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Abstract. We compute the number of integer points on conics
modulo p, where p is an odd prime. We extend our results to
conics on the projective plane modulo p, and then to conics on the
projective plane modulo n, for an integer n. We relate the existence
of solutions on the projective plane modulo n to the existence of
rational solutions using the Hasse–Minkowski theorem.

1. Introduction

Consider the quadratic polynomial q given by

(1.1) q(x, y) = ax2 + by2 + cxy + dx+ ey + f,

where a, b, c, d, e and f are integers with no common divisor. We know
that the set points (x, y) ∈ R2 such that q(x, y) = 0 forms an ellipse, a
parabola, a hyperbola or—in degenerate cases—a pair of lines, a line,
a point or an empty set. We call the set of solutions of q(x, y) = 0 the
affine conic determined by q.

Although we understand conics in R2 quite well, it is much more
challenging to find points on conics if we restrict (x, y) to Z2. Even
the question of deciding whether the conic has any points in Z2 can be
nontrivial. For example, it is unclear if the polynomial x2 +5y2−3 has
any zeros in Z2, although it has infinitely many zeros in R2.

Similarly, we can consider the homogeneous quadratic

(1.2) Q(x, y, z) = ax2 + by2 + fz2 + cxy + dxz + eyz.

As we shall see, the zeros of Q in Z3 are closely related to the zeros
of q in Q2. We call the set of nonzero solutions of Q(x, y, z) = 0, up
to constant multiples, the projective conic determined by Q. Again,
the question of the existence of integer points on projective conics is
difficult to answer. For example, it is not clear whether x2 + 5y2 − 3z2

has any integer solutions other than (0, 0, 0).
We note that the integer solutions of q(x, y) = 0 or Q(x, y, z) = 0

give us solutions modulo n, where n is a positive integer, in particular
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a prime integer. Since integers modulo a prime p form a field, the
question of finding zeros modulo p is much easier that the question of
finding integer zeros. Thus, we may find the zeros of q or Q modulo
p (and modulo n, if possible) and from this knowledge, try to extract
some information about the integer zeros.

In this paper, we focus on finding the zeros of q modulo a prime
p and the the zeros of Q modulo p and modulo an arbitrary positive
integer n. The paper is organized as follows: In Section 2 we find the
number of points on the affine conic q(x, y) ≡ 0 (mod p). In Section 3
we find the number of points on the projective conic Q(x, y, z) ≡ 0
(mod p). In Section 4, we look at the number of points on the projective
conic Q(x, y, z) ≡ 0 (mod n). Finally, in Section 5 we discuss the
implications of the number of solutions of Q(x, y, z) ≡ 0 (mod n) to
the existence of integer solutions of Q(x, y, z) = 0.

2. Points on Affine Conics modulo p

Definition 2.1. An affine conic Cq ⊆ Z2 is the set of solutions to
q(x, y) = 0 where q has the form in Equation (1.1). Similarly, we define
Cq(n) ⊆ (Z /nZ)2 to be the set of solutions to q(x, y) ≡ 0 (mod n).

Given an arbitrary odd prime p and a quadratic polynomial q(x, y),
we are interested in finding the number of points in the affine conic
Cq(p). Because there are only a finite number of values in Z /pZ, we
know that there are only finitely many such points.

To count the number of points in Cq(p), we start by examining the
equation these points satisfy:

(2.1) q(x, y) = ax2 + bxy + cy2 + dx+ ey + f ≡ 0 (mod p).

Now, let X be the column vector 〈x, y〉, and let M be the symmetric

matrix M =

[
a b/2
b/2 c

]
with entries in Z /pZ. We can then write

Equation (2.1) in bilinear form as:

(2.2) q(X) = XTMX +
[
d e

]
X + f ≡ 0 (mod p).

Once we start using the equation’s bilinear form, we see that we can
change the basis in (Z /pZ)2 to simplify the coefficients inside M :

Lemma 2.2. There exists a change of basis A ∈ GL2(p) and some
S ∈ (Z /pZ)2 such that

(2.3) q′(X) = q(AX + S) ≡ XTDX +
[
d′ e′

]
X + f ′ (mod p)

where D is a diagonal matrix. Furthermore, if M is invertible, we can
choose our S such that the linear term disappears. In this case, we can
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rewrite Equation (2.3) to say:

(2.4) q′(X) ≡ XTDX + f ′ (mod p).

Equivalently, we can write Equation (2.3) and Equation (2.4) in lin-
ear form as follows:

(2.5) q′(x, y) ≡ a′x2 + b′y2 + d′x+ e′y + f ′ (mod p)

(2.6) q′(x, y) ≡ a′x2 + b′y2 + f ′ (mod p).

Proof. By Theorem A.1 in the appendix, there exists an invertible ma-
trix A and a diagonal matrix D such that D = ATMA. Then, after
change of basis via A, letting S be the column vector 〈0, 0〉, we see that

q′(X) ≡ (AX + S)TM(AX + S) +
[
d e

]
(AX + S) + f

≡ (AX)TM(AX) +
[
d e

]
(AX) + f

≡ XT (ATMA)X +
[
d e

]
(AX) + f

≡ XTDX +
[
d e

]
(AX) + f

≡ XTDX +
[
d′ e′

]
X + f (mod p),

as desired. Furthermore, if M is invertible, choosing

S = −1

2
(M−1)T

[
d
e

]
instead leads to

q′(X) ≡ (AX + S)TM(AX + S) +
[
d e

]
(AX + S) + f

≡ XT (ATMA)X +
(
2STMA+

[
d e

]
A
)
X +

(
STMS + f

)
≡ XTDX +

(
2

(
−1

2

[
d e

]
M−1

)
MA+

[
d e

]
A

)
X

+
(
STMS + f

)
≡ XTDX +

(
STMS + f

)
≡ XTDX + f ′ (mod p),

as desired. �

Definition 2.3. Two quadratic polynomials q and q′ related as in
Lemma 2.2 are called identical up to a linear change of coordinates.

Definition 2.4. We say that the quadratic polynomial q(x, y) as given
by Equation (2.1) is nondegenerate modulo p if b2 − 4ac 6≡ 0 (mod p).
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p Possible value of Zq(p)
3 1, 2, 4, 5
7 1, 6, 8, 13
17 1, 16, 18, 33
29 1, 28, 30, 57

Table 1. Possible values of Zq(p) in case q(x, y) is non-
degenerate modulo p, for small odd primes p.

Hence if q(x, y) is nondegenerate modulo p, we can write its bilinear
form as in Equation (2.2) using an invertible matrix M .

It is clear from Lemma 2.2 that if q(x, y) is nondegenerate modulo
p, there exists some

(2.7) q′(x, y) = a′x2 + b′y2 + f ′ ≡ 0 (mod p)

which is identical to q(x, y) up to a linear change of coordinates.

Corollary 2.5. If two polynomials q(x, y) and q′(x, y) are identical up
to a linear change of coordinates, there are exaclty as many points in
Cq(p) as there are in Cq′(p).

Proof. This fact follows almost directly from Lemma 2.2, because we
can write q(AX + S) = q′(X) where A is invertible there exists a
bijection between the solutions of q′ and the solutions of q. �

2.1. Number of points in Cq(p) if q is nondegenerate modulo p.

Let us introduce a simple notation that represents the number of points
in Cq(p):

Zq(p) = |Cq(p)|.

We empirically computed Zq(p) for small odd primes p and all unique
nondegenerate quadratic polynomials q(x, y), up to linear change of
coordinates, by writing a program that manually tests all points in
(Z /pZ)2. The output of our program can be seen in Table 1.

These results indicate that depending on the conic, Zq(p) can be
either 1, p− 1, p+ 1 or 2p− 1.

The following theorems explain the results found by our program,
and are based on the integral solutions of Equation (2.6). Below the

expression
(
x
p

)
refers to the Legendre symbol (See Appendix B).
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Theorem 2.6. Given an odd prime p and a nondegenerate quadratic
polynomial q′(x, y) ≡ a′x2 + b′y2 + 0 (mod p),(

−a′b′

p

)
= +1 =⇒ Zq′(p) = 2p− 1.

Proof. We can rewrite the condition q′(x, y) ≡ 0 (mod p) as

(2.8) a′x2 ≡ −b′y2 (mod p)

Note that by hypothesis a′, b′ 6= 0 because q′ is nondegenerate modulo
p. If y = 0, then the only solution to this equation is x = 0. If y 6= 0,
then there are just as many solutions to Equation (2.8) as there are to
the equation:

(x/y)2 ≡ −b′/a′ (mod p)

The fact that −a′b′ is a nonzero quadratic residue implies that −b′/a′
is also a nonzero quadratic residue, so for each of the remaining p− 1
possible values of y ∈ (Z /pZ), there are 2 possible values of x ∈
(Z /pZ) for which the equality holds, namely,

(2.9) x ≡ ±y
√
− b
′

a′
(mod p).

Altogether, there are 1 + 2(p− 1) = 2p− 1 solutions to Equation (2.8),
meaning that Zq′(p) = 2p− 1. �

Theorem 2.7. Given an odd prime p and a nondegenerate quadratic
polynomial q′(x, y) ≡ a′x2 + b′y2 + 0 (mod p),(

−a′b′

p

)
= −1 =⇒ Zq′(p) = 1.

Proof. If −a′b′ is a not a quadratic residue, then neither is −b′/a′.
Hence, Equation (2.9) is not satisfiable in (Z /pZ)2 unless y = 0. Since
setting y = 0 yields only one solution, (x, y) = (0, 0), it must be that
Zq′(p) = 1. �

Theorem 2.8. Given an odd prime p and a nondegenerate quadratic
polynomial q′(x, y) ≡ a′x2 + b′y2 + f ′ (mod p) where f ′ 6= 0,(

−a′b′

p

)
= +1 =⇒ Zq′(p) = p− 1.

Proof. We can rewrite the condition q′(x, y) ≡ 0 (mod p) as

(2.10) a′x2 − (−b′)y2 ≡ −f ′ (mod p).

The fact that −a′b′ is a quadratic residue implies that either −b′
and a′ are both quadratic residues or both are not. If not, we can
simply multiply the whole equation by another quadratic nonresidue
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to make the coefficients of x2 and −y2 quadratic residues. Therefore,
we can assume without loss of generality that a′ and −b′ are quadratic
residues. Let α2 = a′ and β2 = −b′. Then we can factor Equation
(2.10) to say:

(2.11) (αx− βy)(αx+ βy) ≡ −f ′ (mod p).

Since f ′ 6= 0, we can consider the above equation as factoring −f ′
into two terms:
k1 and k2. This can be done in p−1 ways for x, y ∈ Z /pZ. For each

such factoring we are simultaneously solving:

αx− βy ≡ k1 (mod p)

αx+ βy ≡ k2 (mod p).

This gives us a unique solution since (α, β) and (α,−β) are indepen-
dent. Thus there are p − 1 total ways to solve Equation (2.10) in
(Z /pZ)2, and Zq′(p) = p− 1. �

Theorem 2.9. Given an odd prime p and a nondegenerate quadratic
polynomial q′(x, y) = a′x2 + b′y2 + f ′ where f ′ 6= 0,(

−a′b′

p

)
= −1 =⇒ Zq′(p) = p+ 1.

Proof. Starting with the same conditions as the proof for Theorem 2.8,
assume without loss of generality that a′ is a quadratic residue. Then
the fact that −a′b′ is a nonresidue implies that −b′ is a nonresidue. Let
α2 = a′. We have two cases:

Case (1):
(
−f ′

p

)
= +1.

Let φ2 = −f ′. We can factor Equation (2.10) to say

(2.12) (αx− φ)(αx+ φ) ≡ −b′y2 (mod p)

Assuming that y 6= 0, we are factoring −b′y2 into two terms, k1 and
k2, which can be done in p − 1 ways as before with Equation (2.11).
Once again, each factorization yields a unique solution. If y = 0, then
there are two more solutions from αx ≡ ±φ (mod p), giving us a total
of p+ 1 solutions. Hence Zq′(p) = p+ 1.

Case (2):
(
−f ′

p

)
= −1

First, let us note that there are (p − 1)/2 such values for −f ′ in
Z /pZ.

Let −f ′1,−f ′2 be two of these values, and let

q′1(x, y) = a′x2 + b′y2 = −f ′1
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q′2(x, y) = a′x2 + b′y2 = −f ′2
.

For any given solution (x1, y1) to q′1, we see that we can find a unique

solution (
√

f ′
2

f ′
1
x1,
√

f ′
2

f ′
1
y1) for q′2. Therefore if we can find the total

number of solutions to

(2.13) q′(x, y) = a′x2 + b′y2 ≡ C (mod p)

.
in (Z /pZ)2 where C is a nonzero quadratic nonresidue, we can easily

compute the number of solutions for a specific C = f ′ because the
solutions are uniformly distributed.

We know that there are p2 − 1 possible nonzero values of C, and by
Case (1) we know that if C is a quadratic residue there are exactly
p+ 1 solutions to Equation (2.13) . Since there are (p− 1)/2 quadratic
residues in (Z /pZ) we see that there are exactly

(p2 − 1)− (p+ 1)(p− 1)

2
=

(p+ 1)(p− 1)

2

combinations of x, y ∈ (Z /pZ) for which Equation (2.13) produces
a nonzero quadratic nonresidue. Therefore, for each of the (p − 1)/2
possible nonzero, nonresidue values of C = −f ′, Equation (2.13) has

exactly (p+1)(p−1)
2

/ (p−1)
2

= p+ 1 solutions, so Zq′(p) = p+ 1. �

Theorems 2.6 through 2.9 account for all possible conditions on
a′, b′, f ′, hence we have completely characterized Zq(p) for any non-
degenerate quadratic polynomial q(x, y) modulo p.

2.2. Number of points in Cq(p) if q is degenerate modulo p.
We next explored the properties of degenerate conics. Our findings
allowed us to modify the program used for Section 2.1 so that we could
calculate Zq(p) when q(x, y) was degenerate modulo p. A key aspect
of our original program depended upon the fact that there are a finite
number of unique nondegenerate quadratic polynomials modulo p up
to a linear change in coordinates. We therefore first set out to discover
the unique degenerate quadratic polynomials modulo p.

Lemma 2.10. If q(x, y) is degenerate modulo p, there exists some q′

of the form

(2.14) q′(x, y) = a′x2 + e′y + f ′

that is identical to q(x, y) up to a linear change of coordinates.
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p Possible values of Zq(p)
3 0, 3, 6, 9
7 0, 7, 14, 49
17 0, 17, 34, 289
29 0, 29, 58, 841

Table 2. Possible values of Zq(p) in case q(x, y) is de-
generate modulo p, for small odd primes p.

Proof. From Lemma 2.2, we know that there exists a change of basis A
that diagonalizes the bilinear form. Since the quadratic is degenerate,
either the first diagonal entry, a′, or the second, b′, in the diagonalized
q(AX) will be zero. Without loss of generality, let b′ = 0. We have

q(AX) = XTDX +
[
d′ e′

]
X + f.

Where D =

[
a′ 0
0 0

]
. Adding a vector S to X, where S = 〈−d′

2a′ , 0〉,

yields the further change of linear coordinates,

q′(X) = q(A(X + S))

= (X + S)TD(X + S) +
[
d′ e′

]
(X + S) + f

= XTDX +
(
2STD +

[
d′ e′

])
X + (

[
d′ e′

]
S + f)

= XTDX +
([
−d 0

]
+
[
d′ e′

])
X + (

[
d′ e′

]
S + f)

= XTDX +
[
0 e′

]
X + f ′,

as desired. In the cases where a′, b′ = 0, the linear equation q(AX) =[
d′ e′

]
X + f ≡ 0 (mod p). We see that by a simple further change of

basis, Zq(p) = Zq′(p) for some q′(X) =
[
d′ e′

]
X + f . In linear form,

this can be written as q′(x, y) = e′x+ f as desired.
In both cases, we see that q(X) is identical to q′(X) up to a linear

change of coordinates. �

By Lemma 2.10 we see that for any quadratic polynomial q(x, y)
which is degenerate modulo prime p there exists a q′(x, y) = a′x2+e′y+
f ′ to which q(x, y) is identical up to a linear change of coordinates.

We used this fact along with Corollary 2.5 to modify the earlier
version of our program to manually compute Zq(p) for small odd primes
p and all degenerate quadratic polynomials q(x, y) unique up to a linear
change of coordinates. The modified program produced the results seen
in Table 2.

These results indicate that given a prime p and a quadratic polyno-
mial q which is degenerate modulo p, the number of points Zq(p) can
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be either 0, p, 2p or p2. The following theorems explain these results
and are based upon the integral solutions of Equation (2.14).

Theorem 2.11. Given an odd prime p and a degenerate quadratic
polynomial q′(x, y) ≡ a′x2 + e′y + f ′ (mod p),

e′ 6= 0 =⇒ Zq′(p) = p.

Proof. Since e′ 6= 0, we can rearrange the terms in q′(x, y) ≡ 0 (mod p)
to the following:

(2.15) y ≡ (−f ′ − a′x2)/e′ (mod p).

This indicates that for any value of x, there exists a unique y such
that (x, y) satisfies q′(x, y) ≡ 0 (mod p). Hence there are as many
solutions as the possible values of x. Because x ∈ Z /pZ, it must then
be that Zq′(p) = p. �

Since we have already analyzed the case in which e′ 6= 0, we now
examine the cases in which e′ = 0.

Theorem 2.12. Given an odd prime p and a degenerate quadratic
polynomial q′(x, y) ≡ a′x2 + e′y + f ′ (mod p) ,

a′ = e′ = f ′ = 0 =⇒ Zq′(p) = p2.

Proof. All possible pairs in (Z /pZ)2 satisfy q′(x, y) ≡ 0 (mod p), so
Zq′(p) = p2. �

Theorem 2.13. Given an odd prime p and a degenerate quadratic
polynomial q′(x, y) ≡ a′x2 + e′y + f ′ (mod p),

a′ = e′ = 0, f ′ 6= 0 =⇒ Zq′(p) = 0.

Proof. In this case, q′(x, y) ≡ 0 (mod P ) reads f ′ ≡ 0 (mod p), which
is not true by hypothesis. Hence, no pair in (Z /pZ)2 satisfies the
equation, so Zq′(p) = 0. �

Theorem 2.14. Given an odd prime p and a degenerate quadratic
polynomial q′(x, y) ≡ a′x2 + e′y + f ′ (mod p),

a′, f ′ 6= 0, e′ = 0 =⇒ Zq′(p) = 2p or 0.

Proof. If a′ 6= 0 and e′ = 0, we can rearrange the terms in q′(x, y) ≡ 0
(mod p) to the following:

(2.16) x2 ≡ −f ′/a′ (mod p)

Case (1):
(
−a′f ′

p

)
= +1.
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In this case, the right-hand side of Equation (2.16) is a nonzero
quadratic residue, so the equation has two solutions. Because y is free,
there are a total of 2p points in Cq′(p). Thus Zq′(p) = 2p.

Case (2):
(
−a′f ′

p

)
= −1.

If −a′f ′ is a nonresidue, Equation (2.16) has no solutions, as the
left-hand side is a residue while the right-hand side is not. Therefore
Zq′(p) = 0. �

Theorem 2.15. Given an odd prime p and a degenerate quadratic
polynomial q′(x, y) ≡ a′x2 + e′y + f ′ (mod p),

a′ 6= 0, e′ = f ′ = 0 =⇒ Zq′(p) = p.

Proof. Now the equation q′(x, y) ≡ 0 (mod p) reads a′x2 ≡ 0 (mod p),
whose solutions are (0, y) for all y ∈ Z /pZ. Hence Zq′(p) = p. �

Theorems 2.11 through 2.15 account for all possible conditions on
a′, e′, f ′, hence we have completely characterized Zq(p) in terms of
q(x, y) in case it is degenerate modulo p.

3. Points on Projective Conics modulo p

We are now interested in rational points on conics. To study rational
points, we will make use of the projective plane, which is defined as
follows:

Definition 3.1. Let F be a field. The projective plane over F , denoted
by P2(F ), is the set of equivalence classes in

{〈 a, b, c〉 ∈ F 3 | 〈 a, b, c〉 6= 〈 0, 0, 0〉}

where scalar multiples are identified. In other words, the similarity
relation is given by

∀ 〈 a, b, c〉 ∈ F 3 − 0, ∀λ ∈ F − 0, 〈 a, b, c〉 ∼ 〈λa, λb, λc〉.

If we let F = Q, then members of P2(Q) are triples of rational num-
bers unique up to scalar multiplication. By scaling appropriately, we
can treat them as triples of integers unique up to scalar multiplication.
Then, they correspond naturally to ordered pair of rational numbers,
as shown in the next proposition.

Proposition 3.2. There is a bijective correspondence between the set
of points 〈x, y, z〉 in P2(Q) with z 6= 0 and the set of rational points in
Q2, given by

〈x, y, z〉 ←→ 〈x/z, y/z〉.
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Proof. The correspondence above is injective. If 〈x, y, z〉 = 〈x′, y′, z′〉
in P2(Q), then it must be that x′ = λx, y′ = λy, z′ = λz, for some λ.
Then

〈x′/z′, y′/z′〉 =

〈
λx

λz
,
λy

λz

〉
= 〈x/z, y/z〉.

It is also surjective: if 〈 q1, q2〉 ∈ Q2 is a rational point, the projective
line (q1z, q2z, z), where z is the least common multiple of the denomi-
nators of q1, q2, will map to (q1, q2). �

We can now relate the number of rational points on (2.1) to points
on the projective plane. We begin by homogenizing (2.1):

(3.1) Q(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + fz2 = 0.

Using Proposition 3.2, we see that counting solutions to (3.1) in P2(Q)
tells us something about the number of nontrivial solutions to (2.1) in
Q2. (To be exact, they are equal once projective points with z = 0
are omitted, according to Proposition 3.2.) Therefore, the number of
solutions to (3.1) in P2(Q) is of interest to us.

For the remainder of the section, p denotes an odd prime, and we
will use P2

p as a shorthand for P2(Fp). Note that Proposition 3.2 is still

relevant because P2
p can be interpreted as P2(Q) modulo p.

More formally, we take the approach in Section 2 and attempt to
characterize the number of solutions in P2

p to an arbitrary quadratic
polynomial Q(x, y, z). In treating Equation (3.1), we can once again
employ symmetric bilinear forms:

(3.2) XT

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

X ≡ 0 (mod p).

Here X denotes the column vector 〈x, y, z〉. We will be using Q to
denote the matrix of the symmetric bilinear form as well. In that
notation, the equation reads XTQX ≡ 0 (mod p).

Definition 3.3. A projective conic C̃Q(p) is the set of solutions to
Q(x, y, z) ≡ 0 (mod p) in P2

p where Q has the form in (3.1).

We denote by Z̃Q(p) the cardinality of C̃Q(p). Our goal, then, is to

compute values of Z̃Q(p) for different symmetric bilinear forms Q.
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3.1. Counting equivalent classes of symmetric bilinear forms.
As in (Z /pZ)2, it is not necessary to count the number of solutions
to all symmetric bilinear forms in P2

p. We exploit the fact that the
numbers of solutions to two symmetric bilinear forms Q and Q′ are the
same if the two forms are similar under the equivalence relation defined
in Section A of the appendix, i.e. there exists an A ∈ GL3(p) such that
Q′ = ATQA. To see why, realize that the condition Q′ = ATQA is the
same as saying Q′(X) = Q(AX). Thus A is simply a change of basis,
and the number of solutions is preserved.

By Theorem A.1, all symmetric bilinear forms are similar to diagonal
bilinear forms. In turn, we can prove that there are very few equivalence
classes within diagonal bilinear forms.

Lemma 3.4. Given an odd prime p, there exists a quadratic nonresidue
η that can be written as the sum of two quadratic residues.

Proof. Suppose the contrary that all sums of two quadratic residues are
quadratic residues (or zero). This implies that quadratic residues are
closed under addition. Note that Z /pZ is generated by 1, which is a
quadratic residue. So all nonzero elements of Z /pZ would be residues,
which is false. �

Lemma 3.5. Two diagonal bilinear forms D and E over P2
p are similar

if the following two conditions hold:

rkp(D) = rkp(E),

where rkp denotes the rank modulo p, and

[# of quadratic residues in entries of D] ≡
[# of quadratic residues in entries of E] (mod 2).

Proof. We begin by noting thatD is similar to any diagonal matrix with
its entries permuted, because we can pick row-switching elementary
matrices as the change of basis. Also, picking an arbitrary nonsingular
diagonal matrix as the change of basis has the effect of separately
multiplying each entry by a square. Composing these operations, we
see that D is similar to

D′ =

Ii ηIj
0

 ,
where i, j correspond to the numbers of residues and nonresidues along
the diagonal of D, respectively. Note that i+ j = rkp(D).

In case j ≥ 2, we perform the following additional operation: let η
be the nonresidue written as the sum σ2

1 + σ2
2, which exists by Lemma
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3.4. Take the identity matrix I3 and replace a 2-by-2 square along the

diagonal by 1
η

[
σ1 σ2

σ2 −σ1

]
. Here the 2-by-2 square in I3 is chosen to

correspond to a 2-by-2 subsquare of ηIj sitting inside D′.
Denote the resulting matrix by J . We see that JTD′J looks exactly

like D′, except two η’s along the diagonal are replaced by 1’s. To
check this, it suffices to examine only the rows corresponding to the
nonidentity 2-by-2 subsquare of J :

1

η

[
σ1 σ2

σ2 −σ1

]T [
η 0
0 η

]
1

η

[
σ1 σ2

σ2 −σ1

]
=

1

η2

[
σ1η σ2η
σ2η −σ1η

] [
σ1 σ2

σ2 −σ1

]
=

1

η2

[
η2 0
0 η2

]
= I2.

Applying this operation as necessary, we can show that D is similar

to

Ii ηIj
0

 where j ∈ {0, 1}. In summary, the “canonical form” of

the equivalence relation depends only on the rank of D and the parity
of the number of residues along the diagonal of D. Therefore, if the
premise of the lemma holds, then D and E have the same canonical
form, which indicates that they are similar. �

Corollary 3.6. A symmetric bilinear form Q over P2
p is equivalent to

one of the following:I3,
1 0 0

0 1 0
0 0 0

 ,
1 0 0

0 η 0
0 0 0

 ,
1 0 0

0 0 0
0 0 0

 , 0
 ,

where η is a quadratic nonresidue modulo p.

Proof. We list all possible simplified forms obtained in the proof of
Lemma 3.5, dropping scalar multiples. We caution the reader that if
the rank is odd, there is exactly one canonical form instead of two: the
two matrices (one for each parity of the number of residues along the
diagonal) are not similar, but when treated as bilinear forms over the
projective plane, they are identified under scalar multiplication. For
instance,

I3 ∼

η 0 0
0 η 0
0 0 η

 .
When the rank is even, scaling does not flip the parity, so the two
canonical forms are preserved. �
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Corollary 3.6 tells us that there are at most five distinct equivalence
classes. We ask if there are exactly five equivalence classes:

Theorem 3.7. The diagonal forms in Corollary 3.6 are distinct under
the equivalence relation.

Proof. Let D be a diagonal form given in Corollary 3.6. First note that
for any invertible matrix modulo A, both A and AT have full ranks.
Therefore, the rank of ATDA is equal to the rank of D. Hence the
rank is invariant under the equivalence relation.

Next, the quadratic residuosity of the product of the nonzero diag-
onal entries in D is invariant as well. Suppose that D ∼ E, where D
and E are two different forms in Corollary 3.6 with the same rank k.
We have

ATDA = E

for some invertible matrix A. Now we take the submatrices of A,D,E

corresponding to the k-by-k top-left corner, and denote them by Ã, D̃, Ẽ
respectively. They are related as follows:

ÃT D̃Ã = Ẽ.

Note that because Ẽ is nonsingular, Ã must also be nonsingular. Also,(
det Ẽ

p

)
=

(
det ÃT D̃Ã

p

)
=

(
det Ã

p

)2(
det D̃

p

)
=

(
det D̃

p

)
.

Since the determinants of D̃ and Ẽ are simply the products of the
nonzero diagonal entries of D and E, respectively, our claim of invari-
ance is proven.

Inspecting the forms in Corollary 3.6, we see that any two diagonal
matrices differ in either their ranks, or in the quadratic residuosity of
the product of nonzero diagonal entries. Therefore, they cannot be
similar. �

Remark: We did not use the fact that we are operating in P2
p rather

than in a higher-dimensional projective space Pnp , which consists of

lines in (Z /pZ)n+1. Therefore, we expect that the number of equiva-
lent symmetric bilinear forms over Pnp to be similarly determined. We
conjecture it to be d3n/2e + 2. This number is obtained by counting
one equivalence class for each odd rank, two for each even rank, and
one for the all-zero form.
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p Possible values of Z̃Q(p)
3 1, 4, 7, 13
5 1, 6, 11, 31
7 1, 8, 15, 57
11 1, 12, 23, 133
13 1, 14, 27, 183

Table 3. Possible values of Z̃Q(p), for small odd primes p.

3.2. Number of points in C̃q(p). Using Matlab, we computed Z̃Q(p)
for small odd primes p, and for several polynomials Q representing each
of the five equivalence classes in Theorem 3.7. (In fact, it would suffice
to only try the five canonical forms in Corollary 3.6.) The results are
given in Table 3. We observe empirically that

Z̃Q(p) ∈ {1, p+ 1, 2p+ 1, p2 + p+ 1}
for all symmetric bilinear form Q. The following theorems explicitly

characterize the possible values of Z̃Q(p) we observe.
The simplest number to account for is p2+p+1, which is the number

of all elements in P2
p.

Theorem 3.8.

Q ≡ 0 (mod p) ⇐⇒ Z̃Q(p) = p2 + p+ 1.

Proof. If Q is the zero matrix modulo p, all elements of the form X =
〈x, y, z〉 satisfies Equation (3.2). Since |P2

p| = p2 + p + 1, it follows

that Z̃Q(p) = p2 + p + 1. Conversely, if all elements of P2
p satisfies the

equation, then for all X, Y ∈ P 2
p , we have

XTQY ≡ (XTQY + Y TQX)/2 ≡ (X + Y )TQ(X + Y )/2 ≡ 0.

Fixing X, we get (XTQ) is a trivial linear map on GL3(p). But since
this holds for all X, it must be that Q ≡ 0. �

Theorem 3.9.

rkp(Q) = 1 =⇒ Z̃Q(p) = p+ 1.

Proof. If Q has rank 1, we know from Corollary 3.6 that Q must be

equivalent to

1 0 0
0 0 0
0 0 0

 after a change of basis. A solution 〈x, y, z〉 to

this diagonal form obeys the equation x2 ≡ 0. So x ≡ 0, while y, z are
free. Counting triples in (Z /pZ)3 yields p2 solutions. Subtracting the



16 J. BAEK, A. DEOPURKAR, AND K. REDFIELD

all-zero solution and identifying scalar multiples, we obtain Z̃Q(p) =
p+ 1. �

Theorem 3.10.

rkp(Q) = 2 =⇒ Z̃Q(p) = 1 or 2p+ 1.

Proof. Using the same logic as in Theorem 3.9, the symmetric bilinear

form Q must be similar to either

1 0 0
0 1 0
0 0 0

 or

1 0 0
0 η 0
0 0 0

 where η is a

nonresidue. In either case, the corresponding polynomial has the form
x2 + b′y2 ≡ 0 (mod p), where b 6≡ 0 (mod p).

Rearranging the terms, we have

(3.3) − b′ ≡ (y/x)2, or x ≡ y ≡ 0.

If −b is a quadratic residue modulo p, then there exists β such that
β2 ≡ −b′. Then Equation (3.3) is equivalent to y/x ≡ ±β. Counting
solutions in (Z /pZ)3 yields (2p−1)p. Subtracting the all-zero solution

and dividing by p− 1 to account for scaling, we get Z̃Q(p) = 2p+ 1.
If −b is not a quadratic residue, −b′ ≡ (y/x)2 has no solution, in

which case we only count solutions with x ≡ y ≡ 0. Then there is

exactly one solution in P2
p, namely 〈 0, 0, 1〉. So Z̃Q(p) = 1. �

Theorem 3.11.

rkp(Q) = 3 =⇒ Z̃Q(p) = p+ 1.

Proof. Because Q has rank 3, Q is similar to I3. So we can count
solutions to x2 + y2 + z2 ≡ 0. Rearranging the terms yields

(3.4) x2 + y2 ≡ −z2 (mod p).

In comparison, consider solutions to

(3.5) x2 + y2 ≡ −ηz2 (mod p),

where η is a nonresidue modulo p. We remark that exactly one of
−1 and −η is a quadratic residue modulo p, since their product is a
nonresidue.

Let K1 and K2 be the number of nonzero solutions to (3.4) and (3.5),
respectively, in (Z /pZ)3. Note that a nonzero pair (x, y) satisfies ex-
actly one of the two equations, depending on the quadratic residuosity
of x2 + y2. Therefore, K1 + K2 is equal to the number of possible
nonzero pairs (x, y):

K1 +K2 = 2(p2 − 1).
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The factor of 2 arises from that there are two possible values of z for
each equation. Now let β be such that β2 = −1 or β2 = −η, depending
on which one is the quadratic residue. Then, one of the two equations
above factors as

(3.6) (x− βz)(x+ βz) ≡ −y2.

Solving (3.6) is equivalent to simultaneously solving

x− βz ≡ k1

x+ βz ≡ k2

where k1k2 ≡ −y2.
If y 6≡ 0, there are p − 1 ways to factor −y2 into k1k2, and each

system of equation yields a unique solution. Lastly, there are p − 1
ways to choose y. Counting all these yields (p−1)2 solutions. If y ≡ 0,
we require x = ±βz, which has 2(p − 1) solutions. The total, then, is
(p− 1)2 + 2(p− 1) = p2 − 1.

This tells us that either K1 or K2 is p2− 1. However, since they add
up to 2(p2 − 1), they must both be p2 − 1. Then, in either case, we

obtain p2−1
p−1

= p+ 1 solutions to Equation (3.4) in P2
p. �

In summary, we conclude the following about the number of solutions
to Equation (3.1) on the projective plane:

Theorem 3.12. The number of solutions to Equation (3.1) in P2
p is

Z̃Q(p) =


p2 + p+ 1, if rkp(Q) = 0,

p+ 1, if rkp(Q) = 1,

1 or 2p+ 1, if rkp(Q) = 2,

p+ 1, if rkp(Q) = 3.

3.3. Relation to Cq(p). The numbers we observe differ somewhat
from the numbers of integral solutions to q(x, y) modulo p. This can
be explained by the fact that we are counting points at infinity, or
points on the projective plane with z = 0. After a linear change of
coordinates, these correspond to an arbitrary 2-dimensional subspace
V ⊆ (Z /pZ)3. Hence, the number of solutions on P2

p that actually
gives rise to a rational point are

Z̃Q(p)−
∣∣{X ∈ V − {0} | XTQX ≡ 0 (mod p)}

∣∣
p− 1

.
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3.4. Implication of factoring. We can ask how the condition of Q
factoring over Fp relates to the number of solutions. If Q factors non-
trivially, then for some nonzero v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉,

Q(x, y, z) ≡ (v1x+ v2y + v3z)(w1x+ w2y + w3z)

≡ (vTX)T (wTX)

≡ XT (vwT )X (mod p).

If we treat Q as a symmetric bilinear form, then for all X,X ′,

XTQX ′ ≡ ((X +X ′)TQ(X +X ′)−XTQX −X ′TQX ′)/2
≡ (XT (vwT )X ′ +X ′T (vwT )X)/2

≡ XT

(
vwT + wvT

2

)
X ′ (mod p).

Thus Q ≡ vwT +wvT

2
(mod p).

A solution to Q here satisfies either vTX ≡ 0 or wTX ≡ 0. It is easy
to see that vTX ≡ 0 has p + 1 solutions in P2

p, which are simply lines

orthogonal to v. Similarly, wTX ≡ 0 has p+ 1 solutions.
If we further assume that v, w are independent, there exists exactly

one line orthogonal to both v and w. Hence, the total count of solutions
is (p + 1) + (p + 1) − 1 = 2p + 1. From Theorem 3.12, it follows that
the rank of Q must be 2.

If v and w are dependent, we can write w = kv, so Q = 1
2
kvvT . Since

the rowspace of 1
2
kvvT is spanned by {v}, its rank is 1, and there are

p+ 1 solutions total.

4. Points on projective conics modulo n

Let a,b,c be nonzero integers such that gcd(a, b, c) = 1 and n be a
positive integer. In this section, we look at the solutions of the equation

(4.1) ax2 + by2 + cz2 ≡ 0 (mod n).

Observe that Equation (4.1) is trivially satisfied by (0, 0, 0). How-
ever, there may be other trivial solutions. For example, if n = p2,
where p is a prime, then (p, p, p) is a nonzero trivial solution of Equa-
tion (4.1). Somehow we need to disregard these trivial solutions. We
realize that we must look at solutions (x, y, z) where x, y and z do not
share a common factor with n. This motivates the following definition.
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Definition 4.1. Let n be a positive integer. We define the set A3
n of

primitive triples modulo n as follows:

A3
n := (Z /nZ)3 −

⋃
d>1
d |n

d · (Z /nZ)3.

A triple (x, y, z) ∈ Z3 gives a triple in (Z /nZ)3 if we interpret x, y, z
modulo n. Also, observe that (x, y, z) represents a triple in A3

n if and
only if gcd(x, y, z, n) = 1.

Before we look at the solutions of Equation (4.1) in A3
n, let us ex-

amine the structure of A3
n for different n. Let n1 and n2 be positive

integers and set n = n1n2. We can interpret an element of Z /nZ as
an element of Z /n1 Z. In other words, we have a natural surjection
from Z /nZ onto Z /n1 Z. It is clear that this surjection applied to
each coordinate yields a surjection π : A3

n → A3
n1

.

Proposition 4.2. Let n1 and n2 be relatively prime positive integers
and set n = n1n2. Let πi : A3

n → A3
ni

be the natural surjections for
i = 1, 2. Then we have a bijection

π1 × π2 : A3
n → A3

n1
×A3

n2
.

Proof. Given triples (xi, yi, zi) ∈ A3
ni

for i = 1, 2, there is a unique ele-
ment (x, y, z) ∈ Z /nZ such that πi(x, y, z) = (xi, yi, zi) by the Chinese
remainder theorem. Since (xi, yi, zi) are primitive tuples modulo ni for
i = 1, 2, it is easy to see that (x, y, z) is a primitive triple modulo n. �

Note that if (x, y, z) ∈ A3
n is a solution of Equation (4.1), then so is

(λx, λy, λz) for any λ in (Z /nZ)∗. Hence, it is reasonable to count the
number of solutions of Equation (4.1) up to multiplication by a unit
of Z /nZ. To make this idea precise, we define a relation ∼ on A3

n by
letting (x, y, z) ∼ (λx, λy, λz) for all λ ∈ (Z /nZ)∗. Clearly, ∼ is an
equivalence relation.

Definition 4.3. Let n be a positive integer. The set of equivalence
classes of A3

n under ∼ is called the projective plane modulo n and is
denoted by P2

n. For an element (x, y, z) ∈ A3
n, we denote its equivalence

class in P2
n by (x, y, z).

Note that every triple in A3
n has φ(n) elements in its equivalence

class. Therefore,

φ(n) · |P2
n| = |A3

n |.
Also, if n is prime then the new definition of the projective plane agrees
with the previous definition.
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Let n1, n2 be positive integers and set n = n1n2. Recall that we have
a surjection π : A3

n → A3
n1

. Note that if two elements of A3
n are equiva-

lent, then so are their images. Hence the projection π gives a projection
π̃ : P2

n → P2
n1

. We have a result analogous to Proposition 4.2.

Proposition 4.4. Let n1 and n2 be relatively prime positive integers
and set n = n1n2. Consider the projections π̃i : P2

n → P2
ni

for i = 1, 2.
We have a bijection

π̃1 × π̃2 : P2
n → P2

n1
× P2

n2
.

Proof. By Proposition 4.2, we have a bijection

π1 × π2 : A3
n → A3

n1
×A3

n2
.

Let X, Y be two triples in A3
n. Observe that X ∼ Y in A3

n if and only
if πi(X) ∼ πi(Y ) in A3

ni
for i = 1, 2. Hence π̃1 × π̃2 is a bijection. �

We now have the necessary setup to discuss the solutions of Equation
(4.1). As the reader may have guessed, some aspects of the discussion
are not limited to equations like Equation (4.1), but can be extended
to any homogeneous equation. In particular, if Q is a homogeneous
polynomial in three variables with integer coefficients and (x, y, z) ∈ A3

n

is a zero of Q modulo n, then all elements of A3
n equivalent to (x, y, z)

are also zeros of Q modulo n.
We introduce some notation that extends the notation of the previous

section.

Definition 4.5. Let Q be a homogeneous polynomial in three variables
with integer coefficients and n a positive integer. Define

CQ(n) := {(x, y, z) ∈ A3
n | Q(x, y, z) ≡ 0 (mod n)},

C̃Q(n) := {(x, y, z) ∈ P2
n | Q(x, y, z) ≡ 0 (mod n)},

ZQ(n) := |CQ(n)|,

Z̃Q(n) := |C̃Q(n)|.

Let P : A3
n → P2

n be the map

P : (x, y, z) 7→ (x, y, z).

We clearly have the following:

Proposition 4.6.

(1) P−1(C̃Q(n)) = CQ(n),

(2) ZQ(n) = φ(n) · Z̃Q(n).
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We can prove the analogue of Proposition 4.2 and Proposition 4.4

for the zero sets CQ and C̃Q.

Proposition 4.7. Let n1 and n2 be relatively prime positive integers
and set n = n1n2. Let πi : A3

n → A3
ni

and π̃i : P2
n → P2

ni
be the natural

projections for i = 1, 2. Then, we have the commutative diagram:

CQ(n)
π1×π2−−−→ CQ(n1)× CQ(n2)y y

C̃Q(n)
eπ1×eπ2−−−→ C̃Q(n1)× C̃Q(n2)

,

where the maps π1 × π2 and π̃1 × π̃2 are bijective.

Proof. We know that we have a commutative diagram

A3
n

π1×π2−−−→ A3
n1
×A3

n2y y
P2
n

eπ1×eπ2−−−→ P2
n1
× P2

n2

,

where π1 × π2 and π̃1 × π̃2 are bijections. Since gcd(n1, n2) = 1, we
have Q(x, y, z) ≡ 0 (mod n) if and only if Q(x, y, z) ≡ 0 (mod ni) for
i = 1, 2. Hence we get a bijection

π1 × π2 : CQ(n)→ CQ(n1)× CQ(n2).

This, along with Proposition 4.6 implies that π̃1 × π̃2 gives a bijection

π̃1 × π̃2 : P2
n → P2

n1
× P2

n2
.

�

As a direct corollary, we have the following:

Proposition 4.8. Let n1 and n2 be relatively prime positive integers.
Then,

(1) ZQ(n1n2) = ZQ(n1)ZQ(n2),

(2) Z̃Q(n1n2) = Z̃Q(n1)Z̃Q(n2).

For the rest of the section, we fix Q to be the quadratic form given
by

Q(x, y, z) = ax2 + by2 + cz2,

where a, b, c are nonzero integers such that gcd(a, b, c) = 1. Recall that

we are interested in the numbers Z̃Q(n). Thanks to Proposition 4.8, we

can compute the numbers Z̃Q if we know them for powers of primes. In
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other words, if n = pα1
1 · · · p

αk
k , where pi are distinct primes and αi > 0,

then
Z̃Q(n) = Z̃Q(pα1

1 ) · · · Z̃Q(pαk
k ).

Table 4 shows the values Z̃Q for some forms Q and the first 8 powers
of 3.

31 32 33 34 35 36 37 38

x2 + y2 + z2 4 12 36 108 324 972 2916 8748
x2 + 2y2 − z2 4 12 36 108 324 972 2916 8748
x2 + y2 − 81z2 1 9 9 81 324 972 2916 8748
27x2 + 8y2 − 5z2 7 27 99 270 810 2430 7290 21870

Table 4. Z̃Q(3k) for some Q.

The integer 2 often behaves differently in situations involving qua-

dratic equations. Table 5 shows the values Z̃Q for some forms Q and
the first 8 powers of 2.

21 22 23 24 25 26 27 28

x2 + y2 + z2 3 0 0 0 0 0 0 0
x2 + 2y2 − z2 3 4 16 32 64 128 256 512
x2 + y2 − 81z2 3 8 16 32 64 128 256 512
27x2 + 8y2 − 5z2 3 4 8 16 64 128 256 512

Table 5. Z̃Q(2k) for some Q and k

Observe in Table 4 and Table 5 that the numbers Z̃Q(pk) for k =
1, 2, . . . eventually form a geometric series with ratio p. This is not an
accident.

Theorem 4.9. Let p be a prime and Q(x, y, z) = ax2+by2+cz2, where
a, b, c are nonzero positive integers. Let N be a positive integer such
that pN+1 does not divide any of a, b or c. Let N0 = N + 1 if p is odd
and N0 = N + 3 if p = 2. Then, for n ≥ N0 we have

Z̃Q(pn+1) = p · Z̃Q(pn).

Proof. Since we know that ZQ(pt) = φ(pt)Z̃Q(pt) (Proposition 4.6) and
φ(pt) = pt−1(p− 1), we may prove ZQ(pn+1) = p2ZQ(pn).

Recall that interpreting elements of Z /pn+1 Z modulo pn gives us a
surjection π : CQ(pn+1) → CQ(pn). Let pα, pβ and pγ be the highest
powers of p dividing 2a, 2b and 2c respectively. For (x, y, z) ∈ CQ(pn)
such that p 6 |x, define

A1(x, y, z) := {(x+ ipn−α, y, z) | 0 ≤ i ≤ pα − 1}.
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Notice that |A1(x, y, z)| = pα. It is easy to prove that for n ≥ N0, we
have

a(x+ ipn−α)2 ≡ ax2 (mod pn).

Therefore, we see that A(x, y, z) ⊂ CQ(pn). Similarly, for an element
(x, y, z) ∈ CQ(pn) such that p 6 | y, we define

A2(x, y, z) := {(x, y + jpn−β, z) | 0 ≤ j ≤ pβ − 1},

and for (x, y, z) ∈ CQ(pn) such that p 6 | z,

A3(x, y, z) := {(x, y, z + kpn−γ) | 0 ≤ n ≤ pγ − 1}.

See that all Ai(x, y, z) are subsets of CQ(pn). Also, if Ai(x1, y1, z1)
and Ai(x2, y2, z2) have an element in common, then Ai(x1, y1, z1) =
Ai(x2, y2, z2). Also, if (x, y, z) is an element of CQ(pn), then at least
one of x, y or z is not divisible by p, because (x, y, z) is a primitive
triple. Thus, we see that we can write CQ(pn) as a disjoint union of
sets Sr, where each Sr has the form Ai(x, y, z) for some i ∈ {1, 2, 3}
and (x, y, z) ∈ CQ(pn). As a consequence, the proposition is proved if
we prove that the number of elements in the preimage of Ai(x, y, z) in
CQ(pn+1) is p2|Ai(x, y, z)|. Without loss of generality, we may prove
this assertion for A1(x, y, z).

Choose integers x, y, z such that p 6 |x and (x, y, z) ∈ CQ(pn). Ele-
ments in A3

pn+1 that map into A1(x, y, z) under π have the form (x +

ipn−α, y + jpn, z + kpn), where 0 ≤ i ≤ pα+1 − 1, 0 ≤ j ≤ p − 1 and
0 ≤ k ≤ p− 1. However, (x+ ipn−α, y + jpn, z + kpn) lies in CQ(pn+1)
if and only if

(4.2) a(x+ ipn−α)2 + b(y + jpn)2 + c(z + kpn)2 ≡ 0 (mod pn+1).

Set D := Q(x, y, z)/pn, which is an integer since (x, y, z) ∈ CQ(pn).
Set a′ = 2ax/pα, b′ = 2by and c′ = 2cz. Note that a′ is an integer not
divisible by p by our choice of α. Since n ≥ N0, the terms ai2p2(n−α),
bj2p2n and ck2p2n are all divisible by pn+1. Hence, Equation (4.2) is
equivalent to

(4.3) D + ia′ + jb′ + kc′ ≡ 0 (mod p).

Recall that 0 ≤ i ≤ pα+1 − 1 and 0 ≤ j, k ≤ p − 1. Since gcd(p, a′) =
1, we see that we can choose i in pα ways for every choice of j and
k. Therefore, Ai(x, y, z) has pα+2 preimages in CQ(pn+1). Recall that
|Ai(x, y, z)| = pα, and hence the proof is complete. �

Theorem 4.10 and Theorem 3.12 give us an explicit formula for

Z̃Q(pn) if p is an odd prime and Q is nondegenerate modulo p.
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Theorem 4.10. Let p be an odd prime and Q(x, y, z) = ax2 +by2 +cz2

be such that p 6 | abc. Then, Z̃Q(pn) = pn−1(p+ 1).

Proof. If p 6 | abc, then we may take N = 0 in the statement of Theo-
rem 4.9. Then we have,

Z̃Q(pn) = pn−1Z̃Q(p).

Since none of a, b, c is divisible by p, we conclude from Theorem 3.12

that Z̃Q(p) = p+ 1. �

In particular, note that if Q is nondegenerate modulo p, then it has
zeros modulo pk for all k ∈ N.

The number 2 behaves a bit differently. We have the following result.

Theorem 4.11. Let Q(x, y, z) = ax2 + by2 + cz2 be a quadratic form

where a, b, c are odd integers. Then Z̃Q(2n) = 2n−3Z̃Q(8) for n ≥ 3.

Proof. This follows from Theorem 4.9 since we can take N = 1. �

In particular, note that if Q is nondegenerate modulo 2, then it has
zeros modulo 2k for all k ∈ N if it has zeros modulo 8.

5. Integer points on projective conics

Let a, b, c ∈ Z be nonzero integers such that gcd(a, b, c) = 1. Define
a quadratic form Q by

Q(x, y, z) = ax2 + by2 + cz2.

In the previous sections, we looked at the zeros of Q modulo n for
different positive integers n. In this section, we see if zeros of Q modulo
n for all positive integers n give any information about the integer zeros
of Q.

Let (x, y, z) ∈ Z3 be such that Q(x, y, z) = 0 but (x, y, z) 6= (0, 0, 0).
Since Q is homogeneous, we can assume that gcd(x, y, z) = 1. See that
(x, y, z) gives us a zero of Q modulo n, for all positive integers n. In

other words, (x, y, z) is an element of C̃Q(n) for all positive integers
n. Furthermore, (x, y, z) is also a real zero of Q. Hence, if Q has a
nontrivial integer zero, then it must have a nontrivial zero modulo n
for all n and also have a nontrivial real zero. One can ask if having a
nontrivial real zero and a nontrivial zero modulo n for all n is sufficient
to guarantee a nontrivial integer zero of Q. The celebrated Hasse–
Minkowski theorem asserts that this is indeed the case.
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Theorem 5.1 (Hasse–Minkowski). [1, p.2] 1 Let Q(x, y, z) = ax2 +
by2 + cz2, where a,b,c are nonzero integers. Then Q has a nontrivial
zero in Z3 if and only if it has a nontrivial zero in R3 and a zero in P2

n

for all positive integers n.

In fact, it turns out that the statement is true even if we drop the
hypothesis of Q having real zeros ([2, Ch IV, §4, Corollary 3]). In other
words, we have the following:

Theorem 5.2. Q has a nontrivial zero in Z3 if and only if it has a
zero in P2

n for all positive integers n.

By Proposition 4.8, we see that Q has zeros in P2
n for all positive

integers n if and only if it has zeros in P2
pk for all primes p and positive

integers k. Theorem 3.12 shows that Q has zeros in P2
p for all primes p.

The two examples show that given an odd prime p and k ≥ 2, we can
construct a form Q that has zeros in P2

pn for n < k but fails to have a

zero in P2
pk .

Example 5.3. Let k ≥ 2 be even and p an odd prime. Choose α ∈ Z
such that α is a quadratic nonresidue modulo p. Consider the form

Q(x, y, z) = x2 − αy2 − pk−1z2.

Clearly (0, 0, 1) gives a primitive zero of Q in P2
pn for n < k. We claim

that Q has no zero in P2
pk .

Let x, y, z ∈ Z be such that Q(x, y, z) ≡ 0 (mod pk). Let pu be the
highest power of p dividing x2 − αy2, and pv the highest power of p
dividing pk−1z2. Since α is a nonresidue modulo p, it follows that u
is even. On the other hand, v is odd since k − 1 is odd. Therefore,
for Q(x, y, z) ≡ 0 (mod pk), we must have u ≥ k and v ≥ k. Hence p
divides z and x2−αy2. Again, since α is a nonresidue, p divides x and
y. Thus, (x, y, z) is not a primitive triple modulo p. It follows that Q
has no zeros in P2

pk .

Example 5.4. Let k > 2 be odd and p be an odd prime. Choose α ∈ Z
such that α is a nonresidue modulo p, as before. Consider the form

Q(x, y, z) = x2 − pk−2y2 − αpk−1z2.

Again, (0, 0, 1) gives a zero of Q in P2
pn for n < k. We show that Q has

no zero in P2
pk .

1 This is not the most common way to formulate the theorem. It is best phrased
in terms of p-adic numbers. See [2, Ch IV, §3].
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Let x, y, z ∈ Z be such that Q(x, y, z) ≡ 0 (mod pk). It follows that
pk−2 |x2. Since k−2 is odd, we see that pk−1 |x2. This, in turn, implies
that p | y2, and hence p2 | y2. Thus, we have

Q(x, y, z) ≡ x2 − αpk−1z2 ≡ 0 (mod pk).

Letting x2 = pk−1x2
1, we get

x2
1 − αz2 ≡ 0 (mod p).

Since α is a nonresidue, we see that p | z and p |x1. Thus, p divides x,y
and z, which shows that (x, y, z) is not a primitive triple. It follows
that Q has no zeros in P2

pk .

Finally, the next example shows that given any k ≥ 2, we can find
an odd prime p and a form Q that satisfies the following:

(1) Q has zeros in P2
qn for all primes q 6= p and all n ∈ N.

(2) Q has zeros in P2
pn for all n < k,

(3) Q does not have a zero in P2
pk .

Example 5.5. Let k ≥ 2 and p be a prime congruent to 7 modulo 8.
Consider the form

Q(x, y, z) = x2 + pk−2y2 + pk−1z2.

Note that if k is even, then (1, 0, 1) gives a zero of Q in P2
8. If k is odd,

then (1, 1, 0) gives a zero of Q in P2
8. By Theorem 4.11, we conclude

that Q has zeros in P2
2n for all n ∈ N.

Next, Q is nondegenerate modulo all primes q 6= p. By Theorem 4.10,
we see that Q has zeros in P2

qn for all odd primes q 6= p and n ∈ N.

Clearly, (0, 0, 1) gives a zero of Q in P2
pn for n < k. We claim that

Q has no zero in P2
pk . Let x, y, z ∈ Z be such that Q(x, y, z) ≡ 0

(mod pk). We see that pk−1 |x2 + pk−2y2 and pk−2 |x2. We have two
cases:

Case (1) k is odd.
In this case, k − 2 > 0 is odd. Since pk−2 |x2, we conclude

that pk−1 |x2, and hence p | y. Thus, we get p2 | y, and hence
Q(x, y, z) ≡ x2 + pk−1z2 (mod pk). Letting x2 = pk−1x2

1, we
see that we have

x2
1 + z2 ≡ 0 (mod p).

Since p ≡ 3 (mod 4), we see that p | z and p |x1. In particular,
p divides x, y and z. Hence (x, y, z) is not a primitive triple.
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Case (2) k is even.
Writing x2 = pk−2x2

1, the equation Q(x, y, z) ≡ 0 (mod pk)
gives

x2
1 + y2 + pz2 ≡ 0 (mod p2).

In particular, p |x2
1 + y2. Since p ≡ 3 (mod 4), we see that

p | x1 and p | y. Thus, p2 | x2
1 + y2, which implies that p | z.

Hence, p divides x, y and z. Hence (x, y, z) is not a primitive
triple.

In any case, we see that we do not get a zero of Q in P2
pk .

Appendix A. Equivalence of Symmetric Matrices mod p

Let p be a prime, and denote by Sp the set of n-by-n symmetric
matrices over Fp. Consider the operation on Sp that takes M ∈ Sp to
ATMA, where A is an n-by-n invertible matrix.

The operation gives rise to a natural relation ∼ over Sp: for all
M1,M2 ∈ Sp, where the relation M1 ∼ M2 holds if and only if there
exists an invertible matrix A such that M1 ≡ ATM2A (mod p). We
note that ∼ is in fact an equivalence relation—it is reflexive, symmetric
and transitive.

We show in the theorem below that a symmetric matrix modulo p
must be similar to a diagonal matrix:

Theorem A.1. For any M ∈ Sp, there exists a diagonal matrix D and
an invertible matrix A ∈ GLn(p) such that

D ≡ ATMA (mod p)

Proof. We will explicitly consturct a diagonal matrix D satisfying the
theorem.

Consider M as a bilinear form. We begin by inductively showing
that for each positive integer k ≤ n, there exists a linearly independent
set of vectors {v∗1, . . . , v∗k} such that

(A.1) ∀i 6= j ∈ {1, . . . , k}, (v∗i )
TM(v∗j ) ≡ 0 (mod p).

For k = 1, the condition in (A.1) is vacuous, so we can pick an arbi-
trary vector v∗1. For the inductive case, assume that we already have
a linearly independent set of vectors {v∗1, . . . , v∗k} satisfying (A.1). By
extending the set as a basis, pick a vector vk+1 such that v∗1, . . . , v

∗
k, vk+1

are linearly independent. Then we let

v∗k+1 ≡ vk+1 −
k∑
i=1

v∗i
(v∗i )

TM(vk+1)

(v∗i )
TM(v∗i )

(mod p).
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First, for all j 6= k + 1, we see that

(v∗j )
TM(v∗k+1) ≡ (v∗j )

TM(vk+1)−
k∑
i=1

(v∗j )
TM(v∗i )

(v∗i )
TM(vk+1)

(v∗i )
TM(v∗i )

≡ (v∗j )
TM(vk+1)− (v∗j )

TM(v∗j )
(v∗j )

TM(vk+1)

(v∗j )
TM(v∗j )

≡ 0 (mod p),

as desired. By symmetry of M , we also obtain (v∗k+1)
TM(v∗j ) ≡ 0

(mod p). Therefore, (A.1) still holds. In addition, we see that the vec-
tors v∗1, . . . , v

∗
k+1 are linearly independent, so the inductive hypothesis

is satisfied.
The induction above yields a basis {v∗1, . . . , v∗n} satisfying (A.1). Now

let A be the matrix formed by taking v∗1, . . . , v
∗
n as column vectors. A

is nonsingular because the columns are linearly independent.
Pick D = ATMA (mod p). Note that the desired condition in the

theorem is trivially satisfied. It remains to check that D is diagonal.
From our choice of A, we see that Dij = (v∗i )

TM(v∗j ), which is zero
when i 6= j. Thus we have successfully shown that M is similar to a
diagonal matrix. �

Appendix B. Quadratic residues

Quadratic residues are useful in treatments of quadratic equations
modulo p, where p is a prime.

Definition B.1. A number q ∈ Z /pZ is called a quadratic residue
modulo p (or residue for short) if there exists x 6≡ 0 (mod p) such that

x2 ≡ q (mod p).

Zero is never a quadratic residue, since x2 ≡ 0 implies x ≡ 0. It is
also easy to see that there are exactly (p− 1)/2 residues.

The condition of a number being a quadratic residue is called the qua-
dratic residuosity, and is expressed commonly by the Legendre symbol:

(
a

p

)
:=


0, if a ≡ 0 (mod p),

+1, if a is a quadratic residue modulo p,

−1, otherwise.

An important property of Legendre symbols is that they are multi-
plicative, given a fixed prime p:
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Proposition B.2. For all a, b ∈ Z /pZ,

(B.1)

(
a

p

)(
b

p

)
=

(
ab

p

)
.

Proof. If a or b is zero, then both
(
a
p

)(
b
p

)
and

(
ab
p

)
are zero, so (B.1)

is satisfied. So we may restrict our attention to cases where a, b 6≡ 0
(mod p).

If a and b are both residues, then there exist α, β ∈ Z /pZ such that
α2 = a and β2 = b. Then ab is also a residue because (αβ)2 = ab.
Then both sides of (B.1) is 1, so it is satisfied.

If a is a residue with α2 = a and b is not, then it cannot be that
ab is a residue. Suppose the contrary, i.e. there exists δ ∈ Z /pZ such

that δ2 = ab. Then b =
(
δ
α

)2
, which contradicts the assumption. The

same holds when a is not a residue and b is. In either case, both sides
of (B.1) is -1.

The only remaining case is when a, b are both nonresidues. We can
use the following counting argument: as a, b vary in {1, . . . , p−1} each,
the product ab takes each value in {1, . . . , p − 1} exactly p − 1 times.
Since half of {1, . . . , p − 1} are residues, ab is a residue for exactly
(p − 1)2/2 pairs of values of (a, b). We have already accounted for
(p− 1)2/4 pairs where both a, b are residues. The remaining (p− 1)2/4
pairs then must come from pairs where both a, b are nonresidues. But
there are exactly (p − 1)2/4 such pairs, so it must be the product of
two nonresidue is always a residue, satisfying (B.1).

We have examined all possible cases for quadratic residuosity of a
and b, and in all cases, (B.1) holds. �
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