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Abstract: We analyze the ergodic capacity and ε-outage capacity of 
coherent optical links through the turbulent atmosphere. We consider the 
effects of log-normal amplitude fluctuations and Gaussian phase 
fluctuations, in addition to local oscillator shot noise, for both passive 
receivers and those employing active modal compensation of wavefront 
phase distortion. We study the effect of various parameters, including the 
ratio of receiver aperture diameter to wavefront coherence diameter, the 
strength of the scintillation index, and the number of modes compensated. 
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1. Introduction  

In this study we study the maximal rate at which the information may be transferred through 
free-space optical communication links using coherent detection. Evaluating the performance 
of a heterodyne or homodyne receiver in the presence of atmospheric turbulence is generally 
difficult because of the complex ways that turbulence, acting as a time-varying, multiplicative 
noise, affects the coherence of the received signal that is to be mixed with the local oscillator. 
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The downconverted heterodyne or homodyne power is maximized when the spatial field of 
the received signal matches that of the local oscillator. Any mismatch between the amplitudes 
and phases of the two fields will result in a reduction of the downconverted power, i.e., 
fading. In the case of coherent modulation, phase fluctuations can severely degrade 
performance unless measures are taken to compensate for them at the receiver. Here, we 
assume that after homodyne or heterodyne downconversion is used to obtain an electrical 
signal, the receiver is able to track any phase fluctuations caused by turbulence (as well as 
those caused by laser phase noise), performing ideal coherent (synchronous) demodulation. 
Under this assumption, analyzing the receiver performance requires knowledge of only the 
envelope statistics of the downconverted electrical signal. 

The classical theory of communications was developed originally in the context of linear 
channels with additive noise [1]. The capacity C of a communication channel is the maximal 
rate at which the information may be transferred through the channel without error. For an 
additive white Gaussian noise (AWGN) channel, the complex baseband representation is 
y[t]=x[t]+n[t], where x[t] and y[t] are the complex input and output at time t, and n[t] is the 
additive Gaussian noise, which is independent over time. In the classical capacity formula for 
the AWGN channel with average power constraint P and noise power spectral density N0/2,  
given by C=B log2(1+γ0), the spectral bandwidth B, which has units of Hz, multiplies the 
maximal spectral efficiency log2(1+γ0), which has units of bits/s/Hz. Here, γ0=P/N0B is the 
signal-to-noise ratio (SNR) per unit bandwidth. When the SNR γ0 is low, the capacity 
increases linearly with the received power P, but when the SNR γ0 is high, the capacity 
increases logarithmically with P but depends more strongly on the spectral bandwidth B. 

In free-space optical communication through the turbulent atmosphere, we must consider  
fading channels, which are a class of channels with multiplicative noise. The complex  
baseband representation of an atmospheric channel y[t]=α[t]x[t]+n[t] includes the 
multiplicative effect of the fading process α[t] at time t. We let α

2
 denote the atmospheric 

channel power gain and (P/N0B)α
2
= γ0α

2
 denote the instantaneous received SNR per symbol. 

Conditional on a realization of the atmospheric channel described by α, this is an AWGN 
channel with instantaneous received SNR γ=γ0α

2
  and the maximum rate of reliable 

communication supported by this channel is log2(1+γ0 α
2
) bits/s/Hz. This quantity is a function 

of the random channel power gain α
2
, and is therefore random. The statistical properties of the 

atmospheric random channel fade α
2
, with probability density function (PDF) pα2(α

2
), provide 

a statistical characterization of the SNR γ=γ0α
2
 and, consequently, of the maximal spectral 

efficiency achievable for the free-space optical link. Although information theory has been 
applied to free-space optical communication links using direct detection [2-4], the ultimate 
classical information capacity when coherent (homodyne or heterodyne) detection is used 
needs to be properly considered. 

In [5], we study in a unified framework the effects of both wavefront distortion and 
amplitude scintillation on the performance of synchronous (coherent) receivers utilizing 
wavefront compensation. The effects ascribed to turbulence are random and subsequently 
must be described in a statistical sense. Early works quantified turbulence-induced fading 
through its mean and variance [6,7], although these are not adequate to fully characterize 
system performance. Later analyses have attempted to overcome these limitations and fully 
characterize the statistics of heterodyne optical systems by assuming a highly simplified 
model of atmospheric effects [8,9]. An alternate approach, aimed at overcoming the 
limitations of previous work, is based on numerical simulation of heterodyne optical systems 
[10]. Unfortunately, none of these prior works have resulted in an accurate statistical 
description of the performance of phase-compensated homodyne or heterodyne systems. In 
[5], we define a mathematical model for the received coherent signal after propagation 
through the atmosphere. By noting that the downconverted signal current can be characterized 
as the sum of many contributions from different coherent regions within the aperture, we 
show that the PDF of this current can be well-approximated by a modified Rice distribution. 
In our model, the parameters describing the PDF depend on the turbulence conditions and the 
degree of modal compensation applied in the receiver. We provide analytical expressions and 
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use them to study the effect of various parameters on performance, including turbulence level, 
signal strength, receive aperture size, and the extent of wavefront compensation. 

Although atmospheric fades are random, for the usual case of wind-driven turbulence, 
they are approximately constant on time intervals no shorter than one millisecond. Because 
data rates can exceed a billion symbols per second, a block of several million symbols can 
experience substantially similar fading conditions. There are several different information-
theoretic notions of capacity [11]. Without any delay constraints, we can code over many 
channel realizations and achieve reliable communication at rates up to the ergodic capacity, 
defined as the average maximum mutual information per unit time, where an ensemble 
average is taken over the random gains. The ergodic capacity is the expectation with respect 
to the gains of the instantaneous capacity. The ergodic assumption requires that the codeword 
extent over at least several atmospheric coherence times, which allows coding across both 
deep and shallow fade channel realizations. When delay constraints prevent averaging over 
deep and shallow channel realizations, and the codeword is restricted to just one coherence 
time, strictly speaking, the channel capacity is zero, because there is a chance that the fading 
might be so severe that the instantaneous capacity is below any desired rate. In this case, a 
more appropriate measure of capacity is the probability that the channel can support a desired 
rate. In Section 2, we consider the capacity of coherent single-input single –output links for a 
given outage probability. In Section 3, we consider the ergodic capacity of such links. We 
present conclusions in Section 4. 

2. ε-outage capacity 

As data rates increase, atmospheric communication channels become better described as slow-
fading channels. In terms of information theory this is equivalent to communication over 
channels where there is a nonzero probability that any given transmission rate cannot be 
supported by the channel. Consequently, in many practical situations, where delay constraints 
prevent using an extended codeword and averaging over deep fade channel realizations is not 
possible, an appropriate measure of capacity is the probability that the channel can support a 

given rate R, i.e., pout(R)=P{log2(1+γ)<R}. Here, the operator P{A} indicates the probability 

of an event A. Let γR  denote the SNR that is required to support a rate R. As the channel 
capacity is monotically increasing with received power for a given channel state, the 

probability of outage can be expressed in terms of SNR as pout(R)=P{γ<γR}. This result can be 

expressed in terms of  the complementary cumulative distribution function (CCDF) of the 

SNR γ  as pout(R)=1−Fc(γR). From here, we can solve pout(R)=ε to obtain the SNR γ  producing 

a ε-outage probability Fc(γR)=1−ε, i.e., γR=Fc
−1

(1−ε). Then, by definition, the ε-outage 
capacity becomes 

 ( ) ( )1

2 2log 1 log 1 1R cC B B Fε γ ε− = + = + −  . (1) 

It is clear that the atmospheric outage capacity depends on the statistical distribution of 

SNR γ through its CCDF Fc(γR). We have already modeled the impact of atmospheric 
turbulence-induced phase and amplitude fluctuations on free-space optical links using 

synchronous detection and found that the SNR γ is described by a noncentral chi-square 
distribution with two degrees of freedom [5]: 

 ( ) ( ) ( ) ( )
0

1 11
exp exp 2

r r rr
p r Iγ

γ γ
γ

γ γ γ

 + + +
= − −   

    
, (2) 

where the average SNR γ is giving by 2

0
γ γ α=  and the parameters 2α and 1/r describe 

turbulence effects through the relations 
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In this model, the signal is characterized as the sum of a constant (coherent) term and a 
random (incoherent) residual halo. The contrast parameter 1/r is a measure of the strength of 

the residual halo to the coherent component. The mean 
r

α and variances σr
2
, σr

2
 in Eq. (3) are 

obtained with the help of [5] 
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=

 = + − − − − 

 = − − 

 (4) 

Here, log-normal amplitude fluctuations and Gaussian phase fluctuations are characterized by 

their respective statistical variances, σχ
2
 and σφ

2
, 

 

( )2 2

5
3

2

0

log 1
e

J

D
C

r

χ β

φ

σ σ

σ

= +

 
=  

 

 (5) 

The intensity variance σβ
2
 is often referred to as the scintillation index [12]. The coefficient CJ 

depends on the number J of Zernike terms corrected by a receiver employing active modal 
compensation [13]. Phase-compensated receivers offer the potential for overcoming 
atmospheric limitations by adaptive tracking of the beam wave-front and consequent 
correction of atmospherically-induced aberrations. The modal compensation method is a 
correction of several modes of an expansion of the total phase distortion in a set of basics 
functions. Here, we have considered a model for a modal compensation system, a hypothetical 
device whose response functions are components of some expansion basis. Different sets of 
functions can be used for the expansion although most often they are Zernike polynomials, a 
set of orthonomal basis modes defined on a unit circle and that are related to the classical 
Seidel aberrations [14]. The modes are a product of angular functions and radial polynomials 
when polar coordinates are considered. We will assume that the modal compensation system 
has infinite spatial resolution in the correction of phase distortions. In Eq. (5), the receiver 
aperture diameter D is normalized by the wavefront coherence diameter r0, which describes 
the spatial correlation of phase fluctuations in the receiver plane [6]. The model leading to the 
PDF in Eq. (2) is based on the observation that the downconverted signal current can be 
characterized as the sum of many contributions from N different coherent regions within the 
aperture [5] 

 

1
5/32

0

0

6
1.09 , 1.08

5

r D
N

D r

−
     = Γ     

       
, (6) 

 
where Γ(a,x) is the lower incomplete gamma function. For the limiting case in which the 
receiver aperture is much greater than the coherence diameter r0, i.e., D»r0, to a good 

(C) 2009 OSA 16 February 2009 / Vol. 17,  No. 4 / OPTICS EXPRESS  2766
#102601 - $15.00 USD Received 9 Oct 2008; revised 2 Dec 2008; accepted 8 Feb 2009; published 11 Feb 2009



approximation, Eq. (6) leads to an aperture consisting of (D/r0)
2
 independent cells, each of 

diameter r0. In the opposite extreme, for an aperture much smaller than the coherence 

diameter, D«r0, the number of cells described by Eq. (6) approaches unity. Values of N<1 are 

not possible. 
The PDF Eq. (2) modeling the impact of atmospheric turbulence on coherent links can be 

integrated to obtain the corresponding cumulative distribution function. After some algebra, 
we obtain the CCDF 

 

( ) ( )

( )
0

1  

2 1
2  , 

R

c R

R

F d p

r
Q r

γ

γγ γ γ

γ
γ

= −

 +
=  

 
 

∫
 (7) 

where Q(a,b) is the first-order Marcum Q function. In order to estimate the ε-outage capacity 
in Eq. (1), we need to determine the inverse of this CCDF. However, there is no known 
elementary inverse of the Marcum Q Marcum’s function. Hence, we represent the Marcum Q 

function by a strict upper Chernoff bound [15], Q(a,b)≤exp[−(b−a)
2
/2], allowing us to obtain 

an upper bound on the CCDF 

 ( ) ( )
2

2 11
exp 2

2
c R R

r
F rγ γ

γ

  + ≤ −  − 
    

. (8) 

Equation (7) can be easily inverted to obtain the argument γR. By denoting Fc(γR)≡p,  

 ( )
( ) ( )2

1
2log 2

2 1
c R eF p p r

r

γ
γ− = ≤ − +

+
. (9) 

We can thus obtain a tight upper bound for the ε-outage capacity  

 
( )

( )( )2

2
 log 1  2 log 1 2

2 1
e

C B r
r

ε

γ
ε

 
≤ + − − + 

+ 
. (10) 

The applicability of this result is shown by noting that, in the regime of weak turbulence 
when the signal coherent term is very strong (r→∞), the density function (2) becomes highly 
peaked around the mean value γ0, and there is no fading to be considered. In this case, as 
should be expected, Eq. (10) tends towards the Shannon limit log2(1+γ0). On the other hand, 
we note that in the regime of strong turbulence, the coherent part of the signal is very weak, 
r→0, and the fading PDF (2) becomes a negative-exponential distribution, i.e. 

( ) ( )1 exppγ γ γ γ γ= −  and ( ) ( )expc RF γ γ γ= − . The corresponding ε-outage capacity 

( )2 log 1 log 1eC Bε γ ε= − −    coincides with Eq. (10) in the limit of strong turbulence r→0. 

We check the tightness of the upper bound Eq. (10) by considering the corresponding 

lower Chernoff bound to the Marcum Q function [15], Q(a,b)≥exp[−(b+a)
2
/2]. The 

corresponding lower bound to the ε-outage capacity is similar to Eq. (10) except for the 

symbol of the term 2r  

 
( )

( )( )2

2
 log 1  2 log 1 2

2 1
e

C B r
r

ε

γ
ε

 
≥ + − − − 

+ 
 (11) 

Both upper and lower bounds to the ε-outage capacity are extremely close to each other in 
most situations considered in this study, which justifies the utility of the bound described by 
Eq. (10). 
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Fig. 1. ε-outage spectral efficiency vs. turbulence-free SNR per symbol γ0 for coherent detection and 
additive white Gaussian noise (AWGN). Performance is shown for different values of: (a) the normalized 
receiver aperture diameter D/r0, and (b) the number of modes J removed by adaptive optics. The outage 
probability is fixed at ε=0.001. Amplitude fluctuations are neglected by assuming σβ

2=0. Turbulence is 
characterized by the phase coherence length r0. In (a), D/r0 ranges from 0.1 (weak turbulence) to 10 
(strong turbulence). In (b), the compensating phases are expansions up to tilt (J=3), astigmatism (J=6), and 
5th-order aberrations (J=20). The no-correction case (J=0) is also considered. The AWGN Shannon limit 
is indicated by black lines. 

Figures 1-3 illustrate the effect of atmospheric turbulence on the information capacity of 
channels in the slow-fading scenario when coherent detection and modal-compensated 
heterodyne or homodyne receivers are considered. We study the ε-outage capacity Cε Eq. (10) 
for different outage probabilities ε as a function of the average turbulence free SNR γ0, the 
receiver aperture diameter D, the number of spatial modes J removed by the compensation 
system, and the strength of atmospheric turbulence. Turbulence is quantified by two 
parameters: the phase coherence length r0 and the scintillation index σβ

2
. We consider two 

nonzero values of the scintillation index. The value σβ
2
 = 0.3 corresponds to relatively low 

scintillation levels, while σβ
2
 = 1 corresponds to strong scintillation, but still below the 

saturation regime. When the turbulence reaches the saturation regime, wavefront distortion 
becomes so severe that it would be unrealistic to consider phase compensation. 

Figure 1 presents the ε-outage spectral efficiency Cε/B vs. turbulence-free SNR γ0. Figure 
1(a) shows the capacity for different values of the normalized aperture diameter D/r0, while 
Fig. 1(b) shows the performance for different values of J, the number of modes compensated.  
In all cases, we use a small outage probability ε=0.001. We assume no scintillation, σβ

2
 = 0, so 

the effect of turbulence is simply to reduce the coherence length r0. For a fixed aperture 
diameter D, as r0 is reduced, the normalized aperture diameter D/r0 increases, and turbulence 
reduces the heterodyne or homodyne downconversion efficiency. Just using a normalized 
aperture diameter D/r0=10, turbulence reduces the capacity of the atmospheric channel to very 
small values for all values of the SNR γ0 considered. When phase correction is used, as in Fig. 
1(b), in most situations compensation of just a few modes yields a substantial performance 
improvement. Compensation of J = 20 modes yields significant improvement for even the 
largest normalized apertures considered. For example, for a normalized aperture D/r0=10, the 
0.001-outage spectral efficiency can be as large as 8 bits/s/Hz for the higher values of SNR γ0 
considered. 

Figure 2 considers the effect of aperture diameter on the ε-outage spectral efficiency. It 
presents the spectral efficiency as a function of the normalized aperture D/r0 for a constant 
phase coherence length r0. For the smallest aperture diameter considered, the turbulence-free  
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Fig. 2. ε-outage spectral efficiency vs. normalized receiver aperture diameter D/r0 for coherent detection and 
AWGN. In (a), no phase compensation is employed, and performance is shown for different values of the 
outage probability ε. In (b), the outage probability is fixed at ε=0.001, and performance is shown for different 
values of J, the number of modes corrected by adaptive optics. In all cases, the turbulence-free SNR per 
symbol γ0 is proportional to the square of the aperture diameter D. For the smallest aperture considered, we 
assume γ0 = 10 dB. In (a), ε ranges from 0.1 (large outage probability) to 0.001 (small outage probability). In 
(b), the compensating phases are expansions up to tilt (J=3), astigmatism (J=6), and 5th-order aberrations 
(J=20). The AWGN Shannon limit is indicated by black lines. In (a), for ε=0.001, the dotted line considers 
the ε-outage spectral efficiency when the scintillation index is not neglected but fixed at σβ

2 = 1 

SNR has a value γ0 = 10 dB. For any other aperture diameter, the value of γ0 is proportional to 
D

2
. Figure 2(a) presents capacity for different values of the outage probability ε. The 

dependence on scintillation index σβ
2 

is very weak, as it can be seen in Fig. 2(a) for ε=0.001, 
where the outage capacity for σβ

2
=0 (solid line) and σβ

2
=1 (dashed line) are compared. In Fig. 

2(a), the existence of an optimal aperture diameter in coherent free-space links is apparent. 
This optimal aperture diameter maximizes the ε-outage capacity. When the aperture is larger 
than the optimal value, phase distortion cannot be overcome by the increase on collected 
power and we observe a decrease in capacity. When larger normalized apertures D/r0 are 
considered in Fig. 2(a), the capacity tends toward an asymptotic value that is independent of 
normalized aperture diameter D/r0. In this regime, defined by the negative-exponential 

distribution, the ε-outage capacity is given by ( )2 log 1 log 1eC Bε γ ε= − −   . In Fig. 2(b), we 

consider a small outage probability ε=0.001 and show the ε-outage spectral efficiency for 
different values of J, the number of modes compensated. As we increase J, the optimized 
value of D/r0 increases, and the optimized capacity improves appreciably. Even for such small 
outage probability, with compensation of J=20 modes, and optimized D/r0, an outage spectral 
efficiency of 14 bits/s/Hz is obtained. 

The result expressed in Eq. (10) indicates that, to achieve the same rate as the AWGN 
channel, the atmospheric channel needs an extra power equal to  

 
( )

( )( )
2 2

dB 10
10log 2log 1 2

2 1
e

P r
r

α
ε

 
= − − − + 

+  
 (12) 

expressed in decibels (dB). This fade margin is the same regardless of the turbulence-free 
SNR γ0. For a reasonably low outage probability ε, we can make the approximation that 

loge(1− ε)≈ −ε, and the fade margin Eq. (12) reduces to  
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Fig. 3. ε-outage fade margin vs. normalized receiver aperture diameter D/r0 for coherent detection and 
AWGN. In (a), no phase compensation is employed, and performance is shown for different values of the 
outage probability ε. In (b), the outage probability is fixed at ε=0.001 and performance is shown for 
different values of J, the number of modes corrected by adaptive optics. In all cases, the turbulence-free 
SNR per symbol γ0 is proportional to the square of the aperture diameter D. For the smallest aperture 
considered, we assume γ0 = 10 dB. In (a), ε ranges from 0.1 (large outage probability) to 0.001 (small 
outage probability). In (b), the compensating phases are expansions up to tilt (J=3), astigmatism (J=6), and 
5th-order aberrations (J=20). 

 

 ( )
2

2

dB 10
10log

1
P r

r

α
ε

 
= − + 

+  
. (13) 

In weak turbulence, r→∞ and ( )2

dB 1010logP α≈ −  tends towards zero. On the other hand, 

under strong turbulence conditions, r→0 and ( )2

dB 1010log  P ε α≈ − . In this regime, for a given 

outage probability ε, the fade margin penalty increases steadily with the intensity of the 
random fade α

2
. Consequently, an increase of the receiver aperture diameter translates into an 

increase of the fade penalty. Figure 3 shows the ε-outage fade margin Eq. (12) vs. the 
normalized receiver aperture diameter D/r0. Figure 3(a) shows the fade margin when no phase 
compensation is employed, and performance is shown for different values of the outage 
probability ε, while in Fig. 3(b) the outage probability is fixed at ε=0.001 and fade penalties 
are shown for different values of J, the number of modes corrected by adaptive optics. For a 
fixed ε-outage probability, as the normalized aperture D/r0 increases, the turbulence fade 
margin penalty increases. Even using a convenient normalized aperture D/r0=10, turbulence 
introduces a fade margin penalty of over 50 dB at ε=0.001. When phase correction is used, as 
in Fig. 3(b), compensation of a few modes yields to a substantial fade penalty decrease. For 
example, for the normalized aperture D/r0=10, compensation of J=20 modes eliminates 
almost completely the 50-dB fade margin penalty at ε=0.001. 

3. Ergodic capacity 

In the slow fading scenario, the atmospheric channel remains constant over the transmission 
duration of the codeword. Without any delay constraints, if the codeword spans several 
coherence periods, then time diversity is achieved and the outage probability improves. When 
the codeword spans many coherence periods, we are in the fast fading regime and, proper 
coding and interleaving, allows us to express the capacity as an average over many 
independent fades of the atmospheric channel: 
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Here, the PDF pγ(γ) is given by Eq. (2). This ergodic capacity Ε[C], defined as an ensemble 
average, is a meaningful way to study the information theory aspects of fast fading 
atmospheric channels. The ergodic capacity is the expectation with respect to the gains of the 
instantaneous capacity and, considering that the gain from the times when the channel fades 
are shallow cannot compensate for the loss when channel fades are deep because the spectral 
efficiency term log2(1+γ) is a convex function, Jensen’s inequality provides an upper bound 

for the ergodic capacity, [ ] ( )2
 log 1C B γΕ ≤ + . Ergodicity makes certain that the time-average 

SNR 2

0
γ γ α=  converges to the same limit for all realizations of the atmospheric fading 

process. 
Although the integral (14) cannot be put in a closed form for coherent atmospheric 

channels, we are able to estimate the ergodic capacity by expanding the spectral efficiency 

log2(1+γ) in a Taylor series about the expected value of the SNR, γ  
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where e is the base of the natural logarithm. The Lagrange form of the remainder RM+1, for a 

number ξ between γ  and γ, 
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is negative when M is odd and, consequently, the truncated Mth order approximation (15) is 
an upper bound of the capacity for any value of γ. Note that the Jensen upper bound coincides 
with the first term of (15). Applying the expectation integral (14) to the Taylor series (15) 
yields to the M-order approximation to the ergodic capacity: 
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By using the binomial formula giving the expansion of powers of sums, the mth central 

moment ( )m

γ γ− of the SNR γ is converted to moments about the origin mγ . These can be 

expressed in closed form. After some algebra, and using the PDF given by Eq. (2), we obtain 

the moments about the origin of the atmospheric SNR γ 
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in terms of the simple Laguerre polynomials Lm
 
for the parameter r describing the ratio of the 

coherent component to the residual halo in the atmospheric coherent signal collected by the 
receiving aperture [5]. In Eq. (18), Γ is the complete gamma function. 

Figures 4 and 5 show the effect of atmospheric turbulence on the information capacity of 
channels in the fast-fading scenario when coherent detection and modal-compensated 
heterodyne or homodyne receivers are considered. We study the ergodic capacity E[C] in Eq. 
(17) as a function of the average turbulence free SNR γ0, the receiver aperture diameter D, the 
number of spatial modes J removed by the compensation system, and the strength of 
atmospheric turbulence. These results consider the ergodic capacity Eq. (17) to a fourth-order  
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Fig. 4. Ergodic spectral efficiency vs. turbulence-free SNR per symbol γ0 for coherent detection and 
additive white Gaussian noise (AWGN). Performance is shown for different values of: (a) the normalized 
receiver aperture diameter D/r0, and (b) the number of modes J removed by adaptive optics. Amplitude 
fluctuations are neglected by assuming σβ

2=0. Turbulence is characterized by the phase coherence length 
r0. In (a), D/r0 ranges from 0.1 (weak turbulence) to 10 (strong turbulence). In (b), the compensating 
phases are expansions up to tilt (J=3), astigmatism (J=6), and 5th-order aberrations (J=20). The no-
correction case (J=0) is also considered. The AWGN Shannon limit is indicated by black lines. 

approximation, which yields high accuracy. For this analysis, the central moments of order 

m=2, 3, and 4, related to variance, skewness, and kurtosis, respectively, of the fading SNR γ, 
need to be considered. 

Figure 4 shows the ergodic spectral efficiency E[C]/B vs. turbulence-free SNR γ0 for 
different values of the normalized aperture diameter D/r0. As in Figure 1, we assume no 
scintillation, σβ

2
=0, so the effect of turbulence is simply to reduce the coherence length r0. 

Figure 4(a), where no phase compensation is employed J=0, illustrates how even relatively 
small normalized aperture diameters D/r0 are not able to achieve the same rate as the AWGN 
channel. For example, for a SNR γ0=30dB and normalized aperture D/r0=10, the ergodic 
spectral efficiency is slightly higher than 1 bits/s/Hz. This value should be contrasted with the 
10-bits/s/Hz AWGN spectral efficiency. When phase correction is used, as in Fig. 4(b), this 
turbulence penalty reduces considerably. For a normalized aperture D/r0=10, a mere 20-mode 
compensation brings the ergodic spectral efficiency to less than 1 bit/s/Hz of the AWGN 
Shannon limit for most values of the SNR γ0 considered. 

Figure 5 analyzes the effect of aperture diameter on the ergodic spectral efficiency. For a 
constant phase coherence length r0 and constant scintillation index σβ

2
, it shows E[C]/B as a 

function of the normalized aperture diameter D/r0. As in Fig. 2, for the smallest aperture 
diameter considered, the turbulence-free SNR has a value of γ0 =10 dB, while for any other 
aperture diameter, the value of γ0 scales proportional to D

2
. We again observe two different 

regimes. For relatively small apertures, only scintillation is of significance, but when the 
aperture is larger, phase distortion becomes dominant. In Fig. 5(a), no phase compensation is 
used and the performance is presented for different values of the scintillation index σβ

2
. Here, 

the optimal aperture is close to D/r0=1, reaching a maximum spectral efficiency value of 
almost 9 bits/s/Hz. The dependence on amplitude scintillation is weak. For larger apertures, 
moving into the negative-exponential regime, efficiency goes down to an asymptotic value of 
7 bits/s/Hz. In Fig. 5(b), we consider strong scintillation σβ

2
=1, and show the spectral 

efficiency for different values of the number of modes compensated J. As expected, the 
optimized value of D/r0 and the corresponding ergodic spectral efficiency increase 
considerably. Even for such a strong scintillation, compensation of J=20 modes translates into  
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Fig. 5. Ergodic spectral efficiency vs. normalized receiver aperture diameter D/r0 for coherent detection and 
AWGN. In (a), no phase compensation is employed, and performance is shown for different values of the 
scintillation index σβ

2. In (b), the scintillation index is fixed at σβ
2 = 1, and performance is shown for 

different values of J, the number of modes corrected by adaptive optics. In all cases, the turbulence-free 
SNR per symbol γ0 is proportional to the square of the aperture diameter D. For the smallest aperture 
considered, we assume γ0 = 10 dB. In (a), σβ

2 ranges from 0.3 (weaker turbulence) to 1 (stronger 
turbulence). In (b), the compensating phases are expansions up to tilt (J=3), astigmatism (J=6), and 5th-
order aberrations (J=20). The AWGN Shannon limit is indicated by black lines. 

an optimal value D/r0=10 and an ergodic spectral efficiency close to 15 bits/s/Hz. The 7-
bits/s/Hz asymptotic value is now achieved for much larger values of the normalized aperture 
D/r0. 

4. Conclusions 

We have developed analytical expressions for the ergodic and outage capacities for free-space 
optical communication links using coherent detection and active modal compensation of 
wavefront phase distortion to overcome turbulence-induced fading. We have studied the effect 
of various parameters, including turbulence level, signal strength, receive aperture size, and 
the extent of wavefront compensation. We have separately quantified the effects of amplitude 
fluctuations and phase distortion, and have identified the impact of the number of modes 
compensated on the maximal rate at which the information may be transferred. In most 
situations considered, amplitude fluctuations effects become negligible, and phase distortion 
become the dominant effect, so phase compensation becomes effective in increasing link 
capacity. We have examined information-theoretic bounds on the outage capacity, and have 
obtained simple and tight bounds on the ergodic capacity. For typical turbulence conditions, 
large gains in achievable rate are realizable by correcting a fairly small number of modes and 
using optimum receiving aperture diameters. 
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