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Field Conjugation Adaptive Arrays in
Free-Space Coherent Laser

Communications
Aniceto Belmonte and Joseph M. Kahn

Abstract—We analyze the performance of adaptive field
conjugation array receivers in coherent laser communications
through the turbulent atmosphere. We consider coherent fiber
arrays consisting of densely packed multiple subapertures,
with each subaperture interfaced to a single-mode fiber. In
a field conjugation fiber array, the single-mode fiber outputs
are detected, and the photocurrents are adaptively co-phased
and scaled, and then summed to mitigate signal fading
associated with atmospheric turbulence and compensate for
imperfect fiber coupling efficiency. We quantify how field
conjugation processing improves performance in the presence
of turbulence, as compared to a monolithic-aperture coherent
receiver having an equal total cross-sectional area.

Index Terms—Atmospheric turbulence; Coherent receivers;
Diversity combining; Optical communications.

I. INTRODUCTION

R ecent advances in coherent optical communications in
fiber transmission systems [1] have stimulated interest

in applying coherent detection in free-space laser communi-
cations (see, e.g., [2–9]). In a coherent system, transmitted
information can be encoded in the complex electric field,
including amplitude, phase and polarization. A coherent
receiver measures these degrees of freedom by interfering the
received signal with a local oscillator. In a free-space coherent
system, atmospheric turbulence can reduce the coherence
of the received signal that is to be mixed with the local
oscillator. Light propagated through a turbulent atmosphere
contains speckle which will be present at the detector surface.
Therefore, illuminating a single-element detector with a
uniform LO beam will produce mismatch of the amplitudes and
phases of the two fields, resulting in a loss of downconverted
power [2–5]. The downconverted coherent power is maximized
when the spatial field of the received signal matches that of the
local oscillator [10,11].

System configurations based on single monolithic apertures
using adaptive optical phase compensation to mitigate
atmospheric turbulence are being investigated [4]. As an
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alternative, diversity combining techniques, where signals
detected by two or more apertures are combined to reduce
the probability of deep fades and improve detection efficiency,
are being studied [6,7]. If these apertures are sufficiently
separated, fades in different apertures can be considered
statistically independent.

In this paper, we consider a coherent fiber array con-
sisting of densely packed multiple subapertures, with each
subaperture interfaced to a single-mode fiber, for improving
the performance of an atmospheric coherent system. Instead
of using a single monolithic-aperture coherent receiver with a
full-size collecting area, a large effective aperture is achieved
by combining the output signals from an array of smaller
fiber-coupled subapertures in a close-packed arrangement (see
Fig. 1). A coherent fiber array offers an advantage in terms
of coupling efficiency, as the number of turbulence speckles
over each subaperture is much smaller than it would be over
a single large aperture. Now, each receiver aperture can be
smaller than the scale on which the signal wavefront varies
and the local oscillator phase can be matched to the signal
to achieve efficient coherent downconversion. Output signals
from these receivers can then be combined electronically to
improve the detection statistics. In general, the performance
of such a field conjugation adaptive array should improve
with an increasing number of subapertures and, given a
fixed collecting area, the fiber array system can offer superior
performance. Note that, due to the close spatial arrangement
of the subapertures in a coherent fiber array, the atmospheric
fading on the array components is correlated or dependent.

In this paper, we consider a general model for the output
signal to noise ratio (SNR) of a coherent fiber array. In
Section II, we define a statistical model to describe the signal
collected by the fiber array receiver after propagation through
the atmosphere. In Section III, we analyze the performance
of array receivers under the effects of log-normal amplitude
fluctuations and Gaussian phase fluctuations, in addition to
local oscillator shot noise. We present our conclusions in
Section IV.

II. RECEIVER MODEL

In a coherent communication receiver, the SNR γ0 per unit
bandwidth B for a quantum or shot-noise-limited signal can be
interpreted as the detected number of photons (photocounts)
per symbol, where 1/B is the symbol period. Coherently
detected signals are modeled as narrowband RF signals with
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Fig. 1. (Color online) A coherent free-space optical communication system is affected by atmospheric turbulence in several ways. Amplitude
scintillation and phase distortion in the receiver plane lead to fluctuations in the amplitude and phase of the detected electrical signal,
impairing communication system performance. Adaptive receiver arrays are considered to mitigate the impact of atmospheric turbulence. In
a field conjugation fiber array, individual single-mode fiber outputs are detected, and the resulting intermediate-frequency signals are adaptively
co-phased and scaled and then summed, thus mitigating amplitude and phase fluctuations caused by turbulence. We analyze coherent fiber
arrays composed of L subapertures arranged in a hexagonal close-packed array.

additive white Gaussian noise (AWGN). For a coherent receiver
system, in the presence of target speckle and atmospheric
turbulence, we must consider fading, in which the signals
are also affected by multiplicative noise. In a fading AWGN
channel, we let α2 denote the atmospheric channel power
fading and γ0α

2 denote the instantaneous received SNR
per pulse. For a shot-noise-limited coherent optical receiver,
the SNR of the envelope detector can be taken as the
number of signal photons detected on the receiver aperture
γ0 multiplied by a photo-mixing efficiency α2. For systems
with perfect spatial mode matching, the mixing efficiency is
unity. When the spatial modes are not properly matched,
the contributions to the photocurrent from different parts of
the receiver aperture can interfere destructively, reducing the
instantaneous photo-mixing efficiency, thus causing fading.
Note that, conditional on a realization of the atmospheric
channel described by α2, this is an AWGN channel with
instantaneous received SNR γ = γ0α

2. This quantity is a
function of the random channel power fading α2, and is
therefore random. The statistical properties of the atmospheric
random channel fade α, with probability density function
(PDF) Pα(α), provide a statistical characterization of the SNR
γ = γ0α

2. In this study we define a statistical model for the
fading amplitude α (i.e., SNR γ) of the received signal after
propagation through the atmosphere.

In a single aperture, fiber-based coherent receiver, when the
spatial field of the received signal E i(r) does not match that of
the local oscillator Em(r), as described by the fiber-mode profile
referred to the receiving aperture, the random fading

α= 4

πD2

∫
dr W(r)E i(r)Em(r) (1)

depends on the amplitude and phase mismatches of the two
fields incident on the receiving aperture. Field mismatches
are caused by atmospheric turbulence. The circular receiving
aperture of diameter D is defined by the aperture function
W(r), which equals unity for |r| ≤ D/2, and equals zero for
|r| > D/2. Throughout this analysis, we assume that the signal
and local oscillator are matched in polarization, which is not
difficult to achieve in practice, owing to the low birefringence
of the atmosphere.

In general, in Eq. (1) fading is described by a complex
amplitude α = αr + jαi , where αr and αi represent integrals
over the collecting aperture of the real and imaginary
parts, respectively, of the optical fields reaching the receiver.
These real and imaginary parts can be considered as the
components of a complex random phasor. We need to study
how turbulence-induced fluctuations of the optical field define
the statistics of the fading amplitude α = αr + jαi . From
Eq. (1), we note that the two random magnitudes αr and
αi can be expressed as integrals over the aperture and,
hence, are the sums of contributions from each point in the
aperture. In order to proceed with the analysis, we can consider
a statistical model in which these continuous integrals are
expressed as finite sums over statistically independent cells
in the aperture. Under the assumption that the number
of independent coherent regions is large enough, we can
consider that αr and αi asymptotically approach jointly normal
random variables. Then, the probability density function of the
fading amplitude α can be well approximated by a Rayleigh
distribution. Just as in a speckle pattern [12], the Rayleigh
distribution for the turbulence-induced fading amplitude is
a consequence of the central-limit theorem. However, under
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conditions of weak turbulence, in which the number of coherent
cells is small, the fading may actually be the result of summing
a small number of terms. In this case, the fading α is not
likely to be Rayleigh. Rather than assuming that α is always
Rayleigh distributed for all conditions of turbulence, it is
more realistic to assume that α is described by a generalized
Rayleigh distribution that becomes Rayleigh only when the
number of coherent terms N becomes large enough. Such a
distribution is the Nakagami-m distribution [13], in essence,
a central chi-square distribution described by

pα(α)= 2(mN)m
α2m−1

Γ(m)
exp(−mNα2), (2)

where Γ is the complete gamma function. The Nakagami-m
parameter m and fading parameter N are measures of
turbulence effects. Here, N is the inverse of the fading
mean-square value,

N = 1

α2
, (3)

and describes the number of field coherent areas affecting the
fading measurement [12]. When m → 1, the m-distribution
reduces to Rayleigh. Note that the Nakagami-m distribution
closely approximates the Rice distribution in most practical
situations and there is an exact equivalency between the
m parameter and the Rician K factor [13]. We have
previously used the Rice distribution to model the impact of
atmospheric turbulence-induced fading on free-space optical
communication links using coherent detection [7]. Monte
Carlo simulations have validated the underlying statistical
model [14].

Applying the Jacobian of the transformation α2 = γ/γ0, the
corresponding SNR γ distribution can be described according to
a gamma distribution with a shape parameter m and a mean

value γ̄= γ0α
2 ≡ γ0/N given by

pγ(γ)=
(

mN
γ0

)m γm−1

Γ(m)
exp

(
−mN
γ0

γ

)
. (4)

When m → 1, the gamma distribution reduces to an
exponential distribution. Note that the PDF in Eq. (4) can
equivalently be expressed in terms of its moment generating
function (MGF), which is closely related to the Laplace
transform of the PDF pγ(γ), and defined as the expected value
of exp(sγ):

Mγ(s) =
∫ ∞

0
dγ exp(sγ)pγ(γ)

=
(
1− s

γ0

mN

)−m =
(
1− s

γ0

m
α2

)−m
. (5)

The MGF is a useful tool for analyzing average error
probability in systems with fading.

Also, it can be shown that the moments of the m-distribution
are given by

γk = Γ(m+k)

mkΓ(m)
γ̄k, (6)

which yields, by using the average SNR, an expression for m:

1
m

=
σ2
γ

γ2 = α4

α2
2 −1. (7)

Since αr and αi can be considered jointly normal random
variables, it is possible to relate high-order moments to the
lower order moments, and replace the fourth-order moment in

Eq. (7) by α4 = 3α2
2 −2α4. This yields

1
m

= 2−2

(
ᾱ2

α2

)2

. (8)

The parameter m, by characterizing the amount of fading
through the normalized SNR γ variance, gives a complete
description of the turbulence fading. When m → 1 and the
number of contributing coherent areas is large, the normalized
variance is unity, as expected for a Rayleigh distribution. When
m → ∞, and a very small number of contributing terms add
together, the normalized variance decreases. Now, the density
function becomes highly peaked around the mean value γ̄ =
γ0/N and there is only weak fading to be considered.

To characterize turbulence effects, it is useful to develop
procedures to compute m and N. Equivalently, as Eqs. (3) and
(8) describe the fading parameters m and N in terms of first
and second moments of the fading amplitude α, we would

like to derive closed-form expressions for α and α2. In order
to assess the impact of turbulence, both log-amplitude and
phase fluctuations should be considered. In Eq. (1), the incident
complex field in the pupil plane is expressed as

E i(r)= exp
[
χ(r)− jφ(r)

]
, (9)

where χ(r) and φ(r) represent the log-amplitude fluctuations
(scintillation) and phase variations (aberrations), respectively,
introduced by atmospheric turbulence. Also, the propagating
mode of a single-mode fiber is well approximated by an
un-truncated Gaussian function [15] and the fiber-mode profile
referred to the receiving aperture describing the local oscillator
Em(r) can be given by

Em(r)=
√

2
π

1
ωm

exp

[
−

(
r
ωm

)2
]

, (10)

where ωm is the fiber-mode field radius at the front surface of
the receiving lens. Bringing the averaging operator into Eq. (1),
we find the mean fading amplitude

α = 4

πD2

∫
dr W(r)E i(r)Em (r)

= 4

πD2 exp
(
χ̄
)∫

dr W(r)Em(r)

×exp
[
χ(r)− χ̄]

exp
[− jφ(r)

]
, (11)

where we have assumed independence of χ and φ, and
extracted the mean log amplitude χ̄ out of the integral. We
point out that because α results from atmospheric turbulence,
we can consider phases φ that obey homogeneous, isotropic,
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zero-mean Gaussian statistics. Subject to this assumption,
and the expressions for the mean of exponential functions of
Gaussian variables, we can write

exp(− jφ)= exp
(
−1

2
σ2
φ

)
, (12)

where the phase variance σ2
φ

is often used to characterize the
statistics of the phase aberrations caused by atmospheric tur-
bulence considering a Kolmogorov spectrum of turbulence [16]:

σ2
φ = 1.0299

(
D
r0

)5/3
. (13)

The coefficient 1.0299 in the phase variance σ2
φ

assumes
that no terms are corrected, e.g., by active modal phase
compensation. In Eq. (13), the receiver aperture diameter D
is normalized by the wavefront coherence diameter r0, which
describes the spatial correlation of phase fluctuations in the
receiver plane [10]. If it is also assumed that the log amplitudes
χ are normal random variables [17], we can use energy
conservation and the mean of exponential functions of normal
variables to obtain classical results for the log-amplitude and
amplitude means:

χ̄=−σ2
χ

exp
(
χ− χ̄)= exp

(
1
2
σ2
χ

)
.

(14)

The irradiance β≡ exp2
(
χk − χ̄)

has a mean given by exp
(
2σ2

χ

)
.

The log-amplitude variance σ2
χ is often expressed as a

scintillation index σ2
β
= exp

(
4σ2

χ

)
− 1. Substituting Eqs. (12)

and (14) into Eq. (11), and integrating the Gaussian fiber mode
Em(r) over the receiving aperture, yields

α= 1−exp
(−τ2)

τ2 exp
(
−1

2
σ2
χ

)
exp

(
−1

2
σ2
φ

)
. (15)

Here, the truncation parameter of the pupil τ ≡ D/2ωm
describes the ratio of the receiver aperture diameter to the
diameter of the backpropagated fiber mode. A large value of
τ or D À 2ωm corresponds to a narrow Gaussian mode or
a weakly truncated pupil. A uniformly illuminated pupil is
obtained by letting τ→ 0.

An explicit expression for the mean-square value

α2 =
(

4

πD2

)2 ∫
dr W(r)ES (r)EM (r)

×
∫

dr′ W
(
r′

)
E∗

S

(
r′

)
E∗

M

(
r′

)
(16)

can be found by writing the two integrals as a double integral
and bringing the averaging operator inside the double integral:

α2 =
(

4

πD2

)2 Ï
drdr′ W(r)W

(
r′

)
Em(r)E∗

m
(
r′

)
×E i(r)E∗

i

(
r′

)
. (17)

By changing the variables of integration from r and
r′ to ρ = r − r′ and R = (

r+r′
)
/2, and recognizing

µ(ρ) = ES
(
R+ρ/2

)
E∗

S

(
R−ρ/2

)
as the spatial coherence

function describing the average spatial correlation length of
field fluctuations, we obtain

α2 = 4

πD2

1−exp
(−2τ2)

2τ2

∫
dρ KD (ρ)µ(ρ). (18)

Here, KD (ρ) is the optical transfer function of a Gaussian
pupil, i.e., the fractional area of two overlapping Gaussian
beams, truncated by uniform pupils as described by the
truncation parameter τ, and whose centers are displaced a
distance ρ [18]:

KD (ρ) = 4

πD2

∫
dR W

(
R+ 1

2
ρ

)
W

(
R− 1

2
ρ

)
×Em

(
R+ 1

2
ρ

)
E∗

m

(
R− 1

2
ρ

)

=
8τ2 exp

(
−2τ2(

ρ/D
)2

)
π

[
1−exp

(−2τ2
)] ∫ √

1−(ρ/D)2

0
dq

× exp
(
−2τ2q2

)∫ p
1−q2−ρ/D

0
dp exp

(
−2τ2 p2

)
(19)

with ρ ≤ D. Letting τ→ 0 yields the classical optical transfer
function for a uniform pupil described by the fractional overlap
area of two circles:

KD (ρ)= 2
π

{
acos

( ρ
D

)
−

( ρ
D

)[
1−

( ρ
D

) 1
2
]}

. (20)

Equation (18) describes the fading mean-square value in
terms of the field fluctuation coherence function µ(ρ). Both
phase and amplitude fluctuations are considered in the field

coherence. Exact expressions for α2 can be found only when
the correlation function µ(ρ) is specified. In atmospheric
turbulence, based on the fact that the statistics of phase and
log amplitude are homogeneous, isotropic, and Gaussian, we
have [10]

µ(ρ) = exp
{[
χ

(
R+ 1

2
ρ

)
+χ

(
R− 1

2
ρ

)]
− j

[
φ

(
R+ 1

2
ρ

)
−φ

(
R− 1

2
ρ

)]}
= exp

[
−1

2
DW (ρ)

]
. (21)

Now, based on the Kolmogorov theory of turbulence, the
wave structure function DW (ρ) describes the statistics of
optical field variation in the atmosphere in terms of the
coherence diameter r0 as

DW (ρ)= 6.88
(
ρ

r0

) 5
3

. (22)

By substituting Eqs. (19) and (21) into Eq. (18), we obtain

an explicit expression for the fading α2. We note that the
integrand is an isotropic function of ρ so that the angular part
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of the ρ integration in Eq. (18) can be performed readily:

α2 = 4

πD2

1−exp
(−2τ2)

2τ2 2π
∫ D

0
ρdρ KD

(
ρ
)
µ(ρ). (23)

Note that the single integral in Eq. (23) can be characterized
as a coherent effective area Aeff of field fluctuations, in which

case the value of α2 decreases as the ratio of the receiver
measurement area to this Aeff . Thus the inverse N = 1/α2,
used in the PDF expressions Eqs. (2) and (4), can be interpreted
as the average number of field coherent areas (spatial modes
of the field pattern) over the measurement area. The exact
number of spatial modes in the field pattern affecting the
measurement area depends on the field spatial coherence and
the area of integration of the aperture. In the case of a receiver
area that is very large compared with the average correlation
length of the field fluctuations, the receiver aperture function
KD (ρ) is much wider than the autocorrelation function µ(ρ).
We can factor out KD

(
ρ = 0

) = 1 from the integral in Eq. (23)
which, using Eqs. (21) and (22), can be solved in a closed form
to obtain

α2 = 1−exp
(−2τ2)

2τ2 1.09
( r0

D

)2
Γ

[
6
5

,1.08
(

D
r0

)5/3
]

. (24)

Here, Γ(a, x) is the lower incomplete gamma function. If the
receiver aperture is much larger than the coherence diameter
r0, i.e., D À r0, and we let τ → 0 to obtain a uniform
illuminated pupil, Eq. (24) simplifies to Ω= 1.007(r0/D)2. To a
good approximation, the aperture can be considered to consist
of N ≈ (D/r0)2 independent cells, each of diameter r0. On the
other hand, when the field correlation area is much wider than
the aperture area, in Eq. (23) we can simply assume µ(ρ) = 1,
and in this limit the number of field coherent areas within the
measurement area approaches unity.

We can extend this analysis of the atmospheric coherent
fading and consider, along with the first-order statistical

properties α and α2, some higher order statistics. Of special
interest to our study are the joint properties of the fading
amplitudes αk and αl collected by two different apertures
centered at separated points in space. It is simple to show that,
given two apertures with centers separated by a distance ∆r,
the fading correlation function Cα(∆r)=αkα

∗
l is given by

Cα(∆r) = 4

πD2

1−exp
(−2τ2)

2τ2

×
∫ 2π

0
dφ

∫ D/2

0
ρ dρKD (ρ)

×µ
{[(
∆r+ρ cosφ

)2 + (
ρ sinφ

)2
]1/2

}
. (25)

The superscript ∗ represents the conjugation operator. As
expected from the definition of the correlation function, when

∆r = 0, we have Cα(∆r = 0) = α2, as described in Eq. (23).
This result is used in the next section to describe the degree
of correlation among the different fading signals combined by
a coherent fiber array.

By substituting Eqs. (15) and (23) into Eqs. (3) and (8), we
can express the Nakagami-m parameters N and m in terms

of two well-known magnitudes in atmospheric turbulence
studies: the log-amplitude variance σχ2, which is often used
to characterize the statistics of amplitude fluctuations, and the
wavefront coherence diameter r0, used to describe the spatial
correlation of phase fluctuations in the receiver plane.

III. PERFORMANCE ANALYSIS OF A CLOSELY PACKED

HEXAGONAL COHERENT ARRAY

In a field conjugation fiber array, the downconverted
electrical signals at the output of the single-mode fibers
need to be adaptively co-phased and scaled before they are
summed, to lessen fading caused by atmospheric turbulence
and compensate for imperfect fiber coupling efficiency (see
Fig. 1). That is equivalent to maximal-ratio combining (MRC)
of the signals from the array subapertures, considering them
to be branches of a diversity receiver [19]. MRC diversity
schemes assume perfect knowledge of the branch amplitudes
and phases, and require that the individual signals from
the branches be weighted by their signal amplitude to noise
power ratios, and then summed coherently. Thus, assuming
equal noise powers in each array element, a receiver should
weight individual signals by the complex conjugates of their
respective fading gains, and then add them (hence the name
“field conjugation array”). As in any system using coherent
MRC, the instantaneous SNR γT of the combined signals is the
ratio of the power of the coherent combination of the individual
signals to the power of the incoherent combination of the
individual noises. If an optimum voltage gain proportional to
the signal amplitude is assumed for each element in the array,
and if equal noise powers are assumed, the resultant composite
SNR for an L-element coherent fiber array is

γT =
L∑

l=1
γl = γ0

L∑
l=1

α2
l . (26)

Therefore, the instantaneous array combiner SNR γT is the
sum of the γl , the array element SNRs. For independent
subaperture signals and equal average branch SNRs, i.e., γ̄l =
γ̄ for all l ∈ {1,2, . . . ,L}, the PDF of the received SNR γT at the
output of a perfect L-branch coherent array can be described
as a sum of L independent and identically distributed gamma
random variables. Thus, the random variable γT is also
described by the gamma distribution Eq. (4) with a shape
parameter (mL). However, for close coherent fiber array
receivers, with insufficient collecting aperture spacing, it is not
realistic to assume that the combined signals are independent
of one another. In this scenario, the degree of correlation among
the different fading coefficients αl describing γT in Eq. (26) will
depend on several factors, including atmospheric conditions
and the exact geometry of the coherent array receiver.

Conventional analysis of a coherent array in correlated
fading is complicated as it is difficult to obtain closed-form
expressions quantifying performance. To facilitate the anal-
ysis, we can transform the dependent fading coefficients
αl into a new set of independent virtual components and
express the array SNR as a linear function of independent
virtual variables. We need to define a transformation of
the L coefficients αl that will preserve the total intensity
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∑
α2

l in Eq. (26) but eliminate the correlation between
the various fading components. Transforming the dependent
physical branch variables into a new set of independent virtual
branches allows us to express the array output SNR as a
linear combination of the SNRs at the independent virtual
branches [20,21].

Let α be the L×1 vector defined by

α= [
α1,α2, . . . ,αL

]T (27)

and define a correlation matrix Cα by

Cα =αα†, (28)

where the superscripts T and † represent the transpose
and the conjugate-transpose operators, respectively. Thus, the
element Ck,l ≡ αk α

∗
l of the correlation matrix Cα is given by

Eq. (25), with ∆r defining the distance between the elements
k and l in the array. The correlation matrix Cα is Hermitian,
i.e., conjugate-symmetric above and below the diagonal and,
consequently, there exists a linear L×L transformation matrix
L0 that diagonalizes Cα:

C′
α =L0 Cα L†

0. (29)

This linear transformation of the fading correlation matrix
results in a new diagonal matrix C′

α and decorrelates
the fading coefficients αl . Also, because the diagonalizing
transformation is unitary, i.e., L0 L†

0 equals the identity
matrix, this transformation is lossless and the sum of
the diagonal elements of the correlation matrix remains
unchanged:

L∑
i=1

α2
l =

L∑
i=1

λl . (30)

Here, the λl represent the eigenvalues of the matrix Cα,
and characterize the fading intensities of the new fading
components after the diagonalizing transformation. If Eq. (30)
is used in Eq. (26), we see that the composite array SNR
γT is transformed from a sum of L correlated SNRs, γ0α

2
l ,

to an equivalent sum of L uncorrelated, independent SNRs,
γ0 λl . Hence, the MGF for the correlated Nakagami fading
can be expressed as the product of the MGFs associated with
individual array elements:

MT (s)=
L∏

l=1
Ml (s)=

L∏
l=1

(
1− s

γ0

m
λl

)−m
. (31)

Here, Ml (s) denotes the MGF Eq. (5) for the lth virtual SNR.
It is worth mentioning that the evaluation of most common
performance measures of a coherent communication system
can be accomplished based entirely on knowledge of the MGF
of the output SNR, without ever having to compute its PDF. We
will use MT (s), given by Eq. (31), to estimate the performance
of the MRC coherent fiber array.

Perhaps the best and simplest performance measures of
a communication system in the presence of fading are the
average SNR γ̄ and the normalized SNR variance σ2

γ/γ̄2. The
normalized variance (or, equivalently, the normalized standard

deviation) describes the inherent statistical uncertainty of
the SNR γ caused by turbulence. In order to estimate these
two performance measures, we must know at least the first
statistical moments of the instantaneous SNR γ. If MT (s) is
differentiable at zero, then the nth moment about the origin
is given by the nth derivative γn = M(n)

T (0). The mean and
variances are therefore

γ= M′
T (0) ,

σ2
γ = M′′

T (0)− [
M′

T (0)
]2.

(32)

By using finite differences of several orders, it is straightfor-
ward to perform numerical differentiation of the numerical
moment generating function given by Eq. (31).

Perhaps the most important performance metric is the
average symbol error probability (SEP). We can apply the
AWGN SEP expression [22]

ps
(
E|γ)≈ a

π

∫ π/2

0
dφ exp

(
− bγ

sin2φ

)
(33)

to determine the performance over the atmospheric fading
channel. Here, a and b depend on the modulation format. For
the M-ary coherent modulation PSK that will be considered
in this analysis, we have a = 2 and b = sin2 (π/M). When
atmospheric fading is present, the received SNR γ varies
randomly and, consequently, the SEP ps(E|γ) conditioned on
the SNR γ is also random. Various performance metrics depend
on the rate of change of the fading and on the average SEP. The
unconditional SEP ps(E) of our ideal coherent array receiver
in the presence of atmospheric fading can be obtained by
averaging the AWGN conditional SEP ps(E|γ) over the PDF
pT (γ) of the instantaneous fading SNR at the output of the
coherent fiber array [23]:

pS(E) =
∫ ∞

0
dγ pS(E|γ)pT (γ)

= a
π

∫ π/2

0
dφMT

(
− b

sin2φ

)
, (34)

where we have interchanged the order of integration and
made use of the definition of the MGF. This MGF-based
approach is quite useful in simplifying our analysis. Although
the integration of Eq. (34) cannot be carried out in closed form,
we are able to carry out the integration in Eq. (34) using a
simple Gaussian–Legendre quadrature formula which, along
with the numerical evaluation of the MGF MT (s) Eq. (31),
yields high accuracy.

Figure 2 considers the mean and standard deviation of the
output SNR of field conjugation adaptive arrays, as given by
Eq. (34). We consider an L-element array and assume that the
subapertures are arranged in a hexagonal close-packed array,
as shown in Fig. 1. The larger circle represents a single receiver
aperture of diameter D. The small circles represent packed
subapertures. Each subaperture contains a lens that couples
the received light into a single-mode fiber. For comparison
of the receiver performance between an L-element array and
a single large aperture, we force the hexagonal array to be
packed within the limits of the single aperture area. The
hexagonal distribution is the densest way to arrange circles
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Fig. 2. (Color online) Normalized (a) mean and (b) standard deviation of SNR versus normalized receiver aperture diameter D/r0. The
performance is shown for different numbers of subapertures L in a closely packed hexagonal coherent array. The case L = 1 corresponds to a
monolithic aperture (black line). When a single aperture is considered, D describes the receiver aperture diameter. For comparison of the receiver
performance between an L-element array and a single large aperture, we force the hexagonal array to be packed within the limits of the single
aperture diameter D. The analysis takes account of the array fill factor and considers a coupling-geometry parameter τ for each subaperture lens
equal to 1.12. Solid lines indicate that amplitude fluctuations are neglected by assuming σ2

β
= 0. Dashed lines indicate that amplitude fluctuations

are considered, assuming a scintillation index σ2
β
= 1. In (b), the red dot-dashed line indicates the case of L = 7 subapertures with statistically

independent fading.

in a plane. Still, note that each subaperture will have a pupil
area slightly smaller than 1/L times the pupil area of the single
receiver system and an array fill factor needs to be considered
in our analysis. For instance, for the array with L = 7 elements
in Fig. 1, the array fill factor is 7/9. Also, the truncation
parameter τ = D/2ωm, describing the coupling geometry of
the array, must be chosen to optimize the receiving system
performance. Although the optimal truncation parameter may
depend on the level of atmospheric turbulence considered, this
dependency is very weak, and it is reasonable to choose a value
τopt = 1.12, which is optimal in the absence of turbulence, when
the incident plane wave is fully coherent [24]. The same value
of the truncation parameter τ is used for each subaperture lens
and for the single, larger lens.

We study the mean SNR γ̄ in Fig. 2(a) and the SNR
normalized standard deviation σγ/γ̄ in Fig. 2(b) as a function
of several parameters: the average turbulence-free SNR γ0,
the receiver aperture diameter D, the number of subapertures
L of the array, and the strength of atmospheric turbulence.
Turbulence is quantified by two parameters: the phase
coherence length r0 and the scintillation index σ2

β
. The

value of the scintillation index σ2
β
= 1 corresponds to strong

scintillation, but still below the saturation regime. When we
assume no scintillation, σ2

β
= 0, the effect of turbulence is

simply to reduce the coherence length r0. For a fixed coherent
diameter r0, as the aperture diameter D is increased, the
normalized aperture diameter D/r0 increases, and turbulence
reduces the photo-electric downconversion efficiency.

In Fig. 2(a), the mean SNR is plotted against the normalized
aperture diameter D/r0 for different numbers of subapertures
L in the hexagonal array. The SNR is expressed in dB,
referenced to the turbulence-free SNR γ0. This corresponds

to the mean intensity fading α2 = 1/N, according to the
relationship γ = γ0α

2. Note that the mean SNR is just a
representation of the fiber coupling efficiency. The received

signal beam must be coupled into a single-mode fiber, but
atmospheric turbulence degrades the spatial coherence of
a laser beam and limits the fiber coupling efficiency and,
consequently, the available mean SNR at the output of each
fiber in the array. As expected for one single monolithic
aperture L = 1, if D is less than r0, the normalized mean
SNR γ̄/γ0 remains constant. A truncation parameter τ = 1.12
reduces the mean SNR by 5 dB. When the diameter D is larger
than r0, atmospheric turbulence limits the effective receiving
aperture to the dimensions of the coherence diameter r0 and
the normalized mean SNR goes down very quickly. When the
normalized aperture diameter D/r0 is large, an increase in
the number of hexagonal array subapertures improves the
situation significantly. For instance, when a large normalized
aperture D/r0 = 10 is considered, increasing the number of
subapertures L from 1 to 19 increases the mean SNR by more
than 13 dB. The mean SNR is just a representation of the fiber
coupling efficiency; the advantage of a fiber array in terms of
the mean SNR and the fiber coupling efficiency is that the
number of field coherence areas N over each subaperture is
smaller than it would be over a single large aperture.

In Fig 2(b), we plot the normalized SNR standard deviation
(SNR uncertainty or relative error) σγ/γ̄ against the normal-
ized aperture diameter D/r0 for different values of the number
of subapertures L in the hexagonal array. In the limit of weak
turbulence (small normalized aperture diameter D/r0), the
normalized variance tends asymptotically to 0. When L = 1, the
SNR standard deviation reaches a maximum value of almost
1.6 (2 dB). Once again, an increase in the number of array
subapertures will improve the situation and decrease the SNR
uncertainty. As an example, when the normalized aperture is
D/r0 = 10, increasing the number of subapertures L from 1 to
19 decreases the SNR uncertainty by roughly 6 dB, from 1 dB
to −5 dB. As we observe in Fig. 2(b), the effects of scintillation
are noticeable for small aperture diameters and must be
properly considered. For relatively small apertures, amplitude
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Fig. 3. (Color online) SEP versus (a) normalized receiver aperture diameter D/r0 and (b) number of photons per symbol for QPSK with coherent
detection and AWGN. The performance is shown for different numbers of subapertures L in the closely packed hexagonal coherent array. The
case L = 1 corresponds to a monolithic aperture (black line). When a single aperture is considered, D describes the receiver aperture diameter.
For comparison of the receiver performance between an L-element array and a single large aperture, we force the hexagonal array to be packed
within the limits of the single aperture diameter D. The analysis considers the array fill factor and considers a coupling-geometry parameter for
each subaperture lens of τ= 1.12. In (a), the turbulence-free SNR per symbol γ0 is proportional to the square of the aperture diameter D. For the
smallest aperture considered, we assume γ0 = 0 dB. In (b), the normalized aperture diameter is set to D/r0 = 2. Solid lines indicate that amplitude
fluctuations are neglected by assuming σ2

β
= 0. The upper red dot-dashed line indicates the case L = 7 considering scintillation, with scintillation

index σ2
β
= 1. The lower red dot-dashed line indicates the case L = 7, considering scintillation, and neglecting fading correlation. Black dashed

lines indicate the no-turbulence AWGN case (Eq. (33)). Black dotted lines indicate the no-turbulence AWGN case with τ= 0, corresponding to a
uniformly illuminated pupil, which corresponds to a 5-dB mean SNR improvement over the case τ= 1.12.

scintillation is dominant, and the normalized variance is
virtually unaffected by wavefront phase distortions. When
the aperture is larger, phase distortion becomes dominant
and the scintillation index σ2

β
is of little relevance in the

SNR uncertainty. It is also interesting to consider the case
of subapertures with statistically independent fading. Such
independent signals could be obtained by increasing the
spacing between subapertures in the array. If the output of
a perfect L-element combiner in the atmosphere were to be
described as a sum of L independently fading signals, the
output SNR uncertainty would be expected to be reduced.
That is the case in the limit of weak turbulence or small
normalized apertures; for example, when 7-element arrays are
considered, the uncertainty is almost 4 dB smaller for ideal
independent subapertures. This 4-dB difference is the penalty
for using closely packed arrays that combine highly correlated
signals. However, when strong turbulence or large normalized
apertures are considered, the field coherence areas are smaller
than any array subaperture considered in this analysis and the
signals collected by the different subapertures are very nearly
uncorrelated. In this regime, the multiple replicas combined at
the array receiver are already statistically independent, and
spreading apart the elements of the array would not reduce
the SNR uncertainty.

Figure 3 presents the SEP given by Eq. (34) for an
L-element array receiver. Figure 3(a) shows the SEP versus
the normalized aperture diameter D/r0, while Fig. 3(b) shows
the SEP versus the turbulence-free SNR γ0. In Fig. 3(a), for
the smallest aperture diameter considered, the turbulence-free
SNR has a value γ0 = 0 dB. For any other aperture
diameter, the value of γ0 is proportional to D2. When we
assume no scintillation, σ2

β
= 0, the effect of turbulence

is simply to reduce the coherence length r0. For a single

large aperture, even using a relatively small normalized
aperture diameter D/r0 = 1, turbulence introduces a large SEP
penalty. When multi-aperture array receivers are considered,
in most situations a substantial performance improvement
is obtained. An array with just L = 19 subapertures yields
significant improvement for even the largest normalized
apertures considered. The performance of such array receivers
is very close to the performance expected in an AWGN
system. In Fig. 3(a), when large normalized apertures D/r0 are
considered, the SEP becomes independent of the scintillation
index σ2

β
, and tends toward an asymptotic value that is

independent of the normalized aperture diameter D/r0.

Figure 3(b) shows the SEP performance for different values
of L, the number of array elements. Even using a relatively
small normalized aperture diameter D/r0 = 2, when a single
large aperture receiver is used, turbulence introduces more
than a 30-dB performance penalty at 10−3 SEP. When
multi-element arrays are used, the performance improves
markedly. For instance, considering a small array receiver with
L = 7 subapertures at SEP = 10−3, the SNR penalty is just
below 10 dB. This value should be contrasted with the 6-dB
penalty observed in Fig. 3(b) when L = 7 independently fading
signals are ideally combined. Also, although these results
assume no scintillation, when we impose a strong scintillation
index of σ2

β
= 1, the penalty increase is less than 1 dB at

SEP= 10−3.

IV. CONCLUSIONS

We have numerically evaluated the performance of adaptive
field conjugation array receivers in coherent laser commu-
nications through the turbulent atmosphere. We analyzed
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coherent fiber arrays consisting of densely packed multiple
subapertures in a hexagonal arrangement, considering the
effects of log-normal amplitude fluctuations and Gaussian
phase fluctuations, in addition to local oscillator shot noise.

By noting that the impact of atmospheric turbulence
on coherent receivers can be statistically described by a
Nakagami-m distribution, our model takes into account
fundamental principles of atmospheric propagation without
requiring a detailed description of the instantaneous realiza-
tion of atmospheric turbulence. Such a specification is difficult
because of the inherent complexity of the propagation problem.
Our formulation results in a two-parameter distribution for the
return signal. In this analysis, we compute the parameters of
the Nakagami-m distribution using a heuristic theory.

For fiber adaptive arrays, where the atmospheric fading on
the subapertures is correlated or dependent, we can solve the
problem by transforming it into an independent problem. The
MGF-based approach used in our analysis has provided easily
evaluable analytical expressions for the signal statistical mo-
ments and the symbol error probabilities. We have used them
to study the effects of various parameters on performance, in-
cluding turbulence level, signal strength, receiver aperture size
and the number of subapertures in the coherent fiber array. We
have separately quantified the effects of amplitude fluctuations
and wavefront phase distortion on system performance, and
have identified different regimes of turbulence, depending on
the receiver aperture diameter normalized to the coherence di-
ameter of the wavefront phase. When the normalized aperture
is larger, amplitude fluctuations become negligible, and phase
fluctuations become dominant. For most typical free-space
laser communication situations, using coherent arrays with
a reasonably small number of subapertures such as L = 19
increases the communication performance by several decibels.
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