
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 2, FEBRUARY 2004 269

Free-Space Heterochronous Imaging Reception
of Multiple Optical Signals
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Abstract—We consider free-space optical communication
between a distributed collection of nodes (e.g., a distributed net-
work of sensor nodes) and a central base station with an imaging
receiver. This paper studies both synchronous and asynchronous
reception of the optical signals from the nodes at the imaging
receiver. Synchronous reception is done using a symbol-by-symbol
maximal-ratio combining technique. We describe a low-com-
plexity asynchronous reception scheme for the uplink that allows
the nodes to transmit at a bit rate slightly lower than the frame
rate. Since the two rates are nominally different, the scheme is said
to be heterochronous. Our heterochronous detection algorithm
uses joint maximum-likelihood sequence detection of multiple
trellises, which can be implemented using the Viterbi algorithm,
as well as the per-survivor processing technique. We develop an
approximate upper bound for the average bit-error probability
and compare it to Monte Carlo simulation results.

Index Terms—Image processing, maximum-likelihood detection
(MLD), optical communication, Viterbi decoding.

I. INTRODUCTION

SENSOR NETWORKS using free-space optical commu-
nication have been proposed for several applications,

including environmental monitoring, machine maintenance,
and area surveillance [1]–[3]. Such systems usually consist of
many distributed autonomous sensor nodes and one or more
interrogating transceivers. Typically, instructions or requests
are sent from a central transceiver to sensor nodes, using a
modulated laser signal (downlink). In response, information
is sent from the sensor nodes back to the central transceiver,
using either active or passive transmission techniques (uplink).
To implement active uplinks, each sensor node is equipped
with a modulated laser. By contrast, to implement passive
uplinks, the central transceiver illuminates a collection of
sensor nodes with a single laser; the sensor nodes are equipped
with reflective modulators, allowing them to transmit back to
the central transceiver without supplying any optical power. As
an example, Fig. 1 shows the communication architecture for
Smart Dust [1], which uses passive uplinks. A modulated laser
sends the downlink signals to the sensor nodes. Each sensor
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node employs a corner-cube retroreflector (CCR) [1] as a
passive transmitter. By mechanically misaligning one mirror of
the CCR, the sensor node can transmit an on-off keyed signal
to the central transceiver. While Fig. 1 shows only one sensor
node, typically, there are several sensor nodes in the camera
field of view (FOV). The central transceiver uses an imaging
receiver, in which signals arriving from different directions are
detected by different pixels, mitigating ambient light noise and
interference between simultaneous uplink transmissions from
different nodes (provided that the transmissions are imaged
onto disjoint sets of pixels).

Optical signal reception using an imaging receiver typically
involves the following four steps: first, segment the image into
sets of pixels associated with each sensor, usually using some
kind of training sequence; second, estimate signal and noise
level in the pixels associated with each sensor; third, combine
the signals from the pixels associated with each sensor, e.g.,
using maximal-ratio combining (MRC); last, detect and decode
data. In some applications, the central transceiver transmits a
periodic signal permitting the sensor nodes to synchronize their
transmissions to the imaging receiver frame clock, in which
case, data detection is straightforward. In other applications,
especially when sensor node size, cost, or power consumption
is limited, it is not possible to globally synchronize the sensor
node transmissions to the central transceiver frame clock. While
all the sensor nodes transmit at a nominally identical bit rate
(not generally equal to the imager frame rate), each transmits
with an unknown clock phase difference, i.e., the signals are
plesiochronous. There are many existing algorithms to decode
plesiochronous signals. Some algorithms involve interpolated
timing recovery [4], [5], which would require considerable im-
plementation complexity in the central transceiver. Other algo-
rithms require the imager to oversample each transmitted bit [6],
requiring the bit rate to be no higher than half the frame rate;
this is often undesirable, since the imager frame rate is typically
the factor limiting the bit rate, particularly when off-the-shelf
imaging devices (e.g., video cameras) are used. These limita-
tions have motivated us to develop a low-complexity decoding
algorithm that allows the imaging receiver to decode signals at
a bit rate just below the imager frame rate. Since the bit rate is
different from the frame rate, this algorithm is said to be hete-
rochronous. As we will see, this algorithm involves maximum-
likelihood sequence detection (MLSD) with multiple trellises
and per-survivor processing (PSP) [7].

Note that implementation of the downlink does not involve
the synchronization issues just described, since each sensor
node’s receiver needs only to synchronize to a single received
signal. In the remainder of this paper, we will focus mainly on
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Fig. 1. Wireless communication architecture for Smart Dust using passive optical transmitters in the sensor nodes (“dust motes”).

uplink transmission. The remainder of this paper is organized
as follows. In Section II, we describe the assumptions, mod-
eling, and notation for both synchronous and heterochronous
reception using an imaging receiver. In Section III, we discuss
synchronous reception, including image segmentation, signal
level estimation, signal combining, and detection. We describe
the corresponding aspects of the heterochronous reception al-
gorithm in Section IV. We describe an experimental system im-
plementing the synchronous detection algorithm in Section V.
In Section VI, we present our summary and conclusions.

II. SYSTEM ASSUMPTIONS AND SIGNAL MODELING

In this section, we will first state some assumptions and
describe a model for the uplink as a multiple-input, mul-
tiple-output (MIMO) system. Then we will define various
synchronization types to clarify some terminology used
throughout this paper.

A. Uplink as a MIMO System

We assume that the transmitters use on–off keying (OOK).
The instantaneous power emitted by the th transmitter is

(1)

where is the transmitted information bit (infor-
mation bits are assumed to form an independent and identically
distributed (i.i.d.) sequence), is the peak optical power of the
th transmitter, is a nonnegative pulse function having

unit peak amplitude, is the transmitter bit period, and de-
notes the initial time offset of the th transmitter (typically, in
practice, the time offsets of different transmitters are indepen-
dent, but we do not need to make use of this assumption). Here-
after, we assume that is a rectangular pulse of duration

, i.e.,

otherwise.
(2)

Fig. 2. (a) General picture of a free-space imaging reception system
consisting of sensor nodes, receiver optics, and pixel array. (b) Image of each
node’s transmitter falls onto several different pixels.

In this application, we can assume that the transmitters are
stationary. As illustrated in Fig. 2(a), at the imaging receiver’s
focal plane, an image of each sensor node’s optical transmitter is
formed on a group of pixels that are close to each other, and each
of the pixels outputs a photocurrent corresponding to the inci-
dent light intensity. In general, the collection of transmitters and
pixel photocurrents form a MIMO communication system. The
techniques described here are applicable as long as the images of
different transmitters fall on different pixels at the receiver focal
plane. This condition is usually satisfied when the number of
pixels is sufficiently large, and there are a small number of trans-
mitters within the receiver FOV.1 Under this assumption, the re-

1As an example, the experimental system described in Section V uses an
imaging receiver with 648 � 484 pixels. If five transmitters are placed at uni-
form, i.i.d. positions in the receiver FOV, the probability that at least two trans-
mitters share a common pixel is only 10 .
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Fig. 3. Illustration of sensor node transmitter and imager time lines for heterochronous signal reception.

ceived image can be segmented into disjoint clusters of pixels,
each of which contains the image of one transmitter and whose
output photocurrents can be combined to detect the transmitted
signal. Thus, the MIMO system naturally decomposes into a
collection of uncoupled single-input, multiple-output (SIMO)
systems. As shown in Fig. 2(b), we denote the cluster of pixels
that contain signal as and let the time offset . We
assume that the communication medium between sensor trans-
mitters and the imaging receiver is homogenous and time in-
variant. The free-space channel from the th transmitter to the

th pixel can be described as a linear time-invariant attenuation
channel having impulse response .2 Our assumption
of disjoint images implies that , . Since we
can detect the signal from each transmitter separately, hereafter
we omit the -dependence of the pixel outputs (except in a few
cases, when we include it for clarity). The signal at the output
of the th pixel is

(3)

where denotes the dc light level, which we can assume
to be constant for the duration of the uplink communication.
The term represents the noise before light integration,
including shot noise from ambient light, as well as the thermal
noise from the preamplifier at each pixel. Shot noise arising
from high-intensity ambient light can be modeled as white,
Gaussian, and signal independent [8]. Preamplifier noise is typ-
ically Gaussian and signal independent. We model as
a zero-mean, white Gaussian noise process with double-sided
power spectral density (PSD) . Furthermore, is
independent of the signal and is independent (but not identically
distributed) from pixel to pixel (i.e., over ).

The imaging receiver samples the signals at a frequency no
lower than the transmitter bit rate. Let the imager sampling clock
period be , i.e., it is shorter than the bit period by .
During each sampling period, the imager light exposure time is

2When communicating over kilometers of distance, temperature and pressure
inhomogeneities in the atmosphere can make the refractive index nonuniform
across the transmission path and cause the channel impulse response to become
time- and space-dependent [9].

. The initial time offset is . So the imager light exposure can
be expressed as

(4)

where is an index of imager exposure intervals starting from
one, and is a nonnegative shutter pulse function with
unit peak amplitude. Hereafter, we assume that is a
rectangular pulse of duration , i.e.,

otherwise.
(5)

The imager light exposure function is illustrated in Fig. 3
(other symbols used in Fig. 3 will be defined below). The sample
at the output of the th pixel in the th exposure interval is

(6)

where is a constant describing the light-to-signal amplifi-
cation coefficient of the th pixel. Here, is the sample
of thermal noise originating after the integrator. We assume that
the are white, Gaussian, i.i.d. from time to time (i.e., over
), and also i.i.d. from pixel to pixel (i.e., over ).

The overall discrete-time noise in the received signal
contains two parts. We can express it as

. The term is the noise due to shot noise and thermal
noise in preamplifiers, i.e., all noise sources that originate before
the integrator. It is related to by

(7)

Therefore, is also white, i.i.d. from time to time (i.e., over
) and independent (but not identically distributed) from pixel to

pixel. Its variance can be obtained as (omitting the time index)

(8)

Notice that the variance is proportional to the light expo-
sure time . As stated earlier, is the thermal noise added
after the integrator, whose variance is independent of the
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imager exposure time . Since is independent of ,
the overall noise is white and independent over . Its vari-
ance is the sum of the variances, i.e., . Here-
after, we will assume that the ambient light is approximately
constant within each pixel cluster, so that we can approximate

as i.i.d. over within a pixel cluster.
We can rewrite the received signal as

(9)

where is the gain coefficient in th pixel output, which is
expressed as

(10)

is the dc signal level, and are linear combination co-
efficients (to be specified shortly). As illustrated in Fig. 3, is
the index of the first transmitter bit interval that overlaps with
imager exposure interval ; depending on how transmitter bit
aligns with imager exposure interval , transmitter bit may
also overlap with imager exposure interval . The imager starts
with a time offset to the transmitter bits. Then

. Since the bit transition can happen in the
middle of the exposure period, we need to consider the imager
exposure time to the current signal bit and the exposure time

to the next signal bit. Let
be the time between the start of th image reception and the end
of th signal bit. Then and .
Accordingly, and . We have .

B. Definition of Various Synchronization Types

In digital system design, synchronization ensures that op-
erations follow in the correct order. Signal reception depends
greatly on whether and how the signals are synchronized. Before
we make any further assumptions about the free-space commu-
nication system, it is useful to review the various types of syn-
chronization considered in this paper.

The frequency and phase of a signal modulated by pulse-am-
plitude modulation (PAM) (e.g., OOK) can be defined as the
frequency and phase of its associated clock. We can describe
the associated clock signal as

(11)

where is a precise clock signal with unit frequency and
50% duty cycle, is the nominal frequency of the associated
clock, is a potential offset from the nominal frequency, and

is the instantaneous phase variation. A signal with constant
average frequency, i.e., , is said to be isochronous
[10]. Intuitively, the anisochronous signals are those with a
time-varying frequency.

If two data signals are both isochronous with the same av-
erage frequency and instantaneous phase, then they are said to
be synchronous, whereas if two signals do not satisfy those con-
ditions, they are asynchronous. Among all forms of asynchrony,
three distinct cases are of particular interest. If the signals are
isochronous and have the exact same average frequency ,
they are called mesochronous. Mesochronous signals only differ
in their phases. If the average frequencies of two signals are
nominally the same, but not exactly the same, these two sig-
nals are said to be plesiochronous. In our application, the signals

Fig. 4. SIMO communication system for synchronous reception.

from different transmitters are plesiochronous, since they share
the same nominal average frequency but differ by their phases.
Finally, if two signals have nominally different average frequen-
cies, we call them heterochronous.

In the following two sections, we discuss methods for syn-
chronous and heterochronous reception, respectively. Our syn-
chronous reception method uses well-known techniques, but we
will give a brief review for the sake of completeness, placing
emphasis on image segmentation and signal estimation.

III. SYNCHRONOUS RECEPTION

Synchronizing the sensor nodes to the central transceiver
greatly reduces the complexity of signal reception. Signal de-
tection is done by application of MRC, which will be described
in Section III-A to make clear which parameters need to be
known or estimated to enable MRC. Also, in Section III-A,
we present an analysis of the error probability, including the
effects of errors made in estimating certain key parameters.
Then in Section III-B, we describe how to segment the image
and to estimate those parameters.

A. Symbol-by-Symbol MRC Detection

1) Detection Method: When the transmitters are bit syn-
chronized to the receiver, the parameters in (9) simplify to

, , and . As shown in Fig. 4, the received
signal can be simply expressed as

for (12)

where is the Gaussian noise from the th pixel, which is
independent over . Since the noise is i.i.d. over time and the
signals are independently detected bit by bit, we can drop the
time index hereafter in this section. Let denote the number
of pixels in the pixel cluster . The conditional probability den-
sity of the received signal vector from the
pixel cluster given the transmitted signal can be expressed as

(13)
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where denotes the variance of . The maximum-likelihood
detector (MLD) will pick the value of that maximizes the like-
lihood of the observed signals [11]. The likelihood ratio is

on
off

(14)
We decide that the received signal is on if , and other-
wise, decided that it is off. So the exponent in (14) represents a
set of sufficient statistics, and the MLD can be expressed as

on

off
(15)

We weight each by to maximize the signal-to-noise
ratio (SNR) of the weighted sum. In order to perform MRC,
three quantities need to be estimated before the data reception:
the gain coefficient ; the dc signal level ; and the noise
variance . A special case occurs when the noises in the
pixels are i.i.d. Gaussian with variance , which is true in most
cases, and which we assume in the remainder of this paper. In
that case, the factor can be dropped from the denominator,
and the sufficient statistics become

.
2) Error Probability Analysis: Estimated parameters of

multiple channels are involved in this MRC detection method.
First, we calculate the error probability in the absence of the
parameter estimation error. The general expression for error
probability for binary OOK detection is

on on off off (16)

where on and off are the error probabilities
of detecting an on or off signal, respectively, and the probabili-
ties of receiving an on or off signal are on off .
Let the variance of the i.i.d. Gaussian noise be . Then the
overall error probability is:

on off

(17)

where is the Gaussian function [11].
Now consider the estimation error associated with parame-

ters. The parameters involved in the MRC are and
. Let . Let and represent the

estimated coefficients, and let and denote the esti-
mation errors. Then, . .
The two terms in (16) are no longer identical. Instead, we have

on

(18)

off

(19)

We have neglected the terms associated with the second-
and higher-order estimation error for simplicity. We define

on off to be the
bit-error probability (BEP), given the estimation errors. When
estimated using the method we will describe in Section III-B,
the and are i.i.d. zero-mean Gaussian distributed.
Therefore, the ensemble BEP is given by

(20)

where and are the joint probability den-

sity functions (pdfs) of the estimation errors and ,

respectively. The pdfs and are products

of pdfs of zero-mean Gaussian random variables with vari-
ances and , respectively.

To obtain an upper bound on , we use the bound
. Then the overall BEP is bounded by the fol-

lowing expression:

(21)
From Section III-B, we have and ,
where is the number of frame samples used for parameter
estimation. Hence, the BEP is bounded by

(22)

Increasing the number of frame samples helps the detection per-
formance. Fig. 5 shows the calculated BEP of the synchronous
receiver versus the SNR, where the SNR for the th transmitted
signal is defined as

(23)

The dashed lines represent BEP bounds for different numbers
of frame samples. The solid line corresponds to the exact BEP
when parameter estimation error is absent. We observe that as

becomes larger than six, the BEP becomes relatively stable,
regardless of , and this upper bound becomes comparable to
the BEP without estimation errors (17).

B. Image Segmentation and MRC Parameter Estimation

Signal recognition and image segmentation can be achieved
by using a training sequence, i.e., a data sequence that is known
a priori to the receiver. The simplest training sequence for OOK
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Fig. 5. BEP of synchronous receiver versus the electrical SNR for different
numbers of frame samples (I) used for parameter estimation. The solid line
represents the exact error probability with no parameter estimation error, and the
dashed lines are the calculated error probability bounds considering parameter
estimation error.

signals is a sequence of alternating ones and zeros. Signal recog-
nition is made based on subtraction of alternating frames and
thresholding. The difference between two consecutive frames is
a noisy image of the transmitted signals without the background
light.

Suppose that frames of image are taken for noise estimation,
and that the noise is Gaussian and i.i.d. from pixel to pixel. As-
sume stationarity of the image and that the signal area is small,
compared with the whole picture. Then we can treat the th
output from th frame as a dc signal level superim-
posed by a Gaussian noise with variance . The dc signal
level can be estimated as the time-average value of , i.e.,

. Then, a good estimate of the noise vari-
ance is the value that maximizes the likelihood of receiving

(24)

(25)

where each . The noise variance is estimated
as

(26)

In applications where storage of the entire sequence of
frames is not possible (assuming ), the estimation method
can be slightly altered

(27)

In this case, only the consecutive frames are stored and com-
pared. We can reuse the storage space by overwriting the older
frame of the two with the newly received image frame, thereby
reducing the storage space to two frames.

Assuming the images of the transmitters are convex shaped,
the pixels corresponding to one transmitter are spatially
connected and have a convex contour. In practice, the images
are brightest at the center and become monotonically dimmer
away from the center. To reduce the processing complexity, we
only draw out the rectangular contour that closely covers the
signal rather than identifying every single pixel, since blocks
of memory are easier to index, transfer, and manipulate than
clusters of individual pixels.

Under these assumptions, the following method of image seg-
mentation has been developed. Scan the subtracted frame line by
line to search for the top edge of a signal. At the detection of a
first signal that does not belong to any known clusters of signal
pixels, mark the coordinate of the pixel as . Then search ver-
tically for pixels that output an above-threshold signal and note
the pixel that outputs the highest value. Mark the coordinate of
the last pixel that outputs a significant value as . This roughly
sets the upper and lower bounds for the image segment. From
the pixel that was brightest along the vertical line, search left and
right for rough horizontal bounds and . Depending on the
shape of the sensor transmitter and light intensity distribution,
refinements on the boundary may be necessary. For example,
to make a refinement on the lower boundary , start from the
pixel which was thought to be the bottom edge of the image, per-
form a horizontal search for a maximum-value pixel, and search
downwards for a new bound . Similar refining procedures for
left and right bounds can be used. In this way, the final values
of , , , and are determined, defining the rectangular
image area that contains a signal.

We direct our attention to the selected image area hereafter.
Parameter estimation is achieved primarily by time averaging.
The parameter is essentially the average
of the light level between an on signal and an off signal. Its es-
timated value is the average of an even number of continuous
image samples with alternating on and off signals. The estima-
tion error is Gaussian with variance , where is the
number of samples. The gain coefficient is estimated by cal-
culating the average of differences between consecutive frame
outputs. Similarly, its estimation error is Gaussian with
variance .

Among all the rectangular image areas we selected, some
may be false signals caused by high noise samples. An addi-
tional stage of eliminating false image areas can be added after
or during the parameter estimation. It employs MRC and current
estimated parameters to check whether the signal in the pixel
area is a sequence of alternating ones and zeros. Image areas
that fail to output the correct training sequence are treated as
false image areas and are deleted.

IV. HETEROCHRONOUS RECEPTION

As an alternative scheme to the above synchronous reception
method of synchronized signals, a heterochronous reception al-
gorithm can be implemented. In Section IV-A, we state the basic
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assumptions and what needs to be prepared before reception
starts. Then in Section IV-B, we describe the heterochronous
reception method and perform theoretical and numerical anal-
ysis of BEP with relation to some detection parameters.

A. Basic Assumptions and Image Segmentation

We assume perfect knowledge of the transmitter bit period
, the imager bit period , and the imager exposure

time . Furthermore, we assume that to make efficient use of
the available imager sampling frequency, . As in the
synchronous detection case, we assume that the noises are i.i.d.
from pixel to pixel, with variance . As in the synchronous
case, since the signals from different transmitters can be re-
ceived independently, we confine discussion to reception from
a single transmitter.

As shown in Fig. 3, the imager starts with an initial time offset
relative to the transmitted bits; is assumed to be unknown

to the receiver. We perform an initial estimation of during the
training period, when an alternating one–zero sequence is trans-
mitted, as follows. The receiver forms the difference between
consecutive frames, i.e., the first difference of the received se-
quence. This first difference varies over time, reaching a max-
imum when there is no bit transition during the imager expo-
sure interval. We record the imager exposure interval when
the first difference first takes on the maximal value (after having
taken on a value less than the maximum). We assume that a bit
transition occurred right at the end of exposure interval ,
and form our initial estimate of the time offset as

(28)

When the SNR is high, the true value of lies on the interval
. The heterochronous reception algorithm

described in the following section considers quantized candidate
values of lying on that interval, and forms a more refined
estimate of . When the SNR is low, it is possible that the true
value of might deviate from the initial estimate by more
than . In that case, we can extend the algorithm described
in the following section to consider a wider range of candidate
values of in refining the estimate of .

Image area selection can be done in a manner similar to the
synchronous case. Since maximal contrast between two adja-
cent frames is not achieved during all frames due to asynchrony,
a larger number of frames are needed for refinement of image
locations. The dc light level in each pixel, which must be es-
timated to perform detection, can be estimated accurately before
the training sequence starts. However, estimation of the gain co-
efficient in each pixel, , is complicated by the intersymbol
interference (ISI) in the received signals. For each pixel, only a
rough estimation can be obtained by taking the maximum value
of the first difference over time. This estimate of is needed
as the initial value of for further refinement. Then we can
estimate the more accurately during data detection using
PSP.

B. Heterochronous MLSD Reception Using Extended Trellis
Diagram and PSP

1) Description of the Algorithm: As stated in Section II, if
the transmitted sequence of bits is , the received signal is

(29)

where the parameters are defined in Section II and illustrated
in Fig. 3. Suppose that frames of images were received.
The conditional probability density of the received signal

, given the transmitted
bit sequence , is given by

(30)

Given a received signal , we would like to estimate the trans-
mitted bit sequence using MLSD, i.e., by determining the bit
sequence that minimizes the correlation metric

(31)
In principle, this MLSD can be implemented using the Viterbi
algorithm. However, performing MLSD is complicated by un-
certainty in the initial time offset and in the gain coefficients

.
As stated in the previous section, our initial estimate of

the starting time offset is uncertain; the actual value of
lies within the interval . To combat this
uncertainty, we quantize into several values that are uniformly
spaced on that interval. Instead of performing MLSD on a single
trellis, we perform MLSD on one trellis for each quantized value
of . We jointly estimate the bit sequence and the time offset

by determining the joint values that minimize the correlation
metric (31).

Also, as stated in the previous section, it is difficult to estimate
the gain coefficients prior to MLSD. To combat this uncer-
tainty, we employ suboptimal PSP [7]. The key idea of PSP is
to calculate metrics for a transition in the trellis, using estimates
of the unknown quantities corresponding to the data sequence
associated with the survivor path leading to that transition. Sup-
pose that for a particular transition, we have a sequence of ten-
tative decisions denoted by . Then a data-aided param-
eter estimator provides the Viterbi decoder with an estimate of
the gain coefficients as

(32)
where is the number of received signals when the sequence
of tentative decisions of length is made.

2) Error Probability Analysis: To simplify the analysis, we
assume that the gain coefficients are estimated with negli-
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gible error. This assumption is verified below by comparison of
our error probability analysis with Monte Carlo simulation re-

sults. Let the transmitted bit sequence be and the Viterbi

decoded sequence be . Let denote the number of quan-
tization levels used to estimate the starting time offset . We
assume that the decoder’s estimate of is the quantized value
closest to the true value of . In this case, the estimation error
of , denoted by , is uniformly distributed on the interval

. Assuming that is uniformly distributed on
the interval , an upper bound for the average BEP
is expressed by

favor

(33)

Here, denotes the Hamming weight of the error sequence

, which is the difference between and , is the

length of the sequences and , and is the set of all

possible sequences and .

The term favor is the probability that

the Viterbi decoder favors sequence when sequence
is transmitted, assuming and are known. This event oc-

curs when produces a smaller value of (31) than does.

Let be the signal expected in the th exposure interval

when the bit sequence is transmitted, i.e.,

(34)

Similarly, we can define to be the corresponding ex-
pected signal using the estimated value of . Then we have

favor

(35)

where denotes the set of time indexes where ISI is present.
In the argument of the function, the first term represents
the performance in the absence of ISI (dependent solely
upon the SNR), while the second term represents the asyn-
chronous penalty due to ISI. The derivation now proceeds
in two steps: first, approximate the double integral inside

the square brackets of (33) by taking the maximum value

of favor over and , denoted by

favor ; then, keep the dominant terms
in the summation, which are the terms corresponding to

, and calculate the summation. With the
additional assumption that is small compared to , the
following approximate upper bound is obtained:

(36)
Observe that in the argument of the function, the first factor
represents the effect of the SNR, while the remaining factors
approximate the SNR penalty caused by asynchronous ISI. We
define the factor

(37)

and note that in the presence of asynchronous ISI, to maintain
a given error probability, the SNR must be increased approxi-
mately by a factor , i.e., the SNR penalty in decibels
is approximately . This penalty is most easily
interpreted in the case when is large, so the effect of inaccu-
rate estimation of the initial time difference is eliminated. In
this case, , and the ISI penalty becomes
solely dependent on . Since asynchronous ISI cannot in-
crease detection efficiency, (37) can be valid only when ,
i.e., when . In the limit that ,
the ISI penalty approaches 3 dB.

We have performed Monte Carlo simulations using
MATLAB in order to test the accuracy of the error-probability
bound (36). The transmitter emits pseudorandom bit sequences
at a bit rate of 50 b/s, i.e., ms. The imager sampling
frequency is higher than 50 Hz, and the imager sampling
interval is ms. The transmitter’s image is distributed
among 10 adjacent pixels with light intensities proportional to
{10, 9, 9, 8, 8, 7, 7, 6, 6, 5}, respectively. These intensities are
estimated initially with random deviations within 10% to their
correct values. PSP estimates gain coefficients at every
step of MLSD based on prior bit decisions in the surviving
path. We average results of simulations with five initial time
offsets equally spaced between 0 and 19 ms.

First, we investigate the effect of , the number of quantiza-
tion levels of the initial estimate of . We set ms, i.e.,
the imager sampling period is 19 ms. The imager exposure time

is fixed to be 10 ms. We vary the electrical SNR from 7 to 16
dB, and plot the simulation results along with the approximate
upper bound (36). As shown in Fig. 6, the two solid lines repre-
sent simulation results with 2 and 16, and the three dashed
lines represent evaluation of (36) for 2, 16, and , respec-
tively. The bound (36) is pessimistic for , and is tight for

. There is only a half-decibel difference at high SNR be-
tween the bound and the simulated results for . Most
importantly, the simulated performance is almost independent
of for . Hence, the performance of the heterochronous
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Fig. 6. Ensemble-average BEP of multiple-trellis MLSD receiver versus the
electrical SNR for different quantization levels q of the initial time difference
t . Transmitter bit period T = 20 ms, bit period difference �T = 1 ms,
and light exposure time � = 10 ms are assumed. The dashed lines represent
the approximate upper bound (36), and the solid lines represent Monte Carlo
simulations.

Fig. 7. Ensemble-average BEP of multiple-trellis MLSD receiver versus the
electrical SNR for different values of the bit period difference �T and the
light exposure time � . We assume a transmitter bit period T = 20 ms, and
q = 2 quantization levels of the initial time difference t . Dashed lines represent
the approximate upper bound (36), while solid lines represent Monte Carlo
simulations.

receiver is insensitive to the choice of , and the choice
is sufficient to obtain good performance, in practice.

We now study the accuracy of the bound (36) for different
values of and . The system setup is as described just above,
except that we fix and choose the values ( ms,

ms), ( ms, ms), ( ms,
ms), and ( ms, ms). We vary the

electrical SNR from 7 to 16 dB. In Fig. 7, we plot the Monte
Carlo simulation results using solid lines and plot the approx-
imate upper bound (36) using dashed lines. Since the approxi-
mate upper bound (36) is tight for large , we choose in
plotting (36) in Fig. 7. The first two sets of parameters produce

Fig. 8. Overall asynchronous penalty (SNR penalty plus ISI penalty) of
the multiple-trellis MLSD receiver versus the light exposure time � for
different noise regimes and difference values of the bit period difference �T .
Transmitter bit period T = 20 ms and q = 1 quantization levels of the
initial time difference t are assumed. The dashed lines represent the penalty
when ambient light shot noise and thermal noise in the preamplifier dominate.
The solid lines represent the penalty when thermal noise originating after the
integrator dominates.

the same ratio , and are thus described by a common
approximate upper bound; their Monte Carlo simulations are
quite similar to each other and differ by about a half decibel from
that common bound. Simulations for the third set of parameters
show that the bound (36) is tight when . Results
for the fourth set of parameters confirm that when

, the bound (36) is optimistic.
It is worth mentioning that the good agreement between our

Monte Carlo simulations and the bound (36) implies that PSP
performs well in estimating the gain coefficients .

As stated previously, the asynchronous ISI penalty depends
on the ratio . For a fixed set of physical link parameters
(transmission distance, ambient light intensity, etc.), increasing

increases the SNR.3 Let us consider how the overall perfor-
mance depends on the choice of . We define to be the largest
possible value of , i.e., . It is necessary to consider
two different noise regimes. First, when ambient light shot noise
and thermal noise in the preamplifier dominate, the noise vari-
ance is proportional to , and the overall SNR is proportional to

. When , the SNR penalty is , and the overall
penalty (SNR plus ISI) is . Second, when thermal noise
originating after the integrator dominates, the noise variance is
independent of , and the overall SNR is proportional to .
When , the SNR penalty is , and the overall
penalty (SNR plus ISI) is . In Fig. 8, we plot exam-
ples of the overall penalty in the two noise regimes. We assume

ms, consider 0.1 ms and 1 ms, and vary be-
tween 5 and 19 ms. The dashed lines represent the regime when
noise originating before the integrator dominates, and the solid
lines represent the regime when noise originating after the inte-
grator dominates. At small values of , the second noise regime

3Choosing larger � can also minimize the impact of the finite rise and fall
times of the transmitted signal and of the imager exposure interval.
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Fig. 9. Synchronization of central transceiver and dust motes during uplink transmission.

yields larger total penalties than the first noise regime. Clearly,
in both regimes, it is advantageous to choose to be as large as
possible.

V. EXPERIMENTAL SYSTEM

As part of the Smart Dust project [2], we have built a free-
space optical communication system for sensor networks using
the synchronous detection method described in Section III. The
system transmits to and receives from miniature sensor nodes,
which are called “dust motes.” The early prototype system de-
scribed here achieves a downlink bit rate of 120 b/s, an uplink
bit rate of 60 b/s, and a range of up to 10 m. A more recent pro-
totype system [13] has achieved an increased uplink bit rate of
400 b/s and an increased range of 180 m.

Fig. 9 shows an overview of the communication architecture.
Each dust mote is equipped with a power supply, sensors,

analog and digital circuitry, and optical transmitter and receiver.
The dust mote receiver comprises a simple photodetector and
preamplifier. The dust mote transmits using a CCR [13], which
transmits using light supplied by an external interrogating laser.
A CCR is comprised of three mutually perpendicular mirrors,
and reflects light back to the source only when the three mirrors
are perfectly aligned. By misaligning one of the CCR mirrors,
the dust mote can transmit an OOK signal.

The central transceiver is equipped with a 532-nm (green)
laser having peak output power of 10 mW. The laser beam is ex-
panded to a diameter of 2 mm, making it Class 3A eye-safe [12].
At the plane of the dust motes (typically 10 m from the trans-
ceiver), a spot of 1 m radius is illuminated, and dust motes within
the beam spot can communicate with the transceiver. The laser
serves both as a transmitter for the downlink (transceiver to dust
motes) and as an interrogator for the uplink (dust motes to trans-
ceiver). For downlink transmission, the laser can be modulated
using OOK at a bit rate up to 1000 b/s (the dust mote receiver
limits the downlink bit rate to 120 b/s). During uplink transmis-
sion, the laser is also modulated to permit the dust motes to syn-
chronize their transmissions. The central transceiver is equipped
with a progressive-scan 648 484 pixel charge-coupled device
(CCD) camera and frame grabber. The frame grabber rate of 60

frame/s limits the uplink bit rate. Fig. 9 shows how the mod-
ulated interrogating beam is used to synchronize CCR transi-
tions to the camera frame clock during uplink transmission. The
dust mote receiver detects the modulated interrogating beam and
synchronizes CCR transitions at an appropriate fixed time delay

after alternate falling edges. The frame grabber captures im-
ages and transfers them to a personal computer. A program in
the C language performs image segmentation, MRC parameter
estimation, and MRC detection.

VI. CONCLUSIONS

The free-space optical communication systems with sensor
networks are widely used in many applications. We have found
that the communication architecture is straightforward and
robust if the transmissions from all the sensor nodes are bit
synchronized to the receiver imager array. The signal can be
decoded by using modified MRC of the relevant pixel outputs.
Training sequence can be employed before the data transmis-
sion to assist in estimating the parameters of MRC. In order
to achieve this synchronization, the central transceiver must
transmit an interrogating signal, which all of the sensor nodes
must receive and synchronize to, e.g., using a phase-locked
loop. Constraints on the size and power consumption of sensor
nodes may make it difficult to implement this synchronous
communication architecture. So it is desirable to relax the
requirement for the dust motes to be synchronized to the
imager.

In this paper, we developed an asynchronous detection al-
gorithm permitting the sensor nodes to transmit at a bit rate
approaching the frame rate. We assume that all sensor nodes
transmit at an nominally identical bit rate, which is known to the
receiver. When the sensor nodes transmit heterochronously to
the imager array, during each frame interval, the imager sample
is a linear combination of two adjacent bits, which can be treated
as a form of ISI. Our heterochronous detection algorithm uses
MLSD, which can be implemented using the Viterbi algorithm.

This heterochronous detection algorithm requires estimation
of the starting time offset between the sensor signal and the
imager sampling signal. A rough estimation can be made to
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decide this starting time offset, then this estimation is quan-
tized to a precision of several time slots per bit interval. In this
MLSD algorithm, we use multiple trellis corresponding to dif-
ferent values of the starting time offset and make joint decisions
based upon the extended trellis diagram. In addition, the receiver
needs to estimate pixel combining weights for MRC; these are
estimated by incorporated PSP in the MLSD algorithm.

An approximate upper bound for the average BEP is derived.
Monte Carlo simulation results show that this bound is pes-
simistic for small quantization levels of the starting time offset

, and is tight for large . The simulated performance is
insensitive to the choice of , and the choice is sufficient
to obtain good performance, in practice. Simulation results also
show that the bound is tight when the ratio . Good
agreement between simulations and the bound implies that PSP
performs well in estimating the gain coefficients. The study also
proves that choosing the light exposure time as large as pos-
sible can help reduce the asynchronous penalty.
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