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Fig. 6. The BER of the RAKE receiver with = 1, 2, and 4 fingers used in
a multipath Rayleigh channel versus the signal-to-interference Fatjo/, .
In all cases = 0.25. Dashed line= complete coherence; solid lire using
phase control withp = 0.25.

(20]

first-order closed loop. In a noiseless case, a first-order loop never
achieves the zero error condition since the phase adjustments are
proportional to the current phase error.

The bit-error rate for the system for different pathss a function
of the signal energy to interference rafiy /.Jo is depicted in Fig. 6.
The dashed lines show the BER for a receiver with exact coherence,
while the solid lines show the BER for a receiver using the phase
algorithm in the previous section. We see that the performance

converges_ to that of the receiver with complete coherence rap'dlyAbstract—The theory of shaping and nonequiprobable signaling, which
as E,/Jo increases. has been developed for conventional electrical signals, must be modified
In order to see the implications of a different number of users in the treat intensity-modulated (IM) signals. We show that for IM signals,
system, we may use the relation (46) to compute the &6V, , but the gg)timum s_hape\?féhe_cor:stellztio\r} boundirlgr;] region_in\"—dimehr_lsiorg)?l
. . . I \Y-D) space is anV-D simplex. As N — oo, the maximum achievable
recall. that we have useci a Gaussian approximation which is accu@gpe gain is 1.33 dB (in terms of transmitted power), and the resulting
only if the productLA'N > 1. marginal signaling distribution on the one—dimensional (1-D) constituent
constellation is exponential. We also investigate the tradeoffs between
shaping and its negative consequences, and find that a 1-dB shape gain
can be achieved while incurring reasonable increases in peak-to-average

. ower ratio and constellation expansion ratio.
We have analyzed the performance of the coherent receptlonpm P

different channel scenarios, the AWGN channel, and the multipathindex Terms—ntensity modulation, nonequiprobable signaling, optical
Rayleigh channel. In the analysis we have taken into consideratigi"munications, shaping.
imperfections in coherence, since due to the system noise and

multiple-access interference perfect phase coherence is not often I.

available. However, at levels of the s.ignal-energy-to-inten‘erenceMany signaling schemes are based on finite-dimensional lattices
ratios of interest we have seen that the receivers behave as if there ; : . : . -

ﬁ. Usually the signal constellation consists of all lattice points within
were complete coherence.

One topic that we have not considered is the phase acqulsmarpoundmg region. If the (_:onstellatlon pomts_ are used equrobe_lbly,
L : . . the shape of this bounding region determines the average signal

process, which is of interest in a fast fading channel where the carrier . ‘
er. By selecting a certain shape other than a cube for the con-

phases change faster. In such a channel, the algorithm described oY
be changed to a loop of higher order. Otherwise, the algorithm mayManuscript received July 29, 1998; revised April 30, 1999. This work
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stellation bounding region, it is possible that the average transmitt€de termn(¢) represents noise, and may include contributions from
signal power can be reduced while maintaining the communication biermal and/or shot noise. In many applications, the neisg
rate. It has been shown that for electrical signals spherical bounditen be described as white and Gaussian. For example, in fiber-
regions minimize average signal power. In Ardimensional V-D) optic communications, the thermal noise of the receiver, which is
space, asN — oo, the shape gain of thé&'-sphere over theV- Gaussian and approximately white, usually dominates [10]. In a
cube approaches the ultimate shape gain of 1.53 dB [2]. Employingvaeless optical communication link, the receiver collects background
spherical bounding region the marginal signaling distribution induceddiation, which induces shot noise that can be modeled as white,
on the two-dimensional (2-D) constituent constellation approach€swussian, and signal-independent if its intensity is high [9]. Unlike
Gaussian asV — oc. the transmitted signak(#), both the noisen(#) and the received
Nonequiprobable signaling refers to selecting more frequentiygnaly(t) can be negative. This is consistent with the fact that they
those signal points whose energies are lower [3]. One can regaegresent current, not optical power.
constellation bounding region shaping and nonequiprobable signalingVhen the term “power” is used, one must be very specific about
as two different but related ways to achieve the same goal. Note thdtether the transmitted optical or the received electrical power is
the average signal energy is completely determined by the margingflierred to. The instantaneous transmitted optical power(fs.
signal distribution on the 2-D constituent constellation; both shapidgsuming that the sequen¢e } is ergodic, the average transmitted
and nonequiprobable signaling result in nonuniform distributiormptical power, i.e., the time average ©ft), is
on the 2-D constituent constellation that are more average-power
efficient. Practical considerations influence the use of constellation 00
bounding region shaping or nonequiprobable signaling, or their ()T / C(t) dt.
combined use. For example, constellation bounding region shaping e
is only effective whenV is reasonably large.
Adverse effects of shaping and nonequiprobable signaling includiBe instantaneous received electrical power, assuming noise is absent,
an increase in peak-to-average-power ratio (PAR) and an expans®groportional to[h(t) © x(t)]?, and the average received electrical
in size of the constituent constellation, which is described by th@wer is proportional to the time average of this quantity. Therefore,
constellation expansion ratio (CER). Addressing of the constellatitie average received signal power is not proportional to the average
points is another important issue. Techniques have been developetfapsmitted signal power. For example, comparing transmission of the
achieve a good tradeoff between shape gain, the adverse effectsignal:z(t) to that ofg - z(¢), g > 0, the latter requires a change of
shaping, and addressing complexity. Examples of shaping technigtrégsmitted optical power af0log,, g decibels over the former. In
include the generalized cross constellation [2], trellis shaping [4], af@sponse to this change in transmitted power, the received electrical
shell mapping [5]; examples of nonequiprobable signaling techniqugignal-to-noise ratio (SNR) changes &ylog,, ¢ decibels. To avoid
include equal-size constellation partitioning [3] and unequal-size copetential confusion, hereafter in this correspondence, decibel units are
stellation partitioning [6]. A particularly simple addressing scheme farsed exclusively to represent differences in the transmitted optical
nonequiprobable signaling is to use codewords of unequal lenggrver.
for constellation points of unequal probabilities [7]. However, this In summary, while the concepts of shaping and nonequiprobable
results in a communication bit rate that is not constant, which can dignaling also apply to IM signals, the results and techniques devel-
problematic in certain applications. If the bit-rate variation needs @ped for electrical signals are not directly applicable to IM signals
be controlled, techniques such as balanced codes [8] exist that &@hthe following two reasons:
be used to ensure a constant bit rate. « Transmitted IM signals are always nonnegative. Therefore, the
In this correspondence, we examine shaping and nonequiprobable coordinates of every constellation point must be nonnegative
signaling for another class of signals: the intensity-modulated (IM) and, as a result, the constellation bounding region must not en-
signals. IM signals are completely different from the more typical close any lattice points with negative coordinates. For example,
electricalsignals in several key respects. An example of an electrical V-spheres obviously violate this requirement.
signal is a voltage signal transmitted along a transmission line. Thes The transmitted energy of IM signals is proportional to the

baseband equivalent of the transmitted signéd), is a complex func- amplitude, not the square of the amplitude, of the transmitted
tion of time, and the instantaneous transmitted power is proportional signal. Therefore, to minimize the average transmitted power, the
to |=(t)|%. averagel.' norm of the constellation points should be minimized

In intensity modulation (IM), the instantaneous power output of instead of the averag®® norm.

the transmitter is modulated in proportion to some function of the The remainder of this correspondence is organized as follows.
modulating signal. IM is widely used in optical communications,, section Il, we define the concepts and parameters employed
An application that illustrates the use of IM signals is wirelesg, the correspondence. In Section I, we present the shape
infrared communication [9]. A wireless infrared communicatioRf the constellation bounding region that achieves the highest
system consists of an optical transmitter, a linear time-invariaghape gain, and derive the ultimate shape gain of IM signal
channel having impulse responséf), and a receiving photodetector constellations. In Section 1V, the tradeoffs between shaping gain
with responsivityR. Such a system has an equivalent baseband mogely cer, PAR, and complexity are analyzed, and examples of

that hides its carrier frequency. Lett) represent the instantaneousshaping codes are provided. Concluding remarks can be found in
optical power of the transmitter. The transmitted sign@) and the ggction V.

impulse responsé(¢) must always be real and nonnegative. In this
correspondence, we consider specifically pulse amplitude modulation

(PAM)-like input signals, i.e.x(t) = >, xx((t — kT'), where((t) II. DEFINITIONS
is a nonnegative pulsé; is the signaling period, and the nonnegative

. . . - In this section, we define the concepts and parameters used
sequencdzy } encodes the information. The received photocurrent I b P

roughout this correspondence. Most of these parameters have been
defined in the literature for electrical signals [2], [3]. They are
y(t) = Rh(t) @ x(t) + n(t). (1) appropriately modified here based on the characteristics of IM signals.
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A. Constellation, Signaling Probability, and Normalized Bit Rate outside the bounding regioR. The average constellation energy of

Throughout this correspondence, we deal with constellatiem-  (£2-p. 3) per basic dimension is approximated by
bedded in anV-dimensional {V-D) vector space having well-defined ; :
Euclidean distance and norm. A constellatidnoften comprises a E(Q) ~ "/ E(r)pe(r) dr. ©)
collection of points that belong to the intersection of a lattigeor a
translatex + A, and a finite regionk. The transmitter is assumed to
emit a sequence of symbols drawn independently frbatcording to
a signaling probability mass functigi(r), » € 2. The symbols are
emitted at some fixed symbol rate. The entropy rate of the seque
of output symbols fronf2 with signaling probability mass function

The use of this technique to estimate the average energy of a
constellation is called theontinuous approximationit is a useful
simplification because without it one has to do case-by-case study
If]%reeach normalized bit raté and each underlying lattice of interest.

p(r) is C. Constellation Figure of Merit
A common measure for the reliability of digital communication
H(p) == p(r)log, p(r) is the minimum Euclidean distance of the constellation. For a given
red normalized bit rate3, it is typically desired to maximiz@min (2)

for a given average constellation energy per basic dimensign).

H’Qe constellation figure of merit (CFM) is a dimensionless, scale-
invariant quantity relating the average constellation energy to the
minimum Euclidean distance. For IM signals, CFM is defined as

dmin (Q)

bits per N-D symbol.

Because there is no quadrature-phase component in an IM sig
an N-D IM symbol is obtained by concatenatiig PAM-like (1-D)
symbols. Accordingly, we define thmsic dimensionf IM signals to
be 1-D. We define a normalization coefficiengsn = 1/N for IM
signals. The normalized bit rate per basic dimensida the entropy E(Q) -~

rate per basic dimension and is definedjas nH (p). The highest Suppose that the only system impairment is additive white Gauss-

normalized bit rate for a given constellation size; g, |2|, which . i . . !
is achieved only with uniform signaling probability. By contrast, foran hoise (AWGN) with one-sided power spectral density. The

electrical signals, aiv-D symbol is obtained by concatenating’2 following approximation relates CFM to the symbol error probability:

q.uadrat.ure amplitude mo.dulat.ed (QAM)-like (2-D) symbols; Fhe basic _ 2. (Q) — [E(Q)CFM(Q)

dimension andj for electrical signals are 2-D artf N, respectively. P. = NQ SN | = NQ@ T (4)
Henceforth, in this correspondence, the notati@n p, 3) is used -0 Vesto

to denote a constellatiof? with signaling probability mass function — . . )
p(r) and normalized bit ratg. A broader meaning is given to the WhereN is the error coefficient [11]. (In Section I, we used wireless

word “constellation;” not only does it represent a collection of signdfii’aréd communication as an example of an application employing
points, but it also specifies the signaling probability mass functiofY! Signals. The noise component?) in (1) is indeed modeled as
Because in this correspondence it is only meaningful to compaidite, Gaussian, and independent of sign@) [9].) Therefore, the
constellations having the same normalized bit rateis added to 92 In average consteliation energy, or average transmitted power,
the notation even though it can be determined frexrand p. If  Of constellation(€2. p, ) over constellatior(¢Y', v, 5) is

the constellation points are selected equiprobably, the constellation ~ CFM(£2)
is denoted by (¢, uniform, 3). 7 = 10logy, CFM ()

CFM(Q) =

®)

dB. (5)

. . . . By contrast, for electrical signals CFM is defined by CFW) =
B. Average Constellation Energy and the Continuous Approxmatlg;?nm(Q)/E(Q)_ With this definition, (5) still applies [2].

For IM signals, the energy of av-D constellation point is

r=(r1,---.xn) € Qs D. Baseline Constellation
N For comparison purposes, the baseline constellatioM-D space
E(r)= Zil)i. is defined as théV-D constellation constructed over the simple cubic
i=1 lattice with cubic-shaped bounding region and uniform signaling

probability mass function. It is denoted k2, uniform 3). For

The average constellation ener er basic dimension is . ) .
9 P example, in 1-D space, the baseline constellation with, =

E(Q) =1y Zp(r)E(T)' 1 consists of points{0, 1, 2, ---, 27 — 1}. With the continuous
Joperet approximation, the 1-D baseline constellation with a normalized
entropy rated is a uniform distribution in[0, 2°]. The N-fold
By contrast, Cartesian product of it with itself is the baseline constellation in
N N-D space. We define the baseline CFM, CEM), as the CFM of
E(r) = ZIZQ the baseline constellation.

. . E. Coding Gain, Shape Gain, and Bias Gain
for electrical signals.

If an V-D constellation(<2, p, 3) is based on a lattice ang| is It has been shown that the CFM of constellatiéh p, J) can be
large, the average constellation energy can be estimated convenieffigted to the baseline CFM by
by approximating the discrete signaling probability mass function CFM(Q) &~ CFM(Q,)7.(A)7s(R. p) (6)

p(r), r € Q2 by a continuous probability density functign(r), r €
RY . Roughly speaking, integrating(r) over afundamental volunte where~.(A) is the coding gain of the latticA and~.(R. p) is the
about a lattice point yields p(r). The functionp.(r) is zero ifr is  shaping gaif2]. Roughly speaking, coding gain describes the density
of points packed in a unit volume for a given minimum Euclidean
1The fundamental volume is th%¥-D volume per lattice point. distance. It is a property of the underlying lattice structure and is
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not the subject of this correspondence. Shaping gai®, p) is the
product of two components, ttghape gainof the bounding region
R and thebias gainof the signaling probability(r).

Shape gainis defined as the reduction of average constellation
energy due to the shape of the constellation bounding redon
as compared to the baseline (cubic) shape. The highest shape gain
is achieved if R has the property that any lattice point insid®
has energy no greater than that of any lattice point out&dé&or (R0, 0)
electrical signals, the optimal shaping regiorNnD is an N -sphere; 7
for IM signals, it is the region in the nonnegative ortfapbunded Fig. 1. The optimal constellation bounding region for 3-D IM signal con-
by a plane, as will be shown in Section Ill. The highest achievabféellations.
shape gain in anV-D space is monotonically increasing in its
dimensionality; using the optimal shaping region, the ultimate shapg greater than that of any lattice point outsifte For IM signals,

gain is achieved whetV — oc. However, to achieve a high shapeye coordinate of a constellation point represents the energy of that

gain, it is necessary to design the constellation in a high-dimensiprg@im along the corresponding dimension, and the overall energy of
space, which may lead to high complexity. Furthermore, one might,nstellation point is the sum of its coordinates. Therefore, the

not have much freedom in choosing because the dimensionality ohtima| constellation bounding region must minimize the quantity
of the underlying lattice\ usually is a more important concern. max,co E(r), and it cannot enclose any constellation point with

Bias gainis the reduction of average constellation energy due %ﬁaﬁve coordinates. The optimAl-D constellation region is thus

more frequent use of lower energy constellation points, as compagdnqed inside the + 1 planes defined by; =0, i = 1,2,---, N

to equiprobable signaling. Specifically, it is the reduction of averagiendzg\il x; = L, whereL is the highest energy of any constellation
constellation energy of(2, p, ) relative to(¢Y', uniform 3) when gt “This region is denoted biRn (L), i.e.

the bounding regions @@ and$?’, R(£2), andR(€?'), have the same ’ e

shape, i.e.,R(Q2) is obtained by scaling?(£2'). What makes bias
gain important is that ultimate shape gain can be obtained in a space
of any finite dimensionality in the form of combined bias gain and

. N
Shape gain [3] fori = ]_’ 2, cee, N and Z oy S L} (7)

Ry(L) = {r = (&1, -+, an)|zi >0,

Hereafter in this correspondence, when there is no need to
distinguish between constellation bounding region shaping and . ) .
nonequiprobable signaling, we will use the teshapingto refer The N + 1 vertices that definely(L) are (0.0, ---,0),

to both of them. The codes employed to achieve shaping gain afe 0 == *+ 0); (0. L. 0.+~ 0), ---. (0, ---, 0. L). Excluding the
called shaping codes. origin, the N vertices form a simplex in th&-D space. For example,

the shape of the optimal bounding region is an isosceles triangle in
. . . 2-D and a tetrahedron in 3-D, as shown in Fig. 1.
F. Constellation Expansion Ratio and Peak-to-Average Power RatloTO calculate the shape gain dfx (L) over the baseline cubic
A constituent constellation is the projection of atD constel- shape, we compare the average energyRaf(L) to the average
lation €2 onto a given_M-D COﬂSte"ation, wherél divides N. We energy of anV-D cube with the same volume. Note that under the
often useM = 1 for IM signals andM = 2 for electrical signals.  continuous approximation, if the signaling distribution is uniform,
One drawback of shaping is that it requires the size of th@o constellations have the same normalized bit rate if they have
constituent constellation to be expanded. Intuitively, expansion gfe same volume per dimension. The volume bounded?ky;.) is
the constituent constellation occurs because the shaped constellaignz,) = L~ /N!, and the average constellation energy per basic
bounding region encloses some lattice points that are far away frefithension isP = L/(N + 1). An N-cube whose volume i (L)

the origin in only a small number of coordinates. On the other hangyg average energy per ]_QDI(LN/_N!)UN. The highest achievable
nonequiprobable signaling requires more constellation points th§|ﬁ1ape gain inV-space is thus

equiprobable signaling to convey a given information rate. As a result, N LN NN

it requires the transmitter and receiver to support a wider dynamic L <(L)‘ ) . L 1 <(n +1) ) . ®)

range. The constellation expansion ratio (CER) of a constellation 2\ M TN+1 2 NI

(€2, p, ) is defined to be the ratio of the size of the constituer{s x _, . the shape gain increases monotonically to the limit
constellation of(€2, p, 3) to the size of the constituent constellation
of the baseline constellatioff2,, uniform, 3). 1 <(N + 1)1/1\’)

=1

N

A measure of the sensitivity of a signal constellation to nonlinear- mhfio 2 N!
ities and other signal-dependent perturbations is the peak-to-averaﬂ%-s is called the ultimate shape gain for IM sianals
power ratio (PAR). PAR is the ratio of the value of the larges be g g )

. ) . . A uniform signaling distribution inside the optim&(-D shaping
coordinate among all constellation points to the average constellation. . ) : ; o
ion induces a nonuniform signaling distribution in the 1-D con-

energy per dimension. Shaping also_results In an increase in PstHiuent constellation space. This distribution is of interest because
partly because the average constellation energy is reduced and partly i ies the marginal signaling distribution that nonequiprob-

because the peak power may be increased. It is important to ke : . . .
CER and PAR low when designing shaping codes. 2l signaling should seek to achieve. We denote the marginal

signaling probability density function in the 1-D constituent constel-
lation induced by a uniform signaling distribution insidiy (L) by
I1l. OPTIMAL SHAPING FOR INTENSITY-MODULATED SIGNALS f(x)/#(0), = € [0, L]. The probability that the first coordinate of a
To achieve the highest shape gain, the shape of the bounding regmmdomly selected constellation point lies[in = + dz] is the ratio
R should be chosen such that every lattice point indtdeas energy of the volume of the intersection dix (L) and the planar slice

2The set of all nonnegative reaktuples is called the nonnegative orthant. {r=(z1, -, an)|z <21 <z +da}
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which is Vx_((L — z) dz, to the total volume ofRx(L). Thus
F@)/f(0)=Vn_1(L—2)/Vn_1(L).

;-; .
As N — oo, ‘é’ i
lim Ha) _ lim (L—x) o 8
N—c f(o) N— L g’ 7]
- N1 ) §
— N I — . i 4
= Jm <1 (N + 1)P> e O 2
. . . T . S 7
Thus the induced signaling distribution in 1-D constituent constella- E
tion space is exponential. = .
There are lattice points that have low average energies but have 0 1 . . ‘
high peak energies, e.d.L, 0, - - -, 0). These points are included in ] 12 14 16 18 5
optimally shaped constellations but not the baseline constellations, ' ' ' )
resulting in the increases in CER and PAR. One may consider CER

intentionally choosing the shape of the constellation bounding regippy 2. Best possible tradeoff between shaping gain and CER.
to be nonoptimal—to smooth out the corners Bf—in order to
achieve desired tradeoffs between shape gain and CER/PAR penalties.
This is done in some constellation designs for electrical signals, sutigh-dimensional shaping of the constellation bounding region and
as the generalized cross constellation [2]. intentional nonequiprobable signaling.

The ultimate shape gain and the marginal distribution in the To derive the tradeoff between CER and shaping gain, consider a
constituent constellation space induced by optimal shaping can apsk-power-limited 1-D constellation. Lgt(x), = € [0, L], denote
be derived from the perspective of nonequiprobable signaling. Ndte signaling probability density function. We assum&0) and
that the shape gain is completely determined by the induced marginaiL) are nonzero. Letd and £ denote the differential entropy
distribution. Given a fixed volume that a constellation boundingnd the expectation of.(z), respectively. The quantitied and E
region must enclose, the optimum constellation bounding region migpresent the normalized bit rate of the constellation and the average
induce a marginal distribution that has the lowest average energgnstellation energy, respectively. The baseline signaling probability
The dual problem to this is that, given that the first moment dfensity function whose differential entropy equdis is uniform
the marginal distributionf(x) is constrained by[,” xdx < P, in [0, H] and has a meai{/2. Thus the shaping gain qf.(x)
the optimal marginal distribution should have the largest possibfe~s = (#/2)/E and the CER isL/H. By standard variational
differential entropy. Using standard optimization techniques, suchagguments using a Lagrange multipligrthe probability distribution
distribution is easily shown to be exponential. An exponential dig--(z) that maximizes the shaping gai#//2)/E for a fixed CER
tribution with mean (average constellation ener§yhas differential L/H is a truncated exponential distribution
entropy (normalized bit rate} = log, e + log, P. On the other
hand, a uniform (baseline) probability density function having the A A e [0, IJ
same differential entropy is ovdf, ¢! ™" ¥ = ¢P]. The highest pe(z) = { 1—ek ) ¢ (10)
achievable gain using only nonequiprobable signaling is thus the ratio 0, otherwise
of eP/2 to P, which ise/2. This is an upper bound on the ultimate
shape gain, and is indeed achieved by infinite-dimensional shapiijiere A controls the tradeoff between shaping gain and CER. The
An analogous argument to this has been used by Forney and WeifAR is determined by CER and shaping gain
to prove that optimal shaping induces a Gaussian distribution on the
2-D constituent constellation in the infinite-dimension limit. PAR = 2 - CER- shaping gain (11)

IV. DESIGN OF SHAPING CODES For a fixed shaping gain, minimizing the CER is equivalent to

A practical shaping code should yield a reasonable shaping g&¥imizing the PAR. Fig. 2 illustrates the upper bound on shaping
while incurring acceptable penalties. In this section, we devel&&in as a function of the CER, which is achievable only by the
upper bounds on shaping gain versus CER and PAR. We usdrypcated exponential signaling distribution. Insofar as the continuous
nonequiprobable signaling technique adapted from [3] to demonstr@fProximation is accurate, we can conclude that, in principle, it is
the tradeoff between shaping gain and complexity. An example ofP@ssible to achieve shaping gains of more than 1 dB while keeping
shaping code is then provided. CER less thari.2 (PAR below3), or to achieve 90% of the ultimate

Before proceeding, we note that the “shell mapping” proposédiape gain while keeping CER at abdut (PAR about3.7).
in [5] is an alternative to the approach we employ here. The shell
mapping technique can often be used to map a given problem with B/ Bounds on Bias Gain Versus the Number of Values
signals to an equivalent problem with electrical signals, thus makigg Signaling Probability
it possible to transfer known results for electrical signals to the IM
problem. Here, we prefer to solve the IM problem directly,
feel it is more clear and intuitively appealing.

One nonequiprobable signaling scheme is performed by partition-

since Wﬁg a constellation intal’ equal size, nonoverlapping, contiguous
subconstellations2g, €24, ---, Qy—1. A shaping code selects the

) ) subconstellatiorf?; with frequencyf};, and signal points belonging

A. Bounds on CER and PAR Versus Shaping Gain to the same subconstellation are to be used equiprobably [3]. In 1-D

We focus on the marginal signaling probability density functiospace, without loss of generalit§); can be assumed to e i + 1].
in 1-D to study bounds on CER and PAR versus shaping gaifihe highest achievable bias gain, given that dhlyglifferent values
The nonuniform marginal signaling probability can result from botbf signaling probability are available, can be derived as follows. The
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TABLE |
THE HIGHEST ACHIEVABLE BIAS GAIN AND THE CORRESPONDINGBIAS FACTOR x, CER, AND PAR
WHEN 7" EQUAL-SIZED SUBCONSTELLATIONS ARE USED

Highest Achievable .
T Bias Gain (dB) Bias Factor x CER PAR
2 0.71 0.23 1.23 2.90
4 1.07 0.37 1.53 3.93
8 1.23 0.53 1.90 5.04
16 1.30 0.68 2.30 6.21
16 T T T T
14 ]
12 4
Elé 10 E
= 5 s .
Q) O
o 6 4
=
4 i
2 J
0 1 1 1 I3 0 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1
Bias Factor x Bias Factor x
Fig. 3. Bias gain as a function of bias facterand the number of subcon- Fig. 4. Constellation as a function of bias facterand the number of
stellationsT'. subconstellationd.
bias gain as a function of; is 35 1 1 . .
2H(f0-f1v"'~fT—l)_l 30
-1
1
PR I3 25 |
> (i+4)s
=0 20
where g(:
T—1 o

15
H(fo? f17 T f’l'—l) = Z fz =1.

i=0 10
To maximize the bias gain, we need to maximize

T-1 1
J = H(fo, f1.---, fr—1) — log, [Z <i+ 2)]‘}} 0 L L L ;

i=0 0 02 04 06 08 1

subject to the constrai@?;o‘ fi = 1. The solution for the signaling

- A Bias Factor x
probability f; can be shown to be the truncated geometric distribution

having a critical parameter. We refer tox as the bias factor Fig. 5. Peak-to-average power ratio (PAR) as a function of bias factord
) the number of subconstellatior’.
fj:( _’;)L i=0,1,-,T—1. 12) _
l-= gains forT = 2, 4, 8, 16, and the corresponding values of CER

This can be interpreted as a staircase approximation to the truncaaed PAR are shown in Table I. It is desirable to choasérger
exponential distribution in (10), which is the optimal continuouthan the value that yields the highest bias gain to realize a favorable
marginal distribution when the peak energy is limited. If the optimdtadeoff between bias gain and CER/PAR penalties. We find that a
signaling probability in (12) is used, then four-valued probability distribution suffices to achieve a bias gain
CER = T2~ T fl - Fry of over 1 dB for CER= 1.53 and PAR= 3.93, and a 16-valued
probability distribution suffices to achieve a shape gain that is only

and 0.03 dB lower than the ultimate shape gaineg®.

PAR=T

T—1 -1
dG+12f .
= C. Examples of Shaping Codes

The bias gain, CER, and PAR as functions of the bias faetor Suppose that the design objective is to achieve at least 1-dB shaping
are shown in Figs. 3-5, respectively. The highest achievable bgain at a normalized bit rate of approximately 2 bits per basic
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TABLE I -1 52 53 o4 o4
THE HUFFMAN PROCEDURE USED TO MAP L 2 1 2 1 2 | 2 ] 2 L
INPUT-BIT SEQUENCES TO SUBCONSTELLATIONS 0 1 2 3 4 5
(@
Source Bit Sequence Subconstellation A Priori
d Chosen Probability @
0 Qp 172 5l
-5 5-6| 57| 58| »-8
10 Q 1/4 I I I e
50 5-6 7| 58| o8
110 Q, 1/8 N N S e
-4 55| 56| 57| o7
1110 Q, 1/16 N N
1111 Q 1/16 RRENEN ENEN LN
22 2-3 2-4 2-5 2 5
dimension via nonequiprobable signaling in 1-D signal space. The or L1 1 1 | 1
number of subconstellatioriE can be determined from the product 61 2 3 4 5
of CER and the number of subconstellations needed in the baseline (b)
constellation. From Fig. 4, CER is at leas®2 at 1-dB shaping
gain. Using the baseline constellatiai, = 4 subconstellations are @
needed to support a normalized bit rate= 2. Therefore, we choose
T =5 > 4 x 1.2. Let subconstellatiof2;,i = 0,1, .-, 4 be
selected with probabilityf;. The truncated geometric distribution 6+
that achievest (f) = 2 is f* = 0.6°" £, fo = 0.4337. It may 27 28
be desirable to round up these probabilities to dyadic numbers, i.e., Sr 25 28 o8
(fo. f1. fas f3. fa) = (1/2, 1/4, 1/8, 1/16, 1/16) 4+
. : 29 29 27 28
so that a straightforward Huffman code such as the one shown in 3k
Table Il can be used for the addressing task. The normalized bit o4 o8 o6 o7 58
rate and shaping gain of this shaping code are 1.875 bits per 1-D 2+ o R R R
and 1.154 dB, respectively. The values of CER and PAR (1.25 and ; 27 2% 27 27 2
5.41 dB, respectively) are very close to the values predicted in Section B 22 o3 o4 58 o5 o7
IV-A. With this addressing scheme, the data rate is probabilistic; an 0k
additional rate-control technique such as a balanced code can be used | L L L L L '

to ensure a constant bit rate.
To seek higher shaping gain than that achieved by this 1-D non- ©
equiprobable signaling shaping code, one can employ a higher dimeig: 6. Construction of the shaped 2-D constellation.
sional signal space. In Fig. 6, a 2-D shaping code is designed based
on the previous 1-D shaping code. First one forms a 2-D constellatizansmitted IM signals are nonnegative and the transmitted power
as the two-fold Cartesian product of the 1-D constellation witls proportional to the instantaneous amplitude of the transmitted IM
itself. The Cartesian product does not change the marginal signalgignal. In light of the differences between IM signals and electrical
distribution on the 1-D constituent constellation; therefore the shapisignals, we found it necessary to redefine various parameters for IM
gain, CER, and PAR are not changed. The bounding region of tlsiginals, such as the constellation figure of merit.
2-D constellation is a square. To utilize the shape gain on the 2-DWe found that to achieve the highest possible shape gaiN-in
space, the subconstellations located near the upper right corneDodpace, the shaped constellation should lie within the region in the
the square are replaced by the subconstellations that are closendnnegative orthant bounded by tNesimplex, wherel. is the largest
either one of the two axes, thus reducing the average constellatcwordinate of any constellation point. A — oo, the shape gain
energy (while increasing the peak energy). Note that the shape of twer an N-cube approaches the ultimate shape gaim/@f = 1.33
constellation bounding region of the shaping code is similar to thB. Equiprobable signaling in the optimally shap€eD constellation
shape of the 2-D optimal shaping region, which is an isosceles rightluces an exponential signaling probability density function on the
triangle. The shaping gain, CER, and PAR are 0.05 dB, 1.2 times, aD constituent constellation @& — oc. The ultimate shape gain can
0.84 dB higher than their counterparts for the previous 1-D shapibg achieved in 1-D in the form of bias gain using nonequiprobable
code. This illustrates that it is possible to achieve higher shapisgnaling if the resulting marginal signaling distribution can be made
gain by designing the code in a higher dimensional space, but #eponential.
increased shaping gain will generally be accompanied by increased’he major drawback of shaping is that increased shaping gain
PAR and CER. is accompanied by increases in CER and PAR. Furthermore, the
dimensionality of the signal space and/or the number of different
values of signaling probability must be large to support a high shaping
For communication systems employing intensity-modulateghin. We investigated the tradeoffs between shape gain and these
signals, the average transmitted power can be reduced by shapidgerse effects. We found that a 1-dB shaping gain can be achieved
the bounding region of the constellation and/or by employingith reasonable penalties. We have found that shaping codes that
nonequiprobable signaling. Methods developed for conventiorethieve gains closer to the ultimate limit incur sharply higher CER,
electrical signals cannot be applied directly to IM signals becauPAR, and complexity penalties.

V. CONCLUSIONS
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On the Inverse Windowed Fourier Transform

Laura Rebollo-Neira and Juan Fernandez-Rubio

2
where

Abstract—The inversion problem concerning the windowed Fourier
transform is considered. It is shown that, out of the infinite solutions that
the problem admits, the windowed Fourier transform is the “optimal”
solution according to a maximum-entropy selection criterion.

Cy = llol* = / (o) do.
R

Although the inversion formula (2) allows the recovery of a signal
from its WFT, the inversion is not unique. Let us dendtéto the
Index Terms—Gabor transform, inversion problems, maximum en- image of the WFT, i.e.,

tropy, windowed Fourier transform. )
W = {F(w,t); Flw,t) = / e g (v — ) f () das
R

. INTRODUCTION

for somef(z) € LZ(R)}. )

The use of a generalized Fourier integral to convey simultaneous
time and frequency information was first introduced by Gabor (1946). o
In [2], he defines a windowed Fourier integral, using a Gaussid¥ is only a closed subspace, not all bf(R*) (not every function
window. Later, the window was generalized to any functiodig), "(w,t) € L?(R”) belongs toWV). The next theorem, whose proof is

the space of square integrable functions. The so generalized G&%?n( in [)6, p. 56], provides the necessary and sufficient condition
for h(w,t) € W.

Manuscript received March 1, 1997; revised February 17, 1999. This work Theorem 1: A function A(w, ) belongs toW if and only if it is
was supported by CIRIT of Catalunya, CICYT of Spain (TIC96-0500-C10-0 ; ; i ofi
TIC98-0412), and CICPBA of Argentina. %quare integrable and, in addition, satisfies

L. Rebollo-Neira is with CICPBA (Comisii de Investigaciones Cigfitas ) 1
de la Provincia de Buenos Aires), Departamento deick, Universidad h(w',t) = C
Nacional de La Plata C.C. 727, 1900 La Plata, Argentina. g

J. Fernandez-Rubio is with the Departament de Teoria del Senyal i Comyhere
nicacions, Escola Tecnica Superior, d’'Enginyers de Telecomubic@ampus
Nord, UPC, Edifici D-4, c/. Gran Capita s/n. 08034 Barcelona, Spain (e-mail:

/ KW't w, t)h(w,t)dwdt 4)
R

KW' t,wt) = ((J,W,Ig(;c — )| e“Tg(z —1t))

juan@gps.tsc.upc.es).
Communicated by C. Herley, Associate Editor for Estimation.
Publisher Item Identifier S 0018-9448(99)08127-4.

f')e,wxg(.zf —t)dux.

= ®)

—iw'z
e g (-
R

0018-9448/99$10.00 1999 IEEE



