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0 Introduction

In combinatorics, Ramsey Theory considers partitions of some mathematical
objects and asks the following question: how large must the original object be
in order to guarantee that at least one of the parts in the partition exhibits some
property? Perhaps the most familiar case is the well-known Pigeonhole Princi-
ple: if m pigeonholes house p pigeons where p m, then one of the pigeonholes
must contain multiple pigeons. Conversely, the number of pigeons must exceed
m in order to guarantee this property.

Ramsey Theory is often discussed in a graph-theoretic context. Ramsey’s
Theorem, for instance, states that in any coloring of a sufficiently large complete
hypergraph, there exists a monochromatic complete subgraph of a desired size.
A good deal of research has been generated in this field to bound the size of the
smallest such complete hypergraph.

In this exposition, we seek to demonstrate an extension of Ramsey’s The-
orem onto the domain of infinite sets, as pioneered by Frank P. Ramsey and
developed by Waclaw Sierpinski, Paul Erdös, Richard Rado et al. Ramsey The-
ory will be framed in set-theoretic terms instead in order to enable ourselves to
discuss mathematical constructs whose sizes correspond to higher infinities.

We begin by proving the basic analogue of Ramsey’s theorem for graphs of
size ℵ0, and attempt to generalize it to higher aleph numbers. Then we consider
the implication of allowing other parameters to be infinite. Most of the theorems
discussed are borrowed from Levy’s Basic Set Theory, but they are examined
in an order that will hopefully assist in grasping a more intuitive picture.

1 Finite Ramsey Theory

Let us begin by visiting finite Ramsey Theory and stating the main results.
Instead of relying on the standard definitions in graph theory, we shall treat
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them as set-theoretic constructs, which admit generalizations more easily.

Definition 1.1. A complete hypergraph on a set A, denoted as A n, is the
set of n-membered subsets of A for some n 1.

Definition 1.2. A c-coloring of a complete hypergraph A n is a function
f : A n c where c is a cardinal.

For instance, a c-coloring of A 1 can be likened to the task of assigning A
pigeons to c pigeonholes; a c-coloring of A 2 can be likened to the task of
coloring the edges of the complete graph K A with c colors. More generally, a
c-coloring of A n is the partition of A n into c sets.

Definition 1.3. A subset B A is homogeneous for c-coloring f : A n c
in case f B n is a singleton set.

If such subset exists, we say that A “admits” a homogeneous subset B (for f .)

The Pigeonhole Principle and Ramsey’s Theorem can now be stated in these
definitions.

Proposition 1.4. (The Pigeonhole Principle) Let c be finite, and let A be a
finite set with A c. Then, any c-coloring of A 1 admits a homogeneous
subset B A with B 1.

Theorem 1.5. (Ramsey 1930) Let b, n, c be finite. Then, there exists a finite
γ such that any c-coloring of A n where A γ admits a homogeneous subset
B A of size b.

Theorem 1.5 tells us that for any finite c, we can find a homogeneous subset
of a desired size for a c-coloring, as long as the original set A is large enough.

We remark here that the above theorem is actually a simplified version of
Ramsey’s Theorem. The full statement allows us to impose a different constraint
on the size of each part in the partition, but we can forgo its discussion, as the
simplified version already suffices to motivate extensions onto infinite sets.

2 Ramsey’s Theorem on ℵ0

Theorem 1.5 indicates that large finite sets will admit homogeneous subsets for
some coloring. One can naturally extend this idea and ask whether infinite sets
also admit homogeneous subsets. The simplest case of this kind arises when the
cardinality of these sets is ℵ0, which we explore in this section. We will start
with a very weak result, and then progressively strengthen it until we arrive at
Theorem 2.8.

Before we begin, it may be useful to introduce a shorthand notation for sta-
ting that a set always admits a homogeneous subset for certain coloring, as
follows:
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Definition 2.1. (Erdös and Rado 1956) Let a, b, c be cardinals. Then a b n
c

shall denote the statement “for all sets A and C with A a and C c

and every function f : A n C, there is a homogeneous subset B A with
B b.”

We can immediately restate Theorem 1.5 from the previous section with this
shorthand definition:

Theorem 2.2. (Restatement of Theorem 1.5) Let b, n, c be finite. Then there
exists a finite γ such that γ b n

c
.

Note that in Definition 2.1, we are concerned only with the cardinalities of
the sets involved, not the sets themselves. This simplification is justified by the
fact that any coloring of a set can be translated onto a coloring of an equinu-
merous set by using the bijective relation between the two sets.

In the same vein, a coloring of a set can be translated onto a coloring of
a smaller set by the natural restriction. The next proposition captures this
intuition and other related ideas:

Proposition 2.3. (i) If a b n
c

holds and a a, b b, c c, then
a b n

c
holds as well.

(ii) For alephs a and b, if m n and a b n
c
, then also a b m

c
.

Proof. (i) Take any c -coloring of A n where A a . Consider its restriction
onto A n where A A has cardinality a. Since a c -coloring is a special case
of a c-coloring, by assumption we have a subset B A A of cardinality b

that is homogeneous for the restriction. Then any subset B B of cardinality
b is homogeneous for the original coloring, so a b n

c
as desired.

(ii) Let A a and let f : A m C with C c. Well-order A and define
f : A n C by f u f the set of the smallest m members of u . The
operation of taking the smallest m members is well-defined via the given well-
ordering. Then there exists B A of cardinality b that is homogeneous for f ,
and by inspection, B is also homogeneous for f .

Combining Theorem 2.2 with the proposition we have just proven, we arrive at
our first statement on ℵ0:

Corollary 2.4. ℵ0 b n
c

for any finite b, n, c.

Proof. By Theorem 2.2, γ b n
c holds for some finite γ. Applying the propo-

sition with ℵ0 γ immediately yields ℵ0 b n
c
.

It is not at all surprising that we can find a finite homogeneous subset from
a (finite) coloring of an infinite set. In fact, we did not rely on any set-theoretic
machinery to obtain this fact. Less obvious is whether there exists an infinite
homogeneous subset: for what value of n and c does ℵ0 ℵ0

n
c

hold? We will
see a surprisingly strong positive result:
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Theorem 2.5. (Ramsey 1930) Let A be a countably infinite set, and suppose
we color each pair x, y A, where x y, either red or black. Then A has
an infinite subset B such that all pairs x, y B, with x y, are of the same
color. In other words, ℵ0 ℵ0

2
2.

Proof. For every finite binary sequence s, we shall recursively define a subset
Cs A, and in case Cs , then also pick a member xs Cs. Begin by letting
C A.

Now the recursive step: for s 0, 1 , if Cs , then we set,

xs an arbitrary member of Cs,

Cs 0 y Cs y xs xs, y is black and

Cs 1 y Cs y xs xs, y is red .

If Cs , then xs is not defined, and we set Cs 0 Cs 1 .

Now, whenever Cs , we see that

(1) xs , Cs 0 and Cs 1 form a partition of Cs.

This implies that, for all finite binary sequences s and t where Ct and
s t, the following statements hold:

(2) Ct Cs, xs Ct and xs xt.

(3)

Let b be the bit of t that comes after the portion corresponding
to s. So s b t, meaning that xt Ct Cs b. Then, b 0 implies,
by definition of Cs 0, that xs, xt must be black; or else b 1 and
xs, xt is red.

Let T s s is a finite binary sequence Cs . By (1) and (2), T, is
a tree, and every initial segment of s T is also in T .

Given (1), construction of Cs can be seen as a recursive partition of A. Thus,
by induction, it is easy to see that

(4) A xt t T length t n length s n Cs.

For each n, there exists a distinct s such that length s n and Cs is not
empty; otherwise, (4) reads that A is the union of a subset of a finite set
xt length t n and an empty set, but A is infinite. This particular s

belongs to T by definition, so length T ℵ0. Each level Tn of T is finite, since
there are only finitely many binary sequences of length n, so König’s Lemma [3]
applies, and T must have a branch W of length ℵ0.

Let w W . Then w is an infinite binary sequence. In w, either 0 or 1 must
occur infinitely often; without loss of generality, suppose 0 occurs infinitely often,
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and let B xw n n ω w n 0 , where “w n denotes the restriction
of w onto 0, n , which is then a finite binary string. By our assumption and
(2), B is infinite. However, any two different members of B are of the form
xw n and xw m for some n m and w m w n 0. By (3), we have
xw n, xw m colored black. Hence we have shown the existence of an infinite

subset B homogeneous for the given 2-coloring.

Proposition 2.6. If a a n
2 , then a a n

k for all finite k 2.

Proof. (By induction) The statement is trivial for k 2. For k 3, let us
assume that the statement holds for 2, 3, 4, . . . , k 1. Consider f : A n k
where A a, and let g : 1, . . . , k 1, 2 be defined as

g x
1, x k

2, x k.

Then g f is a 2-coloring of A n, so by the inductive hypothesis, there exists a
homogeneous subset B A with cardinality a.

If g f B n 2, it must be that f B n k, so B is also homogeneous for
f as desired. On the other hand, if g f B n 1, it implies that f B n

1, . . . , k 1 . Since f B n is a k 1 -coloring, by the induction hypothesis,
there is a subset C B homogeneous for f B n having cardinality B
a. Then C is homogeneous with respect to f as well, and has the desired
cardinality.

Using the above proposition in conjunction with Theorem 2.5, we can
strengthen our result on ℵ0:

Corollary 2.7. ℵ0 ℵ0
2
c for all finite c 2.

The following flagship theorem allows us to substitute an arbitrary finite
constant n into the subscript, borrowing the idea explored in Theorem 2.5.

Theorem 2.8. (Ramsey 1930) ℵ0 ℵ0
n
c for any finite n, c.

We present two related proofs of this theorem. The first is inspired by
Ramsey’s original proof [4] and is easier to follow and historically interesting,
whereas the second appeals to more formal set theory and formulates the method
in a way that can be extended later.

Proof. #1. By Proposition 2.6, it suffices to consider c 2, which we shall
prove by induction on n. When n 1, the theorem reads ℵ0 ℵ0

1
2, and this

is trivially true from the observation that a partition of ℵ0 into two disjoint sets
must involve an infinite set.

For n 1, assume that ℵ0 ℵ0
n 1
2 , and let Γ0 ℵ0. It may be that there

exists x1 Γ0 and Γ1 Γ0 x1 so that any n-membered subset of Γ0 formed
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by taking x1 and an n 1 -membered subset of Γ1 is colored red. Then, it may
also be that there exists x2 Γ1 and Γ2 Γ1 x2 so that any n-membered
subset of Γ1 formed by taking x2 and an n 1 -membered subset of Γ2 is
colored red. Similarly, this process may continue indefinitely, so that we can
pick xi 1 Γi and Γi 1 Γi xi 1 where any n-membered subset formed by
taking xi 1 and a n 1 -membered subset of Γi 1 is colored red.

If this is possible, then we have an infinite set x1, x2, . . . where all the x’s are
distinct. Let Z be an n-membered subset of x1, x2, . . . . Let t min t xt

Z . Then Z is a set formed by combining xt and an n 1 -membered subset
of Γt, so it must be colored red. This shows that x1, x2, . . . is homogeneous
for the given coloring.

It remains to consider the case in which the process halts at some Γi. Let
y1 be any member of Γi. Define a 2-coloring g on the n 1 -hypergraph of
Γi y1 as follows: g X f X y1 . By our inductive hypothesis, g admits
an infinite homogeneous subset ∆1. It must be that g does not send n 1 -
membered subsets of∆1 to red; otherwise∆1 qualifies to be Γi 1with xi 1 y1.

Now let y2 be any element of ∆1. By our preceding argument, there exists an
infinite subset ∆2 such that the union of y1 with any n 1 -membered subset
of ∆2 is colored the same. This cannot be red; otherwise ∆2 qualifies to have
been Γi 1 with xi 1 y2. We can repeat this argument to generate the pair
yj 1,∆j 1 from ∆j indefinitely. In that case, y1, y2, . . . is homogeneous for

the coloring in that any n-membered subset must be colored black.

Hence, in either case we have demonstrated the existence of an infinite homo-
geneous subset of Γ0.

Proof. #2. (By induction on n.) When n 1, the theorem is trivial, as shown
in the first proof.

For n 1, assume that ℵ0 ℵ0
n 1
c . Given f : ω n c, we define a tree

T, whose elements are nonempty subsets of ω and whose partial order is
given by the inverse of proper inclusion. We shall define recursively the m-th
level of T , where T0 ω . Meanwhile, we will simultaneously prove that

(5) Tm is finite,

(6) Tm ω min D D l m Tl ,

(7) any two different members of Tm are disjoint, and

(8)
for every l m and every E Tm, there is a unique member of
El Tl such that E El.
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(5)-(8) obviously hold for m 0. Now suppose Tl is already defined for l m
and that (5)-(8) hold for l m. We need to define Tm 1 and prove that (5)-(8)
hold as well for m 1. Let E Tm. By (8), for each l m, there is El Tl

that includes E. Set yl min El for l m, namely the minimal element of El

(when taken as a set of ordinals), and ym min E. For every u E ym , let
gu : y0, . . . , ym

n 1 be the function given by

gu t1, . . . , tn 1 f t1, . . . , tn 1, u

for all t1, . . . , tn 1 y0, . . . , ym
n 1. Define an equivalence relation E on

E ym by setting u E v iff gu gv. Let QE be the set of all equivalence
classes. Since the number of functions mapping y0, . . . , ym

n 1, which is
finite, into c is finite, QE is finite as well, and QE E ym E minE .
We set Tm 1 E Tm

QE . Thus Tm 1 consists of nonempty subsets of ω, and
since Tm is finite by (5), so Tm 1 is a finite union of finite sets, therefore finite.

Tm 1

E Tm

QE

E Tm

E minE

Tm minE E Tm by (7)

ω min D D
l m

Tl min E E Tm by (6)

ω min D D
l m 1

Tl , so (6) holds for m 1.

(7) for m 1 follows from (7) for m and the definition of Tm 1, since two ele-
ments of Tm 1 are subsets of two elements of Tm, which are disjoint. Finally,
the uniqueness in (8) for m 1 follows from (7) for m, and the existence for (8)
for m 1 follows from (8) for m and the definition of Tm 1.

T , as constructed above, is clearly a tree of length ω, and by (5), each level is
finite. Thus König’s Lemma applies again, and T has an infinite branch Dl

l ω where Dl Tl for l ω. Denote min Dl by xl and let X xl l ω .
For an n 1 -tuple xi1 , . . . , xin 1

with i1 i2 in 1, let m in 1.
For all l m, we have xl Dl Dm 1. Since Dm 1 is an equivalence class of
the relation Dm

, f xi1 , . . . , xin 1
, u gu xi1 , . . . , xin 1

does not depend
on u as long as u Dm 1. Hence f xi1 , . . . , xin 1

, xin
does not depend on

in, and we can write this as g xi1 , . . . , xin 1
. We now have g : X n 1 c,

but by the induction hypothesis, there is a infinite subset B X homogeneous
for g. Hence we have f xi1 , . . . , xin

constant for all xi1 , . . . , xin
B n,

implying that B is homogeneous for f .

3 Generalizations to Larger Cardinals

In Theorem 2.8, we proved that ℵ0 admits a homogeneous subset of cardinality
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ℵ0 for any finite coloring. This is in fact the largest homogeneous subset we
could hope to find, since any subset must have a cardinality equal to or less
than ℵ0. However, the same result cannot be reproduced in the case of ℵ1 or
larger cardinals, as we shall see soon. We assume the Axiom of the Choice in
the proofs of this section.

Theorem 3.1. (Sierpinski 1933) 2ℵ0 ℵ1
2
2.

Proof. (By counterexample.) Let be the natural ordering on R, and let
be a well-ordering on R. Define a 2-coloring f : R 2 2 as follows:

f : x, y
0, if x y x y,

1, if x y x y .

We claim that there is no homogeneous subset B R with cardinality ℵ1. If
f B 2 0 for some subset B R, it must be that and agree on x, y B.
Thus well-orders B. Then we can consider a mapping B Q where b B
is mapped to a rational number between b and Succ b . (Since Q is dense
in R, a rational number between the two must exist.) Clearly this mapping is
injective, so B c Q c ℵ0 c ℵ1. If f B 2 1, then the inverse of well-
orders B, which yields the same result. Hence, it must be that no homogeneous
subset of 2ℵ0 has cardinality ℵ1.

Corollary 3.2. ℵ1 ℵ1
2
2.

Proof. Since 2ℵ0 ℵ1, applying the contrapositive of Proposition 2.3 to Theo-
rem 3.1 yields the corollary directly.

Theorem 3.3. (Sierpinski 1933) For every aleph a, 2a a 2
2.

Proof. (By counterexample.) This theorem generalizes upon Theorem 3.1; note
that Theorem 3.1 is a special case of Theorem 3.3 with a ℵ0.

Lemma 3.4. For an aleph κ, let A be the induced left-lexicographic ordering of
a set A 2κ whose order type is κ . In other words, when we treat x, y A 2κ

as functions from κ to 0, 1 ,

x A y df i κ x i 0 y i 1 x i y i .

Let A be the inverse relation. Then neither A, A nor A, A is well-
ordered.

Proof. Suppose A, A is well-ordered. Since A has order type κ , let f be the
order-preserving bijection of κ onto A. We claim that, by transfinite induction
on µ,

(9)
for every ordinal µ κ, there is an αµ κ such that for every
β αµ, f β µ f αµ µ.
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For µ 0, (9) holds with α0 0. Suppose now that (9) holds for some µ. If
f β µ (the µ-th bit of f β A 2κ) is zero for every β αµ, then set αµ 1

αµ. It is easy to see that whenever β αµ 1, we have f β µ f αµ 1 µ
by hypothesis, and also f β µ f αµ 1 µ by assumption. Hence (9) holds
for µ 1. If f β µ 1 for some β αµ, then set αµ 1 to be the least such
β in A, A . Because we have assumed that A, A is well-ordered, we can
always find the least such β. Once again, f β µ f αµ µ f αµ 1 µ
by hypothesis, and f β µ A f αµ 1 µ 1 by lexicographical ordering.
Thus f β µ cannot be 0, and must be 1 as well. So (9) is satisfied for µ 1.

In case of µ being a limit ordinal, take αµ supλ µ αλ. Recall that if the
Axiom of Choice holds, all successor cardinals are regular. Hence κ is regular
and µ κ, so we have αµ κ . In addition f αλ 1 λ f αµ λ for all
λ µ by (9) on λ, which gives us what we want.

We have thus shown that (9) holds by transfinite recursion. In particular,
when µ κ, we get f β κ f ακ κ for all β ακ. But since
f β , f ακ κ 0, 1 , the restriction of their domains onto κ trivially pre-
serves them. Hence f β f ακ . But this contradicts our assumption that f
is injective.

The proof for A, A is entirely analogous.

(Proof of Theorem 3.3 continued.) Again, let be the lexicographical ordering
on 2a, and let be a well-ordering on a . Define f : 2a 2 0, 1 as in the
proof of Theorem 3.1. If a subset B 2a of order type κ is homogeneous for
f , then either B or its inverse must agree with on B, in which case B, B

or B, B is well-ordered. This is explicitly forbidden by our previous lemma,
so it cannot have been that B has order type κ . Therefore 2a a 2

2.

Corollary 3.5. For every aleph a, a a 2
2.

Proof. The corollary follows from the fact that 2a a .

It is now clear that we cannot hope to achieve a a n
c for arbitrary un-

countable cardinal a, but perhaps we will be able to establish some positive
results by employing the technique in the proof of Theorem 2.8. In its proof,
we showed ℵ0 ℵ0

n
c by obtaining a sequence xl l ω in ℵ0 such that

(10)
for all i1 i2 in, the color f xi1 , . . . , xin

depends only
on i1, . . . , in 1,

which reduced the desired statement to the inductive hypothesis ℵ0 ℵ0
n 1
c .

Similarly, given b a n 1
c , we want to obtain d a n

c for as small a d as
possible by constructing a sequence xl l b in d that satisfies (10). For
this technique to yield what we want, we need d b, which can be obtained by
specifying a as a weakly compact cardinal.
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Definition 3.6. (i) An infinite cardinal λ is a strong limit cardinal in case
it is regular and for all κ λ, we have 2κ λ.
(ii) An uncountable cardinal Γ is a weakly compact cardinal in case it is
both a strong limit cardinal and has the tree property: any tree of size Γ has a
branch of length Γ or a level of size Γ.

The simplest example of a strong limit cardinal is ℵ0. On the other hand, the
existence of a weakly compact cardinal has not been proven or disproven with
the standard axioms of set theory. Hence the following theorem may strike as
a vacuous statement, but in fact its converse is also true, which is a result due
to Erdös and Tarski in 1961.[2] Therefore, whether there exists any cardinal a

besides ℵ0 satisfying a a n
c

(for all finite n and all c a) is nicely tied with
the existence of weakly compact cardinals.

Theorem 3.7. (Erdös and Tarski 1961) If an uncountable cardinal a is also a
weakly compact cardinal, then for all n finite and for all c a, we have a a n

c
.

Proof. As before, we will construct a tree T of non-empty subsets of b, partially
ordered by inverse proper inclusion. One important difference is that now T
will have length b rather than ω, and each level Tµ is going to have cardinality
less than b rather than be finite. So construction of T will require transfinite
recursion. For all µ b, the following will hold:

(11) Tµ b min D D λ µ Tµ ,

(12) any two different members of Tµ are disjoint, and

(13)
for every λ µ and every E Tµ, there is a unique member of
Eλ Tλ such that E Eλ.

Note the similarity to (6)-(8).

Set T0 b . Then (11)-(13) trivially hold for µ 0. Now suppose Tµ is
defined already and (11)-(13) hold for µ. Let E Tµ, and for every λ µ, let
Eλ be the unique member that includes E, as in (13), and let yλ min Eλ.
For every u E yλ , let gu : yλ λ µ n 1 c be the function given by
gu t1, . . . , tn 1 f t1, . . . , tn 1, u . Proceed to define an equivalent rela-
tion E on E yµ by setting u E v iff gu gv, and let QE be the set of
equivalence classes of E.

The number of functions g : yλ λ µ n 1 c is c µ for µ infinite and at
most cℵ0 for µ finite, so we have QE c µ ℵ0 . Now set Tµ 1 E Tµ

QE ,
hence

(14) Tµ 1 Tµ c µ ℵ0 .

Meanwhile, (11)-(13) again hold for µ 1. The proof is exactly analogous to how
we demonstrated that (6)-(8) held for m 1 in Theorem 2.5, with the exception
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that we have b for ω and µ for m.

Note that we are constructing T using transfinite recursion. Hence now we
must consider the case in which µ is a limit ordinal. Then, we set Tµ

λ µ h λ h is a branch in T µ 0 . In other words, Tµ is the set of all

non-empty intersections along all the branches of T µ. (Since each branch
corresponds a sequence of sets that are ordered in inverse proper inclusion, for
each branch, we can take the intersection of all these sets.) We can see that

(9) holds: let u b min D D λ µ Tλ , then, since (9) holds for λ µ

already, we have u Tλ, hence for some Eλ Tλ we have u Eλ, and
therefore u λµ

Eλ Tµ. Conversely, if u Tµ, then by definition of Tµ,

u λ µ h λ for some branch h of T µ. Since (9) holds for λ µ, we have

u min D D ξ λ Tξ for every λ µ.

(10) and (11) for limit ordinal µ follows from the definition of Tµ, and we also
have

(15) Tµ λ µ Tλ .

Recall that what we needed is a branch of T of length b. If Dλ λ b is
such a branch where Dλ Tλ for λ b, then set xλ min Dλ for λ b. Let
i1 i2 in b and let in 1 j b. Then we have in, j in 1 1,
and since Dλ λ b is a branch, we have Din

,Dj Din 1 1, hence
xin

, xj Din 1 1. By the definition of Din 1 1, both xin
and xj belong to the

same equivalence class with respect to Din 1
, in which case f xi1 , . . . , xin

f xi1 , . . . , xin 1
, xj as desired, since f is now independent of its n-th para-

meter.

It finally remains to show that we can always find a branch of length b. By
induction, Tλ 2 λ ℵ0 c: this is true when λ 0, since T0 b 1. For
λ 1, we have, by inductive hypothesis and (14),

Tλ 1 Tλ c
µ ℵ0 2 λ ℵ0 c 2c λ ℵ0 2 λ ℵ0 c 2 2 λ ℵ0 c.

(Recall that if the Axiom of Choice holds, the product of two infinite cardinals
is the maximum of the two. Cardinal arithmetic of the exponent above is thus
simplified.)

For a limit ordinal λ we have, by (15),

Tλ

µ λ

Tµ

µ λ

2 µ ℵ0 c 2 µ λ µ λ ℵ0 λ c 2 λ ℵ0 c.

Since b is weakly compact, it is also a strong limit cardinal, meaning 2 λ ℵ0 c

2λ b for λ b. Hence Tλ b for λ b. At this point we can invoke the
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tree property of a weakly compact cardinal, and conclude that T must have a
branch of length b, since it has no level of size b.

Theorem 3.8. (Erdös and Tarski 1961) If an uncountable cardinal a satisfies
a a n

c
for all finite n and all c a, then a is weakly compact.

Proof. First, regularity of a will be shown in Proposition 4.1. Next, suppose
the contrary that a is not a strong limit cardinal. Then there must exist κ such
that κ a 2κ. By Theorem 3.3, we have 2κ κ 2

2, which implies a a 2
2

via Proposition 2.3, yielding a contradiction. Finally, to show the tree property,
take T, T to be a a-tree. We can assume that T a for convenience. For
x a at level m or higher, define πm x to be the predecessor of x at the m-th
level. Now, we can specify a linear ordering on T as follows:

x # y df
πm x πm y where m is the least
level at which the predecessors differ.

Now construct f : a 2 0, 1 by letting f x, y 0 if x # y and f x, y 1
otherwise. Since a a 2

2 holds, there is a homogeneous subset W of cardinality
a for f .

If T has a level of size a, we are trivially done, so suppose the contrary. Then
for each m a, there is a σm a such that if x W satisfies σm

# x, then
x must be at level m or higher. By definition of the linear ordering above, if
x # y are both at level m or higher, then πm x πm y or πm x # πm y .
Therefore, if f W 2 0, then πm x σm x x W is non-decreasing
in the linear ordering with respect to x. Then there exists τm a and a bm

such that τm x x W implies πm x bm. Then bm m a is a branch
of length a. Hence a has the tree property. If f W 2 1, the same follows
analogously.

We have shown that a is a regular strongly limit cardinal with the tree property.
By definition, a is then a weakly compact cardinal.

We close this section by remarking that in the proof of Theorem 3.7, even
if a is not a weakly compact cardinal, it is possible to obtain d a n

c from
b a n 1

c where d is the set of binary sequences of length less than b, which
is a result due to Erdös and Rado in 1956. [2]

4 Generalizations in Other Parameters

So far we have focused on relations of the form a b n
c where n and c are

finite. In this section we briefly relax these constraints and extend our investi-
gation onto cases in which n and c are infinite.

(We have already derived some applicable results in the previous sections:
Proposition 2.6 also holds when n is infinite, and so does Theorem 3.7 when
c a is infinite.)
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Proposition 4.1. For all alephs a, a a 1
c

iff c cf a where cf a is the
cofinality of a.

Proof. By definition, in order to express a as a union of sets of smaller cardinal-
ity, we require cf a -many sets. Hence, if a has been partitioned by a c-coloring
with c cf a , it must be that one of the parts has cardinality of a. On the
other hand, if c cf a , then there exists a partition into c-many sets with each
part having smaller cardinality than a, so no homogeneous subset of a would
exist for this partition.

Now we ask when the relation a b n
c holds with n ℵ0; namely, what

happens if we color each countably infinite subset of a? Note that in order
to have a subset of cardinality ℵ0, both a and b must be infinite. Hence, the
weakest form of the relation would read:

a ℵ0
ℵ0

2 ,

according to Proposition 2.3. Nonetheless, it turns out that whenever a is an
aleph, the relation fails to hold. This is the strongest result we could have hoped
to obtain, as we demonstrate in the next theorem.

Theorem 4.2. For all alephs κ, κ ℵ0
ℵ0

2 .

Proof. Let Aα : α κℵ0 be a well-ordering of the set κℵ0 . Define a two-
coloring of κℵ0 by the following rule: Aα κℵ0 is colored red iff Aβ Aα for
every β α. Now let X be an infinite subset of κ. We show that Xℵ0 contains
both red and non-red elements.

First, let X1 X2 X3 be an arbitrary sequence of infinite subsets
of X. This can be constructed by choosing X1 and removing one element at
a time. Then let Y α r Aα Xr , and take its least element in the
given well-ordering. Denote this element by Aα Xr for some α, r; also let β
be such that Aβ Xr 1. Then we see that Aβ Aα while α β by choice of
α, implying that Aβ Xr 1 Xℵ0 is not colored red.

Second, let α min β Aβ X . Then Aα Xℵ0 , and also Aα is colored red
by definition. Hence, X contains both red and non-red elements, meaning that
it must be that a ℵ0

ℵ0

2 .
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