)) of points in U . In both
methods, we assume that we are given an initial path from p to q
represented by the N + 1 tuple

s = (s0, . . . , sN),

where each sp is a point in U for 1 ≤ p ≤ N . Starting with this initial
path, we find a sequence of paths in U (represented as N + 1 tuples of
points in U) that converges to a solution of (4).

4.2. Functional Iteration. We phrase the problem of solving (4) as

the problem of finding a fixed point of a map F : UN+1 → R
2×(N+1).

We denote elements of R
2×(N+1) by (x0, . . . , xN) where xp = [xp

1, x
p
2]

T

for 0 ≤ p ≤ N , where xp
1, x

p
2 ∈ R. Define the map F by

F (x0, . . . , xN) = (y0, . . . , yN),

where

y0 = x0, yN = xN

yp
k =

xp+1 + xp−1

2
+

1

4

∑

1≤i,j≤2

Γk
i,j(x

p) · (xp+1
i − xp−1

i )(xp+1
j − xp−1

j ),

for 1 ≤ k ≤ 2 and 1 ≤ p ≤ N − 1

(5)

We can find a fixed point of F by iterating F starting with the given
point s of R

2×(N+1). In other words, we define a sequence {x(i)}i∈N of

elements of R
2×(N+1) by

x(0) = s

x(i + 1) = F (x(i)) for i ≥ 1.
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We conjecture that the sequence is well defined and convergent if
maxi,p |sp+1

i − sp
i | is sufficiently small and s is sufficiently close to a

fixed point of F . In other words, the sequence converges if succes-
sive points in the initial sequence (s0, . . . , sN) are close enough and s
approximates a path which is sufficiently close to a geodesic. If the
sequence x(i) converges, it is clear that the limiting value is a fixed
point of F . Furthermore, observe that x(i)0 = s0 and x(i)N = sN for
all i ∈ N. Hence, the limiting value approximates a path in U from p
to q, and its image under S approximates a geodesic joining α(p) and
α(q).

Observe that for a plane, all the Christoffel symbols Γk
i,j are zero.

Hence, the functional iteration method gives the midpoint method of
finding geodesics.

Assuming that applying the given parametrization function S takes
constant time, let us calculate the running time of each iteration of the
functional iteration method. Using the notation of (5), we see that each
iteration involves calculating new yp

k for 1 ≤ k ≤ 2 and 1 ≤ p ≤ N . For
a given k and p, calculating new yp

k involves calculating the Christoffel
symbols at xp. This can be done in constant time by calculating the
entries gij(x

p) of Gxp , the entries of G−1
xp , the derivatives

∂gij

∂xl
and using

(2). Derivatives can be computed numerically, or symbolically if the
parametrization S admits symbolic treatment. Thus, each yp

k can be
computed in constant time, leading to Θ(N) time for each iteration.

Figure 6 and Figure 5 show the paths obtained by applying the
function iteration method to an initial path on a plane and a torus.

4.3. Newton-Raphson Method. We can rephrase the question of
finding a fixed point of F as the question of finding a zero of F (x)−x.
We can then find a zero by Newton-Raphson method, starting with the
initial guess s. However, the function F (x)− x has singular Jacobian;
hence we have to make a slight adjustment to F to use the Newton-
Raphson algorithm.

Recall that in the sequence x(i) = (x0(i), . . . , xN(i)) defined above,
the extreme values x0(i) and xN(i) stay constant at s0 and sN respec-
tively. Hence, we can restrict our iteration to the intermediate values.
In other words, fix x0 = s0, xN = sN and define H : UN−1 → R

2×(N−1)

by

H(x1, . . . , xN−1) = (y1, . . . , yN−1),
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(a) Initial path (b) Iteration 25

(c) Iteration 100 (d) Iteration 250

Figure 5. Functional Iteration on a Torus

where

yp
k =

xp+1 + xp−1

2
+

1

4

∑

1≤i,j≤2

Γk
i,j(x

p) · (xp+1
i − xp−1

i )(xp+1
j − xp−1

j ),

for 1 ≤ k ≤ 2 and 1 ≤ p ≤ N − 1

Thus, if (x1, . . . , xN−1) is a zero of H(x)−x, then (x0, x1, . . . , xN−1, xN)
is a solution of (4). We iterate using Newton-Raphson algorithm to find
a zero of H(x) − x, starting with the initial guess (s1, . . . , sN−1). In
other words, we define the sequence {y(i)} of points of U by

y(0) = (s1, . . . , sN−1)

y(i + 1) = y(i)− (dHy(i) − I)−1 · (H(y(i))− y(i)), for i ≥ 1.
(6)

We conjecture that if maxi,p |sp+1
i − sp

i | is sufficiently small and s is
close to a solution of (4) then the sequence defined by (6) is well defined
and converges to a solution of (4).

As we did for the function iteration method, let us compute the
number of steps required for each iteration of the Newton-Raphson
method. Observe that each iteration y(i) 7→ y(i + 1) involves the
computation of H(y(i)), which can be done in Θ(n) time as described
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(a) Initial path (b) Iteration 25

(c) Iteration 100 (d) Iteration 250

Figure 6. Functional Iteration on a Plane

before. However, we also need to compute the Jacobian dHy(i) and the
inverse of (dHy(i)−I. Since dHy(i) is a (2N−4)× (2N−4) matrix, this
would usually take Θ(N3) time. However, we only need to calculate
(dHy(i) − I)−1 · (H(y(i)) − y(i)), which is equivalent to solving for Z
the system

(7) (dHy(i) − I)Z = H(y(i))− y(i).

Furthermore, observe that y(i + 1)p depends only on y(i)p±1. Hence
dHy(i) − I has Θ(N) nonzero entries, which are located on or near the
diagonal. In other words, dHy(i) − I is a banded matrix, for which
(7) can be solved in Θ(N) steps. Thus, each iteration of the Newton-
Raphson method can be done in Θ(N) steps.

Figure 7 and Figure 8 show the results of applying the Newton-
Raphson method to an initial path on a torus and a plane respectively.

Finally, we remark that although calculating the Christoffel symbols
Γk

i,j at a point is a constant time operation, numerically calculating
them can be computationally quite intensive in practice. Both the
methods outlined in this section run much faster if we can compute Γk

i,j

symbolically once and for all and evaluate these symbolic expressions at
particular points. For example, in our implementation, one iteration



FINDING GEODESICS ON SURFACES 13

(a) Initial path (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Figure 7. Newton-Raphson on a Torus

(a) Initial path (b) Iteration 1

Figure 8. Newton-Raphson on a Plane

of Newton-Raphson for a sphere using symbolic Γk
i,j took 1 second,

whereas one iteration using numerically computed Γk
i,j took 69 seconds

(for N = 26).
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5. Generating An Initial Path Using Graph Theory

So far we have considered various ways of iteratively refining a path
to a geodesic. In order to employ these methods, however, one requires
an approximate shortest path to begin with. This section explores a
potential method for generating such path using graph theory.

Just as a path can be approximated by a sequence of points, a sur-
face can also be approximated as a mesh of regularly-spaced points.
For instance, computer-generated visualizations of surfaces necessarily
involve a discrete approximation. If a mesh can successfully approx-
imate a surface, then we can treat the problem of finding a geodesic
as the problem of finding the shortest path between two vertices on a
graph. As we will show, the shortest path on the mesh approximation
of the surface is not too far from the minimal geodesic.

5.1. Induced-Mesh Approximation. First we review the definition
of a weighted graph and consider how to construct a weighted graph
that approximates a given surface S.

Definition 5.1. A weighted graph G is an ordered pair (V,E) corre-

sponding to the set of vertices and the set of edges, along with a weight

function w : E → R specifying the weight of each edge.

A natural way to create a graph on a given surface S is to pick
regularly-spaced points in I2 as vertices, and to join each point to its
four immediate neighbors, where the cost of each edge e = {v1, v2} is
the Euclidean distance between S(v1) and S(v2).

Definition 5.2. For n ∈ Z greater than 1, an induced mesh on a

surface S is the weighted graph G = (V,E) where

V =

{

0,
1

n
,
2

n
, . . . , 1

}2

⊂ I2,

E = {{v1, v2} | v1 and v2 are adjacent.},
with

w : {v1, v2} 7→ ‖S(v1)− S(v2)‖, if {v1, v2} ∈ E.

Here two vertices are adjacent if they are neighbor lattice points in

I2. We denote the induced mesh by Mn(S), and call n the size of the

induced mesh.

One way to characterize the induced mesh is to realize that E is the
approximation of the metric induced on I2 by S. We are estimating the
minimal geodesic distance between v1 and v2 by the Euclidean distance,
which is reasonable as long as S is locally planar and v1, v2 are close. As
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an example, Figure 9 compares a particular surface S with an induced
mesh on S.

(a) The surface S.

0
0.5

1

0
0.5

1
−1

0

1

XY

Z

(b) The induced mesh M10(S).

Figure 9. Comparison of the surface S(u, v) =
(u, v2, sin(π(u− v))) with an induced mesh on it.

Definition 5.3. Let G = (V,E) be a weighted graph with w as its

weight function. Then a path between s, d ∈ V is the sequence of

vertices (v1, v2, . . . , vk) where v1 = s and vk = d and {vi, vi+1} ∈ E
for all i = 1, . . . , k − 1. The sequence is a shortest path in case it

minimizes the sum
k−1
∑

i=1

w(vi, vi+1).

Hence, the shortest path on an induced mesh is equivalent to the
physically shortest passage on the mesh along the gridlines.

There are several known algorithms that find the shortest path on a
weighted graph. Dijkstra’s Algorithm is a very efficient such algorithm.
Its pseudocode is given in the appendix.

Theorem 5.4. [CL, Theorem 24.6] Let G = (V,E) be a weighted graph

with w : E → R as its weight function. Given two points in V such that

a path exists between the two, Dijkstra’s Algorithm finds the shortest

path between them in asymptotic runtime of O(|V |2 + |E|).
In fact, Dijkstra’s Algorithm can be executed in O((|E|+|V |) log |V |)

when the graph is sparse, using a binary heap and an adjacency matrix.
In case of Mn(S), we have |E| = 2n(n + 1) and |V | = (n + 1)2.

Remark 5.5. Given a surface S, Dijkstra’s Algorithm can find the

shortest path on Mn(S) in asymptotic runtime of O(n2 log n).
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There also exists a generalization of Dijkstra’s Algorithm, called
A-Star, in case a lower bound on the distance to d can be given at
each vertex v. In the case of an induced mesh on S, the Euclidean
distance ‖S(d) − S(v)‖ can serve as the lower bound. A-Star has the
same asymptotic runtime as Dijkstra, but often runs faster.

A-star returns a sequence of vertices (v1, . . . , vk) that resides in I2.
To translate the sequence into a path on I2, a simple linear interpola-
tion will suffice, as illustrated in the following definition.

Definition 5.6. Let (v1, . . . , vk) be a sequence of points in I2. Then the

linear interpolation of the sequence is the piecewise function γ : I → I2

where

γ : t 7→











































v1(1− tk) + v2(tk) if 0 ≤ t ≤ 1/k

v2(2− tk) + v3(tk − 1) if 1/k ≤ t ≤ 2/k
...

...

vi(i− tk) + vi+1(tk − i + 1) if (i− 1)/k ≤ t ≤ i/k
...

...

vk−1(k − 1− tk) + vk(tk − k + 1) if (k − 1)/k ≤ t ≤ 1

In other words, we linearly interpolate between each pair of consec-
utive vertices. Note that the composition β = S ◦ γ constitutes a path
on the surface S. Figure 10 provides an example.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

v

(a) A path on a 10-
by-10 lattice on I2.

0
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0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

x
y

z

(b) The same path on the in-
duced mesh on S.

(c) Composition of S with
the linear interpolation of the
path.

Figure 10. Translation of a sequence of points in I2

into a path on S.

Therefore, the following recipe yields an approximate shortest path
on a given surface S.

(1) Generate an induced mesh Mn(S).
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(2) Execute A-star to generate a sequence of points between two
vertices.

(3) Construct a linear interpolation γ of the sequence in I2.
(4) Return β = S ◦ γ.

5.2. Convergence. The path generated by the above recipe begs the
question of accuracy. It differs from the minimal geodesic since the path
must always travel along the gridlines of the mesh, and each piecewise
leg of the path is not itself a minimal geodesic. Figure 11 illustrates
this point: whereas the geodesic joining (0, 0) and (1, 1) in I2 has arc
length

√
2, a linear interpolation of the sequence returned by A-star

will have arc length of 2. Nonetheless, we may still prove that the arc
length of this path is not too far from that of the minimal geodesic.

0 0.5 1
0

0.5

1

X

Y

(a) The geodesic joining (0, 0) and
(1, 1) in I2.

0 0.5 1
0

0.5

1

X

Y

(b) The linear interpolation of one
shortest path on the induced mesh
of size 10.

Figure 11. Comparison of the geodesic joining (0, 0)
and (1, 1) in R

2 and the approximation via the method
in Section 5.1.

Throughout this section, we fix two points p1, p2 ∈ I2, let S be a sur-
face, and let γ̃ : I → I2 be the path between p1 and p2 that minimizes
LS(·), parametrized by the arc length of its composition with S. Take
an induced mesh Mn(S).

Ideally we want to compare S ◦ γ̃ with β = S ◦ γ, the approximate
path constructed by our recipe in Section 5.1. However, since we do
not know a priori the path returned by A-star, we instead generate a
different path β as described below:

Consider all squares on the grid of Mn(S) that S ◦ γ̃ passes through.
The path enters through one of the four edges, and leaves through
another. There are two cases:

• These two edges are the same or adjacent.
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• These two edges are parallel. In this case, we keep attaching
squares through which S ◦ γ̃ enters and leaves through parallel
edges, until S◦γ̃ leaves through an edge adjacent to the entrance
edge. See Figure 12(b).

a b

c

(a) Adjacent en-
trance and exit
edges.

a b

a b

c

(b) Non-adjacent entrance and exit edges. In this case,
we add squares on either side until the path exits a
square through a non-parallel edge.

Figure 12. Construction of an approximate path along
the mesh. The red curves indicate γ̃, and the blue lines
indicate our construction.

In the first case, join the two entrace and exit points along the grid,
choosing the direction (clockwise or counterclockwise) to minimize the
length in I2. If the entrance and exit points lie on the same edge,
we simply connect them; otherwise, the path will contain the vertex
shared by the two edges, as seen in Figure 12(a).

In the second case, the entrance and exit points of γ̃ for the k consec-
utive squares may or may not lie on the same side. See Figure 12(b).
If they do, simply connect them; if not, make a transition along one of
the parallel edges.

Now we join all these lines we have generated for all squares γ̃ passes
through. These lines form a piecewise-straight, continuous path on
I2. Furthermore, it is a valid path on Mn(S), since it entirely consists
of gridlines; each edge can never be partially covered, because if it
were, then we must be backtracking, and we can simply remove the
repetition. Now we have successfully obtained a path in I2 along the
induced mesh, and denote it by γ. Let β be a parametrization of S ◦ γ
by its arc length.
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We compare S ◦ γ̃ with β in each of the square(s) we considered
above. For now, assume the first case (Figure 12(a).) The entrance
and exit points are a and c lying in I2, with b being the corner vertex.
We examine the following arc lengths:

• L1, the arc length of the minimal geodesic between S(a) and
S(c) on the surface.
• L2, the Euclidean distance between S(a) and S(c).
• L3, the sum of the Euclidean distances between S(a) and S(b),

and between S(b) and S(c).
• L4, the arc length of the composition of S with the linear inter-

polation of {a, b, c}.
L1 corresponds to the arc length of the portion of S ◦ γ̃ contained with
in the square, whereas L4 corresponds to the arc length of the portion
of β containined within the square. We remind the reader that these
lengths are the arc lengths of the part contained within a single square,
not the length of the entire geodesic.

Lemma 5.7. L1 and L4 are at most

2

n

√

G2
x + G2

y + G2
z,

where Gx is the maximum of ‖∇Sx‖ in I2, and Gy, Gz are analogously

defined.

Proof. Take a simple interpolation between the endpoints of S◦γ̃ inside
the square of side length 1/n by connecting them linearly inside I2 and
sending this line in I2 through S. Then the arc length is bounded
above by √

2

n

√

G2
x + G2

y + G2
z.

To see this, note that the rate of increase in arc length relative to a
unit step in I2 (in an arbitrary direction) is at most

√

G2
x + G2

y + G2
z.

Since we move a total distance of at most
√

2
n

inside I2 (because we are
inside a small square, and the most we can move in a single direction is
along the main diagonal), the total arc length must be bounded above
as such. Because L1 is shorter than this interpolation, the lemma for
L1 follows. As for L4, since it takes a right-angled turn in I2, we move
a total distance of at most 2

n
inside I2, which indicates that the arc

length is at most 2
n

√

G2
x + G2

y + G2
z as desired. �

Lemma 5.8. Let δ : I → S(I2) be a path on the surface S parametrized

by arc length. Fix 0 ≤ t1 < t2 ≤ 1. Then the arc length of δ between



20 J. BAEK, A. DEOPURKAR, AND K. REDFIELD

t = t1 and t = t2 differs from the straightline distance ‖δ(t2) − δ(t1)‖
by at most

(t2 − t1)
2
√

H2
x + H2

y + H2
z ,

where Hx is the maximum of ‖∇2Sx‖ in I2, and Hy, Hz are analogously

defined.

Proof. The arc length of δ between t = t1 and t = t2 is,

(8) L =

∫ t2

t1

√

(

dδx

dt

)2

+

(

dδy

dt

)2

+

(

dδz

dt

)2

dt.

Let ∆t, ∆x, ∆y, ∆z be the differences t2 − t1, x(t2) − x(t1), y(t2) −
y(t1), z(t2)− z(t1), respectively. Then, by Mean Value Theorem, there
exists some t′ ∈ [t1, t2] such that

dδx

dt
(t′) =

∆x

∆t
.

This yields, for r ∈ [t1, t2],
∣

∣

∣

∣

dδx

dt
(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

dδx

dt
(t′) +

∫ r

t′

d2δx

dt2
dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

dδx

dt
(t′)

∣

∣

∣

∣

+

∫ r

t′

∣

∣

∣

∣

d2δx

dt2

∣

∣

∣

∣

dt

≤
∣

∣

∣

∣

dδx

dt
(t′)

∣

∣

∣

∣

+

∫ r

t′
Hxdt

≤
∣

∣

∣

∣

dδx

dt
(t′)

∣

∣

∣

∣

+ ∆tHx.

Therefore, for the same values of r,
(

dδx

dt
(r)

)2

≤
(∣

∣

∣

∣

∆x

∆t

∣

∣

∣

∣

+ ∆tHx.

)2

.

Similar inequalities hold for

(

dδy

dt
(r)

)2

and

(

dδz

dt
(r)

)2

. Plugging

these back into Equation (8), we obtain

L ≤
∫ t2

t1





√

(∣

∣

∣

∣

∆x

∆t

∣

∣

∣

∣

+ ∆tHx

)2

+ . . .



 dt.

Since the integrand does not depend on t, we get

L ≤
√

(|∆x|+ ∆t2Hx)
2 + (|∆y|+ ∆t2Hy)

2 + (|∆z|+ ∆t2Hz)
2.

By the triangle inequality, we obtain



FINDING GEODESICS ON SURFACES 21

L ≤
√

∆x2 + ∆y2 + ∆z2 + ∆t2
√

H2
x + H2

y + H2
z

= ‖δ(t2)− δ(t1)‖+ (t2 − t1)
2
√

H2
x + H2

y + H2
z .

Since the arc length of the minimal geodesic is bounded below by the
Euclidean distance between the endpoints, namely ‖δ(t2)− δ(t1)‖, the
lemma follows. �

Theorem 5.9.

L2 = L1 + O

(

1

n2

)

,

and

L4 = L3 + O

(

1

n2

)

.

Proof. By Lemma 5.7, the length of L1 is O(1/n). Then, in application
of Lemma 5.8 to L1, the difference t2− t1 must also be O(1/n) because
S ◦ γ̃ is parametrized by arc length. Then it follows that the difference
between L2 and L1 is

O(1/n)2
√

H2
x + H2

y + H2
z = O(1/n)2,

as desired. The statement for L4 − L3 follows similarly. �

Lemma 5.10.

L3 ≤
√

2L2.

Proof. Note that L2 takes straight lines whereas L3 travels along the
grid. In other words, L2 is the hypotenuses of a triangle of which the
legs form L3. Because the ratio of the sum of the legs to the hypotenuse
is at most

√
2, the lemma follows. �

So far we have assumed the case in which γ̃ enters and leaves a square
on Mn(S) through adjacent edges. In the other case, shown in Figure
12(b), analogous results to Lemma 5.10 and Theorem 5.9 can also be
obtained. We omit their proof for brevity, but the reader should be
able to convince himself of the omitted fact.

Theorem 5.11. As n approaches ∞, the arc length of the path gener-

ated by the recipe in Section 5.1 converges to at most
√

2LS(γ̃).

Proof. Combining Theorem 5.9 with Lemma 5.10 yields the relation

L4 −
√

2L1 = O

(

1

n2

)

.

Summing over all squares, we obtain that LS(γ) is less than the sum
of
√

2LS(γ̃) with an O(1/n) term, since the number of squares through
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which the path passes is O(n). This quantity converges to zero as n
approaches ∞, as desired. Now, since the recipe returns an optimal
path with smaller arc length than β, the same inequality must still
hold. �

Theorem 5.11 tells us that the recipe in Section 5.1 is a reasonable
initialization for the aforementioned iterative methods, such as mid-
point method, gradient descent, and Newton-Raphson.

From Figure 11, we see that the bound in Theorem 5.11 is tight in
the sense that replacing

√
2 with a smaller constant will invalidate the

theorem. The constant
√

2 seems to arise from the structure of the
mesh, however, rather than the methods in the proof of the theorem.
We conjecture that augmenting the mesh structure by adding diagonals
in each square, et cetera, should reduce this constant.

6. Comparison Study

In this section, we apply the methods discussed in the previous sec-
tions to obtain geodesic path on different surfaces. We compare the
results after different number of iterations and summarize our findings.

6.1. Methodology. We constructed four surfaces using Matlab and
selected two points on each. The parametrizations of the surfaces are
given in Table 1 of the appendix. For each surface, an initial path was
generated by A-star on an induced mesh of size 40; another initial path
was generated by connecting the two points with a sinusoidal wave of
two full periods in I2. For each surface-path pair, three methods were
used to iteratively refine the path into a geodesic: 1) midpoint method,
2) gradient descent, and 3) Newton-Raphson. The Newton-Raphson
method was used only for the initial path constructed from A-star, as
the sinusoidal path is too far from geodesic and the method does not
converge.

Figures 14 through 16 in the Appendix display the results on the
four surfaces. Part (a) is the approximate path generated by A-star;
Part (b)-(d) are the resulting paths after some number of iterations
of each of the three methods. The three methods are abbreviated as
MP (Midpoint search), GD (Gradient Descent) and NR (Newton-
Raphson), and the number of iterations used is given in parentheses.
Part (e)-(g) show the decrease in arc length over iterations for each
method. Part (h)-(l) are analogous results from initializing with a
sinusoidal path.



FINDING GEODESICS ON SURFACES 23

6.2. Results. In general, the Newton-Raphson method using differ-
ence equations converged in the fewest iterations, stabilizing in a couple
iterations at most. We emphasize that to generate Figures 13 through
16, the Newton-Raphson method ran for 5 iterations, whereas midpoint
search and gradient descent required 200 iterations to get reasonably
close to the actual geodesic. However, each iteration of these meth-
ods consumed very little time, whereas the Newton-Raphson method
suffers from the bottleneck of calculating Christoffel symbols. In case
the parametrization of the surface is known and tractable, one can pre-
compute the Christoffel symbols symbolically, rather than numerically,
to conserve time. In that case, Newton-Raphson has a comparable
runtime per iteration. See the discussion at the end of Section 4.

The Newton-Raphson method also required the initial path to be re-
liable and each consecutive pair of points to be very close. For instance,
the Newton-Raphson method would diverge when initialized with the
sinusoidal paths given in part (h) of Figures 13 through 16. On the
other hand, the other two numerical methods did not require the initial
path to be very reliable, and functioned satisfactorily when initialized
with suboptimal paths.

Between the midpoint search and gradient descent, midpoint search
performs slightly better, especially when the surface is not very planar
or the initial path is wavy. We remark that one can use these two
methods in conjunction—by picking the Euclidean midpoint and find-
ing the closest point that lies on the surface, and then improving this
point by running gradient descent.

7. Primary Authors

Section 1 through Section 3 were primarily authored by Katherine
Redfield; Section 4 was primarily authored by Anand Deopurkar. Sec-
tions 5 and 6, along with the appendix, were primarily authored by
Jongmin Baek.
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8. Appendix

Program 1 Midpoint Search

// Iteratively refines a given path

// S: a surface I^2--->R^3

// pts: a sequence of points in I^2

// n: the number of iterations

function Midpoint_Search(S, pts, n)

for n iterations

for i=1 to length of pts

// Map the points onto S

pts2(i) = S(pts(i))

for i=1 to length of pts

// Take midpoints

midpts(i) = (pts2(i) + pts2(i+1)) * 0.5

for i=1 to length of midpts

// find the closest point on the surface to midpts(i)

pts(i) = argmin_p ||S(p)-S(midpts(i))||

// argmin can be done in matlab using fminsearch.

Program 2 Gradient Descent

// Iteratively refines a given path

// S: a surface I^2--->R^3

// pts: a sequence of points in I^2

// n: the number of iterations

function Gradient_Descent(S, pts, n)

for n iterations

for i=1 to length of pts - 1

// Take midpoints

midpts(i) = (pts(i) + pts(i+1)) * 0.5

for i=1 to lengths of midpts

// Perform gradient descent, starting from midpts(i)

f(p) := ||S(pts(i)-p)||+||S(pts(i+2)-p||

grad = argmax_g (df(p)/dx,df(p)/dy).*g

evaluated at p=midpts(i)

beta = argmin_b f(p-b*grad)

// argmin can be done using fminbnd in matlab

pts(i) = midpts(i) - beta * grad
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Program 3 Function Iteration and Newton Raphson

\\Computes one iteration of the functional iteration

\\method

\\ S = Map from I^2 --> I^3

\\ pts = Sequence of N-2 points in I^2

\\ init = Initial point (in I^2)

\\ final = Final point (in I^2)

function Iter(S, init, final, pts)

x(0) := init

x(N-1) := final

x(i) := pts(i) for 0 < i < N - 1

for p = 1 to N-2

for k = 1,2

y(p,k) = (x(p+1,k) + x(p-1,k))/2 +

1/4 * Sum [Gamma(k,i,j)(x(p)) *

(x(p+1,i) - x(p-1,i)) *

(x(p+1,j) - x(p-1,j))]

//Sum taken over all i,j in {1,2}

//Calculating Gamma is straightforward. All the

//derivatives encountered can be computed

//numerically.

return y

\\Computes one iteration of the Newton Raphson method

\\ S, pts, init, final are as in Iter

function NRIter(S,init, final, pts)

\\Look at pts as a 2 x (N-2) array

y := Iter(S,init,final,pts)

dH := Jacobian of H(X) -> Iter(S,init,final,X) at X=pts

\\This can be computed numerically.

\\Looking at pts as 2N-4 tuple, dH would be a

\\2N-4 by 2N-4 matrix.

Z := Inverse(dH - I) * (y - pts)

\\Can be obtained by solving (dH - I)Z = y - pts

\\Use a method that exploits that dH - I is

\\bounded for optimal performance.

\\Look at Z as a 2 by N - 2 array.

return (pts - Z)
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Program 4 Dijkstra’s Algorithm

// Finds the shortest path between s and d in the graph G

function Dijkstra(G=(V,E,w),s,d)

for each v in V

dist[v] = infinity

prev[v] = null

dist[s] = 0

while V not empty and u not equal to d

// remove the vertex u with the least value of dist[u]

u = extract_min(V)

for each neighbor v of u

alt = dist[u] + w(u,v)

if alt < dist[v]

dist[v] = alt

prev[v] = u

Name Parametrization

plane S(u, v) = (u, v, 0).

sphere
S(u, v) = (cos(φ) cos(θ), cos(φ) sin(θ), sin(φ)) where φ =
π(x− 1/2) and θ = π(y − 1/2).

torus
S(u, v) = (3 cos(θ) + cos(φ) cos(θ), 3 sin(θ) +
cos(φ) sin(θ), sin(φ)) where θ = 2uπ and φ = 2vπ.

saddle S(u, v) = (x, y, x2 − y2) where x = 2u− 1, y = 2v − 1.

Table 1. Parametrizations of the surfaces used in Sec-
tion 6.
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(a) Initial Path (b) MP(200) (c) GD(200) (d) NR(5)
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Figure 13. Result on plane.
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(a) Initial Path (b) MP(200) (c) GD(200) (d) NR(5)
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Figure 14. Result on sphere.
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(a) Initial Path (b) MP(200) (c) GD(200) (d) NR(5)
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Figure 15. Result on torus.
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(a) Initial Path (b) MP(200) (c) GD(200) (d) NR(5)
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Figure 16. Result on saddle.
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