
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2661

Fig. 6. The BER of the RAKE receiver withL = 1, 2, and 4 fingers used in
a multipath Rayleigh channel versus the signal-to-interference ratioEb=J0:
In all cases� = 0:25: Dashed line= complete coherence; solid line= using
phase control with� = 0:25:

first-order closed loop. In a noiseless case, a first-order loop never
achieves the zero error condition since the phase adjustments are
proportional to the current phase error.

The bit-error rate for the system for different pathsL as a function
of the signal energy to interference ratioEb=J0 is depicted in Fig. 6.
The dashed lines show the BER for a receiver with exact coherence,
while the solid lines show the BER for a receiver using the phase
algorithm in the previous section. We see that the performance
converges to that of the receiver with complete coherence rapidly
asEb=J0 increases.

In order to see the implications of a different number of users in the
system, we may use the relation (46) to compute the ratioEb=N0, but
recall that we have used a Gaussian approximation which is accurate
only if the productLKN � 1:

VI. CONCLUSIONS

We have analyzed the performance of the coherent reception in
different channel scenarios, the AWGN channel, and the multipath
Rayleigh channel. In the analysis we have taken into consideration
imperfections in coherence, since due to the system noise and
multiple-access interference perfect phase coherence is not often
available. However, at levels of the signal-energy-to-interference
ratios of interest we have seen that the receivers behave as if there
were complete coherence.

One topic that we have not considered is the phase acquisition
process, which is of interest in a fast fading channel where the carrier
phases change faster. In such a channel, the algorithm described must
be changed to a loop of higher order. Otherwise, the algorithm may
not be able to follow the faster changes of the phase.
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Shaping and Nonequiprobable Signaling
for Intensity-Modulated Signals

Da-shan Shiu,Student Member, IEEE, and
Joseph M. Kahn,Senior Member, IEEE

Abstract—The theory of shaping and nonequiprobable signaling, which
has been developed for conventional electrical signals, must be modified
to treat intensity-modulated (IM) signals. We show that for IM signals,
the optimum shape of the constellation bounding region inN -dimensional
(N -D) space is anN -D simplex. AsN ! 1, the maximum achievable
shape gain is 1.33 dB (in terms of transmitted power), and the resulting
marginal signaling distribution on the one–dimensional (1-D) constituent
constellation is exponential. We also investigate the tradeoffs between
shaping and its negative consequences, and find that a 1-dB shape gain
can be achieved while incurring reasonable increases in peak-to-average
power ratio and constellation expansion ratio.

Index Terms—Intensity modulation, nonequiprobable signaling, optical
communications, shaping.

I. INTRODUCTION

Many signaling schemes are based on finite-dimensional lattices
[1]. Usually the signal constellation consists of all lattice points within
a bounding region. If the constellation points are used equiprobably,
the shape of this bounding region determines the average signal
power. By selecting a certain shape other than a cube for the con-
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stellation bounding region, it is possible that the average transmitted
signal power can be reduced while maintaining the communication bit
rate. It has been shown that for electrical signals spherical bounding
regions minimize average signal power. In anN -dimensional (N -D)
space, asN ! 1, the shape gain of theN -sphere over theN -
cube approaches the ultimate shape gain of 1.53 dB [2]. Employing a
spherical bounding region the marginal signaling distribution induced
on the two-dimensional (2-D) constituent constellation approaches
Gaussian asN ! 1.

Nonequiprobable signaling refers to selecting more frequently
those signal points whose energies are lower [3]. One can regard
constellation bounding region shaping and nonequiprobable signaling
as two different but related ways to achieve the same goal. Note that
the average signal energy is completely determined by the marginal
signal distribution on the 2-D constituent constellation; both shaping
and nonequiprobable signaling result in nonuniform distributions
on the 2-D constituent constellation that are more average-power
efficient. Practical considerations influence the use of constellation
bounding region shaping or nonequiprobable signaling, or their
combined use. For example, constellation bounding region shaping
is only effective whenN is reasonably large.

Adverse effects of shaping and nonequiprobable signaling include
an increase in peak-to-average-power ratio (PAR) and an expansion
in size of the constituent constellation, which is described by the
constellation expansion ratio (CER). Addressing of the constellation
points is another important issue. Techniques have been developed to
achieve a good tradeoff between shape gain, the adverse effects of
shaping, and addressing complexity. Examples of shaping techniques
include the generalized cross constellation [2], trellis shaping [4], and
shell mapping [5]; examples of nonequiprobable signaling techniques
include equal-size constellation partitioning [3] and unequal-size con-
stellation partitioning [6]. A particularly simple addressing scheme for
nonequiprobable signaling is to use codewords of unequal lengths
for constellation points of unequal probabilities [7]. However, this
results in a communication bit rate that is not constant, which can be
problematic in certain applications. If the bit-rate variation needs to
be controlled, techniques such as balanced codes [8] exist that can
be used to ensure a constant bit rate.

In this correspondence, we examine shaping and nonequiprobable
signaling for another class of signals: the intensity-modulated (IM)
signals. IM signals are completely different from the more typical
electricalsignals in several key respects. An example of an electrical
signal is a voltage signal transmitted along a transmission line. The
baseband equivalent of the transmitted signal,x(t), is a complex func-
tion of time, and the instantaneous transmitted power is proportional
to jx(t)j2.

In intensity modulation (IM), the instantaneous power output of
the transmitter is modulated in proportion to some function of the
modulating signal. IM is widely used in optical communications.
An application that illustrates the use of IM signals is wireless
infrared communication [9]. A wireless infrared communication
system consists of an optical transmitter, a linear time-invariant
channel having impulse responseh(t), and a receiving photodetector
with responsivityR. Such a system has an equivalent baseband model
that hides its carrier frequency. Letx(t) represent the instantaneous
optical power of the transmitter. The transmitted signalx(t) and the
impulse responseh(t) must always be real and nonnegative. In this
correspondence, we consider specifically pulse amplitude modulation
(PAM)-like input signals, i.e.,x(t) =

k
xk�(t� kT ), where�(t)

is a nonnegative pulse,T is the signaling period, and the nonnegative
sequencefxkg encodes the information. The received photocurrent is

y(t) = Rh(t)
 x(t) + n(t): (1)

The termn(t) represents noise, and may include contributions from
thermal and/or shot noise. In many applications, the noisen(t)
can be described as white and Gaussian. For example, in fiber-
optic communications, the thermal noise of the receiver, which is
Gaussian and approximately white, usually dominates [10]. In a
wireless optical communication link, the receiver collects background
radiation, which induces shot noise that can be modeled as white,
Gaussian, and signal-independent if its intensity is high [9]. Unlike
the transmitted signalx(t), both the noisen(t) and the received
signaly(t) can be negative. This is consistent with the fact that they
represent current, not optical power.

When the term “power” is used, one must be very specific about
whether the transmitted optical or the received electrical power is
referred to. The instantaneous transmitted optical power isx(t).
Assuming that the sequencefxkg is ergodic, the average transmitted
optical power, i.e., the time average ofx(t), is

hxkiT
�1

1

�1

�(t)dt:

The instantaneous received electrical power, assuming noise is absent,
is proportional to[h(t)
 x(t)]2, and the average received electrical
power is proportional to the time average of this quantity. Therefore,
the average received signal power is not proportional to the average
transmitted signal power. For example, comparing transmission of the
signalx(t) to that ofg � x(t); g > 0; the latter requires a change of
transmitted optical power of10 log

10
g decibels over the former. In

response to this change in transmitted power, the received electrical
signal-to-noise ratio (SNR) changes by20 log

10
g decibels. To avoid

potential confusion, hereafter in this correspondence, decibel units are
used exclusively to represent differences in the transmitted optical
power.

In summary, while the concepts of shaping and nonequiprobable
signaling also apply to IM signals, the results and techniques devel-
oped for electrical signals are not directly applicable to IM signals
for the following two reasons:

• Transmitted IM signals are always nonnegative. Therefore, the
coordinates of every constellation point must be nonnegative
and, as a result, the constellation bounding region must not en-
close any lattice points with negative coordinates. For example,
N -spheres obviously violate this requirement.

• The transmitted energy of IM signals is proportional to the
amplitude, not the square of the amplitude, of the transmitted
signal. Therefore, to minimize the average transmitted power, the
averageL1 norm of the constellation points should be minimized
instead of the averageL2 norm.

The remainder of this correspondence is organized as follows.
In Section II, we define the concepts and parameters employed
in the correspondence. In Section III, we present the shape
of the constellation bounding region that achieves the highest
shape gain, and derive the ultimate shape gain of IM signal
constellations. In Section IV, the tradeoffs between shaping gain
and CER, PAR, and complexity are analyzed, and examples of
shaping codes are provided. Concluding remarks can be found in
Section V.

II. DEFINITIONS

In this section, we define the concepts and parameters used
throughout this correspondence. Most of these parameters have been
defined in the literature for electrical signals [2], [3]. They are
appropriately modified here based on the characteristics of IM signals.
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A. Constellation, Signaling Probability, and Normalized Bit Rate

Throughout this correspondence, we deal with constellations
 em-
bedded in anN -dimensional (N -D) vector space having well-defined
Euclidean distance and norm. A constellation
 often comprises a
collection of points that belong to the intersection of a lattice�, or a
translatea+�, and a finite regionR. The transmitter is assumed to
emit a sequence of symbols drawn independently from
 according to
a signaling probability mass functionp(rrr); rrr 2 
. The symbols are
emitted at some fixed symbol rate. The entropy rate of the sequence
of output symbols from
 with signaling probability mass function
p(rrr) is

H(p) = �
rrr2


p(rrr) log
2
p(rrr)

bits perN -D symbol.
Because there is no quadrature-phase component in an IM signal,

anN -D IM symbol is obtained by concatenatingN PAM-like (1-D)
symbols. Accordingly, we define thebasic dimensionof IM signals to
be 1-D. We define a normalization coefficient� as� = 1=N for IM
signals. The normalized bit rate per basic dimension� is the entropy
rate per basic dimension and is defined as� = �H(p). The highest
normalized bit rate for a given constellation size is� log

2
j
j, which

is achieved only with uniform signaling probability. By contrast, for
electrical signals, anN -D symbol is obtained by concatenatingN=2
quadrature amplitude modulated (QAM)-like (2-D) symbols; the basic
dimension and� for electrical signals are 2-D and2=N , respectively.

Henceforth, in this correspondence, the notation(
; p; �) is used
to denote a constellation
 with signaling probability mass function
p(rrr) and normalized bit rate�. A broader meaning is given to the
word “constellation;” not only does it represent a collection of signal
points, but it also specifies the signaling probability mass function.
Because in this correspondence it is only meaningful to compare
constellations having the same normalized bit rate,� is added to
the notation even though it can be determined from
 and p. If
the constellation points are selected equiprobably, the constellation
is denoted by (
, uniform, �).

B. Average Constellation Energy and the Continuous Approximation

For IM signals, the energy of anN -D constellation point is
rrr = (x1; � � � ; xN ) 2 
 is

E(rrr) =

N

i=1

xi:

The average constellation energy per basic dimension is

E(
) = �
r2


p(rrr)E(rrr):

By contrast,

E(rrr) =

N

i=1

x2i

for electrical signals.
If an N -D constellation(
; p; �) is based on a lattice and�j
j is

large, the average constellation energy can be estimated conveniently
by approximating the discrete signaling probability mass function
p(rrr); rrr 2 
 by a continuous probability density functionpc(rrr); rrr 2
RN . Roughly speaking, integratingpc(rrr) over afundamental volume1

about a lattice pointrrr yields p(rrr). The functionpc(rrr) is zero ifrrr is

1The fundamental volume is theN -D volume per lattice point.

outside the bounding regionR. The average constellation energy of
(
; p; �) per basic dimension is approximated by

E(
) � � E(rrr)pc(rrr) dr: (2)

The use of this technique to estimate the average energy of a
constellation is called thecontinuous approximation.It is a useful
simplification because without it one has to do case-by-case study
for each normalized bit rate� and each underlying lattice of interest.

C. Constellation Figure of Merit

A common measure for the reliability of digital communication
is the minimum Euclidean distance of the constellation. For a given
normalized bit rate�, it is typically desired to maximizedmin(
)
for a given average constellation energy per basic dimensionE(
).
The constellation figure of merit (CFM) is a dimensionless, scale-
invariant quantity relating the average constellation energy to the
minimum Euclidean distance. For IM signals, CFM is defined as

CFM(
) � dmin(
)

E(
)
: (3)

Suppose that the only system impairment is additive white Gauss-
ian noise (AWGN) with one-sided power spectral densityN0. The
following approximation relates CFM to the symbol error probability:

Pe � NQ
d2
min

(
)

2N0

= NQ
E(
)CFM(
)p

2N0

(4)

whereN is the error coefficient [11]. (In Section I, we used wireless
infrared communication as an example of an application employing
IM signals. The noise componentn(t) in (1) is indeed modeled as
white, Gaussian, and independent of signalx(t) [9].) Therefore, the
gain in average constellation energy, or average transmitted power,
of constellation(
; p; �) over constellation(
0; p0; �) is


 = 10 log
10

CFM(
)

CFM(
0)
dB: (5)

By contrast, for electrical signals CFM is defined by CFM(
) �
d2min(
)=E(
). With this definition, (5) still applies [2].

D. Baseline Constellation

For comparison purposes, the baseline constellation inN -D space
is defined as theN -D constellation constructed over the simple cubic
lattice with cubic-shaped bounding region and uniform signaling
probability mass function. It is denoted by(
b, uniform, �). For
example, in 1-D space, the baseline constellation withdmin =
1 consists of pointsf0; 1; 2; � � � ; 2� � 1g. With the continuous
approximation, the 1-D baseline constellation with a normalized
entropy rate� is a uniform distribution in[0; 2� ]. The N -fold
Cartesian product of it with itself is the baseline constellation in
N -D space. We define the baseline CFM, CFM(
b), as the CFM of
the baseline constellation.

E. Coding Gain, Shape Gain, and Bias Gain

It has been shown that the CFM of constellation(
; p; �) can be
related to the baseline CFM by

CFM(
) � CFM(
b)
c(�)
s(R; p) (6)

where
c(�) is the coding gain of the lattice� and
s(R; p) is the
shaping gain[2]. Roughly speaking, coding gain describes the density
of points packed in a unit volume for a given minimum Euclidean
distance. It is a property of the underlying lattice structure and is
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not the subject of this correspondence. Shaping gain
s(R; p) is the
product of two components, theshape gainof the bounding region
R and thebias gainof the signaling probabilityp(rrr).

Shape gainis defined as the reduction of average constellation
energy due to the shape of the constellation bounding regionR,
as compared to the baseline (cubic) shape. The highest shape gain
is achieved ifR has the property that any lattice point insideR
has energy no greater than that of any lattice point outsideR. For
electrical signals, the optimal shaping region inN -D is anN -sphere;
for IM signals, it is the region in the nonnegative orthant2 bounded
by a plane, as will be shown in Section III. The highest achievable
shape gain in anN -D space is monotonically increasing in its
dimensionality; using the optimal shaping region, the ultimate shape
gain is achieved whenN ! 1. However, to achieve a high shape
gain, it is necessary to design the constellation in a high-dimensional
space, which may lead to high complexity. Furthermore, one might
not have much freedom in choosingN because the dimensionality
of the underlying lattice� usually is a more important concern.

Bias gain is the reduction of average constellation energy due to
more frequent use of lower energy constellation points, as compared
to equiprobable signaling. Specifically, it is the reduction of average
constellation energy of(
; p; �) relative to(
0, uniform, �) when
the bounding regions of
 and
0; R(
), andR(
0), have the same
shape, i.e.,R(
) is obtained by scalingR(
0). What makes bias
gain important is that ultimate shape gain can be obtained in a space
of any finite dimensionality in the form of combined bias gain and
shape gain [3].

Hereafter in this correspondence, when there is no need to
distinguish between constellation bounding region shaping and
nonequiprobable signaling, we will use the termshaping to refer
to both of them. The codes employed to achieve shaping gain are
called shaping codes.

F. Constellation Expansion Ratio and Peak-to-Average Power Ratio

A constituent constellation is the projection of anN -D constel-
lation 
 onto a givenM -D constellation, whereM dividesN . We
often useM = 1 for IM signals andM = 2 for electrical signals.

One drawback of shaping is that it requires the size of the
constituent constellation to be expanded. Intuitively, expansion of
the constituent constellation occurs because the shaped constellation
bounding region encloses some lattice points that are far away from
the origin in only a small number of coordinates. On the other hand,
nonequiprobable signaling requires more constellation points than
equiprobable signaling to convey a given information rate. As a result,
it requires the transmitter and receiver to support a wider dynamic
range. The constellation expansion ratio (CER) of a constellation
(
; p; �) is defined to be the ratio of the size of the constituent
constellation of(
; p; �) to the size of the constituent constellation
of the baseline constellation(
b, uniform, �).

A measure of the sensitivity of a signal constellation to nonlinear-
ities and other signal-dependent perturbations is the peak-to-average-
power ratio (PAR). PAR is the ratio of the value of the largest
coordinate among all constellation points to the average constellation
energy per dimension. Shaping also results in an increase in PAR,
partly because the average constellation energy is reduced and partly
because the peak power may be increased. It is important to keep
CER and PAR low when designing shaping codes.

III. OPTIMAL SHAPING FOR INTENSITY-MODULATED SIGNALS

To achieve the highest shape gain, the shape of the bounding region
R should be chosen such that every lattice point insideR has energy

2The set of all nonnegative realn-tuples is called the nonnegative orthant.

Fig. 1. The optimal constellation bounding region for 3-D IM signal con-
stellations.

no greater than that of any lattice point outsideR. For IM signals,
the coordinate of a constellation point represents the energy of that
point along the corresponding dimension, and the overall energy of
a constellation point is the sum of its coordinates. Therefore, the
optimal constellation bounding region must minimize the quantity
maxrrr2
 E(rrr), and it cannot enclose any constellation point with
negative coordinates. The optimalN -D constellation region is thus
bounded inside theN +1 planes defined byxi = 0; i = 1; 2; � � � ; N
and N

i=1 xi = L, whereL is the highest energy of any constellation
point. This region is denoted byRN(L), i.e.,

RN(L) = rrr = (x1; � � � ; xN )jxi � 0;

for i = 1; 2; � � � ; N and
N

i=1

xi � L : (7)

The N + 1 vertices that defineRN(L) are (0; 0; � � � ; 0);
(L; 0; � � � ; 0); (0; L; 0; � � � ; 0); � � � ; (0; � � � ; 0; L). Excluding the
origin, theN vertices form a simplex in theN -D space. For example,
the shape of the optimal bounding region is an isosceles triangle in
2-D and a tetrahedron in 3-D, as shown in Fig. 1.

To calculate the shape gain ofRN(L) over the baseline cubic
shape, we compare the average energy ofRN(L) to the average
energy of anN -D cube with the same volume. Note that under the
continuous approximation, if the signaling distribution is uniform,
two constellations have the same normalized bit rate if they have
the same volume per dimension. The volume bounded byRN(L) is
VN (L) = LN=N !, and the average constellation energy per basic
dimension isP = L=(N + 1). An N -cube whose volume isVN (L)
has average energy per 1-D2�1(LN=N !)1=N . The highest achievable
shape gain inN -space is thus

1

2

(L)N

N !

1=N

�
L

N + 1
=

1

2

(n+ 1)N

N !

1=N

: (8)

As N !1, the shape gain increases monotonically to the limit

lim
N!1

1

2

(N + 1)1=N

N !

1=N

=
e

2
= 1:33 dB:

This is called the ultimate shape gain for IM signals.
A uniform signaling distribution inside the optimalN -D shaping

region induces a nonuniform signaling distribution in the 1-D con-
stituent constellation space. This distribution is of interest because
it indicates the marginal signaling distribution that nonequiprob-
able signaling should seek to achieve. We denote the marginal
signaling probability density function in the 1-D constituent constel-
lation induced by a uniform signaling distribution insideRN(L) by
f(x)=f(0); x 2 [0; L]. The probability that the first coordinate of a
randomly selected constellation point lies in[x; x+ dx] is the ratio
of the volume of the intersection ofRN(L) and the planar slice

frrr = (x1; � � � ; xN )jx � x1 � x+ dxg
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which isVN�1(L� x) dx, to the total volume ofRN(L). Thus

f(x)=f(0) = VN�1(L� x)=VN�1(L):

As N ! 1,

lim
N!1

f(x)

f(0)
= lim

N!1

(L� x)

L

N�1

= lim
N!1

1�
x

(N + 1)P

N�1

= e�x=P : (9)

Thus the induced signaling distribution in 1-D constituent constella-
tion space is exponential.

There are lattice points that have low average energies but have
high peak energies, e.g.,(L; 0; � � � ; 0). These points are included in
optimally shaped constellations but not the baseline constellations,
resulting in the increases in CER and PAR. One may consider
intentionally choosing the shape of the constellation bounding region
to be nonoptimal—to smooth out the corners ofRN—in order to
achieve desired tradeoffs between shape gain and CER/PAR penalties.
This is done in some constellation designs for electrical signals, such
as the generalized cross constellation [2].

The ultimate shape gain and the marginal distribution in the
constituent constellation space induced by optimal shaping can also
be derived from the perspective of nonequiprobable signaling. Note
that the shape gain is completely determined by the induced marginal
distribution. Given a fixed volume that a constellation bounding
region must enclose, the optimum constellation bounding region must
induce a marginal distribution that has the lowest average energy.
The dual problem to this is that, given that the first moment of
the marginal distributionf(x) is constrained by 1

0
x dx � P ,

the optimal marginal distribution should have the largest possible
differential entropy. Using standard optimization techniques, such a
distribution is easily shown to be exponential. An exponential dis-
tribution with mean (average constellation energy)P has differential
entropy (normalized bit rate)� = log2 e + log2 P . On the other
hand, a uniform (baseline) probability density function having the
same differential entropy is over[0; e1+lnP = eP ]. The highest
achievable gain using only nonequiprobable signaling is thus the ratio
of eP=2 to P , which ise=2. This is an upper bound on the ultimate
shape gain, and is indeed achieved by infinite-dimensional shaping.
An analogous argument to this has been used by Forney and Wei [2]
to prove that optimal shaping induces a Gaussian distribution on the
2-D constituent constellation in the infinite-dimension limit.

IV. DESIGN OF SHAPING CODES

A practical shaping code should yield a reasonable shaping gain
while incurring acceptable penalties. In this section, we develop
upper bounds on shaping gain versus CER and PAR. We use a
nonequiprobable signaling technique adapted from [3] to demonstrate
the tradeoff between shaping gain and complexity. An example of a
shaping code is then provided.

Before proceeding, we note that the “shell mapping” proposed
in [5] is an alternative to the approach we employ here. The shell
mapping technique can often be used to map a given problem with IM
signals to an equivalent problem with electrical signals, thus making
it possible to transfer known results for electrical signals to the IM
problem. Here, we prefer to solve the IM problem directly, since we
feel it is more clear and intuitively appealing.

A. Bounds on CER and PAR Versus Shaping Gain

We focus on the marginal signaling probability density function
in 1-D to study bounds on CER and PAR versus shaping gain.
The nonuniform marginal signaling probability can result from both

Fig. 2. Best possible tradeoff between shaping gain and CER.

high-dimensional shaping of the constellation bounding region and
intentional nonequiprobable signaling.

To derive the tradeoff between CER and shaping gain, consider a
peak-power-limited 1-D constellation. Letpc(x); x 2 [0; L], denote
the signaling probability density function. We assumepc(0) and
pc(L) are nonzero. LetH and E denote the differential entropy
and the expectation ofpc(x), respectively. The quantitiesH andE
represent the normalized bit rate of the constellation and the average
constellation energy, respectively. The baseline signaling probability
density function whose differential entropy equalsH is uniform
in [0; H] and has a meanH=2. Thus the shaping gain ofpc(x)
is 
s = (H=2)=E and the CER isL=H. By standard variational
arguments using a Lagrange multiplier�, the probability distribution
p�c(x) that maximizes the shaping gain(H=2)=E for a fixed CER
L=H is a truncated exponential distribution

p�c(x) =
�

1� e�L
e��x; x 2 [0; L]

0; otherwise
(10)

where� controls the tradeoff between shaping gain and CER. The
PAR is determined by CER and shaping gain

PAR= 2 � CER� shaping gain: (11)

For a fixed shaping gain, minimizing the CER is equivalent to
minimizing the PAR. Fig. 2 illustrates the upper bound on shaping
gain as a function of the CER, which is achievable only by the
truncated exponential signaling distribution. Insofar as the continuous
approximation is accurate, we can conclude that, in principle, it is
possible to achieve shaping gains of more than 1 dB while keeping
CER less than1:2 (PAR below3), or to achieve 90% of the ultimate
shape gain while keeping CER at about1:4 (PAR about3:7).

B. Bounds on Bias Gain Versus the Number of Values
of Signaling Probability

One nonequiprobable signaling scheme is performed by partition-
ing a constellation intoT equal-size, nonoverlapping, contiguous
subconstellations
0; 
1; � � � ; 
T�1. A shaping code selects the
subconstellation
i with frequencyfi, and signal points belonging
to the same subconstellation are to be used equiprobably [3]. In 1-D
space, without loss of generality,
i can be assumed to be[i; i+1].
The highest achievable bias gain, given that onlyT different values
of signaling probability are available, can be derived as follows. The
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TABLE I
THE HIGHEST ACHIEVABLE BIAS GAIN AND THE CORRESPONDINGBIAS FACTOR x, CER, AND PAR

WHEN T EQUAL-SIZED SUBCONSTELLATIONS ARE USED

Fig. 3. Bias gain as a function of bias factorx and the number of subcon-
stellationsT .

bias gain as a function offi is

2H(f ; f ; ���; f )

T�1

i=0

i+
1

2
fi

where

H(f0; f1; � � � ; fT�1) =

T�1

i=0

fi = 1:

To maximize the bias gain, we need to maximize

J = H(f0; f1; � � � ; fT�1)� log2

T�1

i=0

i+
1

2
fi

subject to the constraint T�1
i=0 fi = 1. The solution for the signaling

probabilityfi can be shown to be the truncated geometric distribution
having a critical parameterx. We refer tox as the bias factor

f�i =
1� x

1� xT
xi; i = 0; 1; � � � ; T � 1: (12)

This can be interpreted as a staircase approximation to the truncated
exponential distribution in (10), which is the optimal continuous
marginal distribution when the peak energy is limited. If the optimal
signaling probability in (12) is used, then

CER = T2�H(f ; f ; ���; f

and

PAR= T

T�1

i=0

(i+ 1=2)f�i

�1

:

The bias gain, CER, and PAR as functions of the bias factorx
are shown in Figs. 3–5, respectively. The highest achievable bias

Fig. 4. Constellation as a function of bias factorx and the number of
subconstellationsT .

Fig. 5. Peak-to-average power ratio (PAR) as a function of bias factorx and
the number of subconstellationsT .

gains forT = 2; 4; 8; 16; and the corresponding values ofx, CER
and PAR are shown in Table I. It is desirable to choosex larger
than the value that yields the highest bias gain to realize a favorable
tradeoff between bias gain and CER/PAR penalties. We find that a
four-valued probability distribution suffices to achieve a bias gain
of over 1 dB for CER= 1:53 and PAR= 3:93, and a 16-valued
probability distribution suffices to achieve a shape gain that is only
0.03 dB lower than the ultimate shape gain ofe=2.

C. Examples of Shaping Codes

Suppose that the design objective is to achieve at least 1-dB shaping
gain at a normalized bit rate of approximately 2 bits per basic
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TABLE II
THE HUFFMAN PROCEDURE USED TO MAP

INPUT-BIT SEQUENCES TOSUBCONSTELLATIONS

dimension via nonequiprobable signaling in 1-D signal space. The
number of subconstellationsT can be determined from the product
of CER and the number of subconstellations needed in the baseline
constellation. From Fig. 4, CER is at least1:2 at 1-dB shaping
gain. Using the baseline constellation,2� = 4 subconstellations are
needed to support a normalized bit rate� = 2. Therefore, we choose
T = 5 � 4 � 1:2. Let subconstellation
i; i = 0; 1; � � � ; 4 be
selected with probabilityfi. The truncated geometric distribution
that achievesH(f) = 2 is f�i = 0:6i�1f�0 ; f0 = 0:4337. It may
be desirable to round up these probabilities to dyadic numbers, i.e.,

(f0; f1; f2; f3; f4) = (1=2; 1=4; 1=8; 1=16; 1=16)

so that a straightforward Huffman code such as the one shown in
Table II can be used for the addressing task. The normalized bit
rate and shaping gain of this shaping code are 1.875 bits per 1-D
and 1.154 dB, respectively. The values of CER and PAR (1.25 and
5.41 dB, respectively) are very close to the values predicted in Section
IV-A. With this addressing scheme, the data rate is probabilistic; an
additional rate-control technique such as a balanced code can be used
to ensure a constant bit rate.

To seek higher shaping gain than that achieved by this 1-D non-
equiprobable signaling shaping code, one can employ a higher dimen-
sional signal space. In Fig. 6, a 2-D shaping code is designed based
on the previous 1-D shaping code. First one forms a 2-D constellation
as the two-fold Cartesian product of the 1-D constellation with
itself. The Cartesian product does not change the marginal signaling
distribution on the 1-D constituent constellation; therefore the shaping
gain, CER, and PAR are not changed. The bounding region of this
2-D constellation is a square. To utilize the shape gain on the 2-D
space, the subconstellations located near the upper right corner of
the square are replaced by the subconstellations that are closer to
either one of the two axes, thus reducing the average constellation
energy (while increasing the peak energy). Note that the shape of the
constellation bounding region of the shaping code is similar to the
shape of the 2-D optimal shaping region, which is an isosceles right
triangle. The shaping gain, CER, and PAR are 0.05 dB, 1.2 times, and
0.84 dB higher than their counterparts for the previous 1-D shaping
code. This illustrates that it is possible to achieve higher shaping
gain by designing the code in a higher dimensional space, but the
increased shaping gain will generally be accompanied by increased
PAR and CER.

V. CONCLUSIONS

For communication systems employing intensity-modulated
signals, the average transmitted power can be reduced by shaping
the bounding region of the constellation and/or by employing
nonequiprobable signaling. Methods developed for conventional
electrical signals cannot be applied directly to IM signals because

(a)

(b)

(c)

Fig. 6. Construction of the shaped 2-D constellation.

transmitted IM signals are nonnegative and the transmitted power
is proportional to the instantaneous amplitude of the transmitted IM
signal. In light of the differences between IM signals and electrical
signals, we found it necessary to redefine various parameters for IM
signals, such as the constellation figure of merit.

We found that to achieve the highest possible shape gain inN -
D space, the shaped constellation should lie within the region in the
nonnegative orthant bounded by theN -simplex, whereL is the largest
coordinate of any constellation point. AsN ! 1, the shape gain
over anN -cube approaches the ultimate shape gain ofe=2 = 1.33
dB. Equiprobable signaling in the optimally shapedN -D constellation
induces an exponential signaling probability density function on the
1-D constituent constellation asN !1. The ultimate shape gain can
be achieved in 1-D in the form of bias gain using nonequiprobable
signaling if the resulting marginal signaling distribution can be made
exponential.

The major drawback of shaping is that increased shaping gain
is accompanied by increases in CER and PAR. Furthermore, the
dimensionality of the signal space and/or the number of different
values of signaling probability must be large to support a high shaping
gain. We investigated the tradeoffs between shape gain and these
adverse effects. We found that a 1-dB shaping gain can be achieved
with reasonable penalties. We have found that shaping codes that
achieve gains closer to the ultimate limit incur sharply higher CER,
PAR, and complexity penalties.
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On the Inverse Windowed Fourier Transform

Laura Rebollo-Neira and Juan Fernandez-Rubio

Abstract—The inversion problem concerning the windowed Fourier
transform is considered. It is shown that, out of the infinite solutions that
the problem admits, the windowed Fourier transform is the “optimal”
solution according to a maximum-entropy selection criterion.

Index Terms—Gabor transform, inversion problems, maximum en-
tropy, windowed Fourier transform.

I. INTRODUCTION

The use of a generalized Fourier integral to convey simultaneous
time and frequency information was first introduced by Gabor (1946).
In [2], he defines a windowed Fourier integral, using a Gaussian
window. Later, the window was generalized to any function inL2(R),
the space of square integrable functions. The so generalized Gabor
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transform is mostly referred to as the windowed Fourier transform
(WFT).

Restricting the space of signals toL2(R), the WFT is a mapping
from L2(R) to L2(R2) which is not bijective. As a consequence,
lack of uniqueness of the inverse problem must be expected. In
this contribution, we focus on a statistical analysis of the inversion
problem. First the problem is shown to admit an infinite number of
solutions. We then work on the space of possible solutions adopting a
statistical description as the essential tool. The possible solutions are
considered as a stochastic process distributed according to a (to be
determined) probability density. The desired solution is estimated as
the mean value of the random process. Among all the probability
densities capable of yielding admissible mean-value solutions we
single out one, adopting the maximum-entropy principle (MEP).
Finally, we show that, from the maximum-entropy (ME) probability
density a mean-value solution is inferred which is identical to the
WFT. Thereby the WFT is shown to be an “optimal” solution
according to an ME selection criterion. This result also holds as a
property within theFrame Theory[9].

II. THE WFT INVERSE PROBLEM

Definition: Let f(x) 2 L2(R) be a given signal andg(x) 2
L2(R) be any fixed function inL2(R). The WFT of f(x) is a
function F (!; t) 2 L2(R2) defined by

F (!; t) = hei!xg(x � t) j f(x)i =
R

e
�i!x

g
�(x� t)f(x)dx (1)

whereg�(x) denotes the complex conjugate ofg(x).
The signal can be reconstructed from its WFT through the inversion

formula [1], [3], [6]

f(x) =
1

Cg R

e
i!x

g(x� t)F (!; t)d! dt (2)

where

Cg = kgk2 =
R

jg(x)j2 dx:

Although the inversion formula (2) allows the recovery of a signal
from its WFT, the inversion is not unique. Let us denoteW to the
image of the WFT, i.e.,

W = F (!; t);F (!; t) =
R

e
�i!x

g
�(x� t)f(x) dx;

for somef(x) 2 L
2(R) : (3)

W is only a closed subspace, not all ofL2(R2) (not every function
h(!; t) 2 L2(R2) belongs toW). The next theorem, whose proof is
given in [6, p. 56], provides the necessary and sufficient condition
for h(!; t) 2 W.

Theorem 1: A function h(!; t) belongs toW if and only if it is
square integrable and, in addition, satisfies

h(!0; t0) =
1

Cg R

K(!0; t0; !; t)h(!; t)d! dt (4)

where

K(!0; t0; !; t) = hei! x
g(x� t

0) j ei!xg(x� t)i

=
R

e
�i! x

g
�(x� t

0)ei!xg(x� t) dx: (5)
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