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Abstract—We analyze the performance of trellis-coded pulse-
position modulation with block decision-feedback equalization
(BDFE) and parallel decision-feedback decoding (PDFD) on in-
door, wireless infrared channels. We show that the reduced com-
plexities of BDFE and PDFD as compared to maximum-likelihood
sequence detection allow for better codes whose increased coding
gain more than compensates for the penalty due to suboptimal
detection. We quantify these net gains in performance over a
range of dispersive channels, indicating where BDFE and PDFD
provide the best performance. Finally, we present Monte Carlo
simulation results to verify our analysis.

Index Terms—Decision-feedback equalizers, maximum-likeli-
hood decoding, optical communication, pulse-position modula-
tion, trellis-coded modulation.

I. INTRODUCTION

I NFRARED (IR) radiation using intensity modulation with
direct detection is a viable medium for short-range, indoor,

wireless communication [1]–[3]. IR offers an enormous unreg-
ulated bandwidth and is free from interference between links
operating in different rooms. The spatial diversity of large-area
photodetectors prevents multipath fading, but diffuse links,
which provide ease of use and robustness against shadowing,
are subject to multipath dispersion that can severely degrade
system performance above 10 Mbaud [3].

Pulse-position modulation (PPM) offers high average-power
efficiency, but due to its poor bandwidth efficiency, it is
more susceptible to multipath-induced intersymbol interfer-
ence (ISI) than simple on–off keying (OOK). Barry [4] dis-
cussed maximum-likelihood sequence detection (MLSD) and
various suboptimal equalizers for PPM, but even with optimal
MLSD, uncoded PPM suffers larger ISI penalties than OOK
[5]. This led the authors to apply trellis-coded modulation
principles to PPM.

The authors found that trellis-coded PPM (TC-PPM) is very
effective in mitigating the effects of ISI [6], but the high com-
putational demands of MLSD of the combined code and ISI
states preclude the use of high-constraint-length codes or op-
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eration under severe channel conditions. Suboptimal, reduced-
complexity decoding techniques allow for better codes at the
cost of a penalty due to the suboptimal decoding. When the
gain due to a better code is greater than the penalty due
to suboptimal decoding, there is a net gain for the same
computational complexity. There are a variety of suboptimal
techniques, such as delayed decision-feedback sequence esti-
mation, parallel decision-feedback decoding (PDFD), precod-
ing, decision-feedback equalization (DFE), and linear equal-
ization (LE). These techniques are listed roughly in order of
decreasing decoding complexity, although precoding requires
a reverse channel and a more complex transmitter. Park [7]
performed limited simulations of the performance of TC-PPM
using PDFD, partial-response precoding with PDFD, block
DFE (BDFE), and LE. In this paper, we analyze the perfor-
mance of PDFD and BDFE. We will show that BDFE and
PDFD provide net gains over MLSD for the same complexity
over a wide range of multipath ISI channels. We present
results on these net performance gains, indicating under which
conditions each technique provides the best performance.
Finally, we provide Monte Carlo simulations to verify the
analysis and to quantify the effects of error propagation in
BDFE.

II. CHANNEL AND NOISE MODELS

Practical wireless infrared links use intensity modulation
and direct detection (IM/DD). The channel model for an
IM/DD link is given by

(1)

The received photocurrent is the convolution of the trans-
mitted optical power with a channel impulse response

(fixed for a given configuration of transmitter, receiver,
and intervening reflectors), scaled by the photodetector respon-
sivity , plus an additive noise , which is usually modeled
as white, Gaussian, and independent of [3].

The average transmitted optical power is given by

(2)

For the purpose of computing the average powerrequired
to achieve a certain bit rate and bit-error probability ,
only two key parameters are needed to characterize multipath
IR channels: dc gain , given by ,
and root-mean-square delay spread[8]. These parameters
correspond, respectively, to the optical path loss and mul-
tipath power requirement. We define the normalized power
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Fig. 1. Discrete-time trellis-codedL-PPM system block diagram.

requirement to be the optical power required for a given
modulation scheme on the channel divided by the power
required for on–off keying on the ideal channel with the
same , and . We further define the normalized delay
spread to be .

We use the ceiling-bounce functional model for the channel
impulse response

(3)

where the delay spread . The use of this model
provides a simple, fairly accurate, reproducible method of
evaluating the performance of PPM on multipath channels [8].

The average received power is . To facilitate
the comparison of optical average-power efficiency in later
sections, we define the electrical signal-to-noise ratio (SNR)
to be , where is the one-sided noise power
spectral density. For -PPM, it is equal to times the usual
definition of SNR .

III. SYSTEM DESCRIPTION

Fig. 1 shows a discrete-time block diagram of a trellis-coded
-PPM system. Information bits with rate (b/s) enter a

rate- convolutional encoder concatenated
with a rate- PPM block encoder, producing length-

vectors, or PPM symbols,
having unit Hamming weight. The position of the nonzero
term, or pulse, in each symbol encodes the input
bits. The sequence passes through the causal, minimum-
phase, discrete-equivalent impulse responserepresenting
the combination of transmitter filter, multipath channel, and
whitened-matched filter (WMF) [9]. We normalize accord-
ing to , the peak received photocurrent
divided by the square root of the noise PSD. The noise samples

are white and Gaussian with zero mean and unit variance.
The received samples are given by

(4)

where denotes the signal component. These samples are
grouped into length- blocks and sent to the trellis decoder.
Fig. 2(a) shows the equivalent vector channel model, which is
given by

(5)

where the channel impulse response is a Toeplitz sequence
, with , and .

Fig. 2(b) shows the MLSD trellis decoder, which uses a
symbol-rate Viterbi algorithm with a superstate trellis consist-
ing of combined code and ISI states. It chooses an estimate

of that minimizes the total path metric, which is the
sum of per-block branch metrics , where

denotes the squared Euclidean norm.

Fig. 2. (a) Equivalent vector channel of TC-PPM system. (b) Block diagram
of the MLSD trellis decoder, which uses a symbol-rate Viterbi algorithm (VA)
with combined code and ISI states. (c) Block diagram of the BDFE trellis
decoder, which uses a feedback filter and a symbol-rate VA with code states
only. Feedback symbol decisions are the zero-delay trellis decisions. (d) Block
diagram of the PDFD trellis decoder, which uses parallel feedback filters and
a symbol-rate VA with code states only. There is a separate feedback filter
for each code-state survivor path.

Fig. 2(c) shows the trellis decoder for zero-forcing BDFE
(ZF-BDFE). The performance of minimum mean-squared-
error (MMSE) DFE’s is generally superior to that of ZF-
DFE’s, but at high SNR their performance is virtually the same
[10]. In the case of PPM, the analysis of ZF-BDFE is much
easier than that of MMSE-BDFE [11], so we will consider
only ZF-BDFE in this paper. The trellis decoder replaces the
superstate Viterbi decoder with a feedback filter and a symbol-
rate Viterbi decoder with code states only. The feedback block
decisions are the zero-delay trellis decisions from the
Viterbi decoder. Under the ZF criterion, the feedback filter
removes all of the ISI, but retains the intrasymbol interference,
which the Viterbi decoder uses in decoding the trellis code.
The equalized signal sent to the Viterbi decoder is given by

(6)

where , the index of the last nonzero term in , repre-
sents the channel length measured in symbols. The symbol-
rate Viterbi decoder uses a per-symbol branch metric

.
Fig. 2(d) shows the PDFD trellis decoder, which performs

ZF-BDFE on each survivor path in the trellis based on the
history of that path, where the Viterbi decoder trellis once
again only has code states. Given a trellis state

, with survivor path , the equalized signal is
given by

(7)

The Viterbi decoder uses a per-symbol branch metric
.
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IV. ERROR PROBABILITY ANALYSIS

Let be a nonzero error event starting at
time zero from the transmitted sequence. For MLSD, the
squared Euclidean distance betweenand is given by

(8)

For BDFE, we use the standard assumption in DFE analysis
that all previous symbols have been detected correctly and
ignore symbol-to-symbol error propagation [10]. If we assume
perfect decisions, , then the squared Euclidean
distance between and is given by

(9)

We refer to this as ideal BDFE.
For PDFD, we assume that previous symbols have been

detected correctly. The squared Euclidean distance fromto
is given by

(10)

In each case, the pairwise probability of error is given by

(11)

If we sum over all possible error events to form a union
bound, the probability of bit error for the transmitted sequence

is bounded from above by

bit error transmit

(12)

where is the number of bit errors associated with .
If we choose the error event with the smallest distance, then the
corresponding term in (12) forms a minimum-distance lower
bound for the probability of bit error.

Since the uniform error property does not hold, in order to
calculate bounds on the bit-error probability for a random
information bit sequence (i.i.d., bit bit ),
we must average over all possible transmitted sequences,
which is not feasible [12].

One alternative is to find best- and worst-case transmitted
paths. Note that the feedback filter destroys a different amount
of energy for different symbols. For symbol

, the fraction of symbol energy retained is ,
with the remainder being destroyed by the feedback filter
(assuming correct decisions) as ISI. Thus the best- and worst-
case transmitted sequences are the all-0’s and all- ’s
sequences, respectively. We would expect that the all- ’s
transmitted sequence will result in one of the highest bit-error
probabilities, certainly above the average, and vice-versa for
the all-0’s sequence.

It turns out, however, that the distance spectra and corre-
sponding bit-error probabilities of most sequences are similar,

TABLE I
CHANNEL MEMORY FOR VARIOUS NORMALIZED DELAY SPREADS. THE

CHANNELS HAVE INFINITE IMPULSE RESPONSES, BUTHAVE BEEN

TRUNCATED TO REMOVE TERMS LESS THAN 0.01 TIMES THE LARGEST

TERM. THE LOSS IN ENERGY DUE TO TRUNCATION IS NEGLIGIBLE

so averaging the bit-error probabilities over, say, 20 randomly
chosen transmitted sequences (i.i.d., equiprobable information
bits; initial trellis state uniformly distributed) yields very
accurate lower and upper bounds. In the next section, we will
provide Monte Carlo simulation results to verify this. We also
provide simulation results on the effect of decision errors in
BDFE.

Since MLSD is optimal, the average probability of bit error
for MLSD should be less than those for PDFD and BDFE.
Since PDFD guarantees correct feedback for the transmitted
path, its performance should also be better than BDFE. How-
ever, ideal BDFE uses side information (perfect decisions), so
it is possible for it to have better performance than MLSD for
coded systems [13]. Moreover, for a given transmitted path,
the minimum distance for MLSD may be lower than those
for PDFD and ideal BDFE. For a given path, the minimum-
distance error events for the three techniques usually are the
same error event, but may sometimes be different.

V. PERFORMANCE ONMULTIPATH ISI CHANNELS

We evaluated the performance of TC-PPM with BDFE
and PDFD over a range of multipath ISI channels. We used
codes published in [6], which were the best codes found for
MLSD distance spectra. The distance spectra for BDFE and
PDFD are slightly different, so it is conceivable that other
codes would perform better for these suboptimal techniques.
However, MLSD performance provides a lower bound on the
power requirement of all suboptimal techniques. We will show
that the BDFE and PDFD penalties with respect to MLSD are
very small, so a search for better codes using these distance
spectra would provide at best only marginal improvement in
performance.

The number of states in the Viterbi decoder provides a sim-
ple, fairly accurate measure of the implementation complexity
of the Viterbi algorithm. For MLSD, the number of combined
code and ISI states is . Table I lists the channel
memory for different delay spreads for TC 8-PPM and
TC 16-PPM.

In BDFE and PDFD, the feedback filter(s) obviate the need
for ISI trellis states, reducing the number of states in the Viterbi
algorithm to . For -PPM (or -PPM), with BDFE,
each ISI symbol that the feedback filter removes allows for a
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Fig. 3. Performance of TC 8-PPM,� = 6, with MLSD, PDFD, ideal BDFE,
and BDFE, onDT = 0:9 channel. Simulated PDFD and ideal BDFE curves
lie between their respective minimum-distance and union-bound curves.

(or ) increase in the code constraint length for BDFE.
In PDFD, because there is a feedback filter for each code-state
survivor path, the complexity is slightly higher than that of
BDFE. More precisely, in BDFE, extending each of thesur-
vivor paths requires additions, whereas in PDFD, extending
each survivor path requires approximately additions [14].
For moderate to large, survivor-path-extension computations
dominate over all other computations, so that PDFD requires
roughly a factor greater computational complexity than
BDFE, which corresponds to difference in
code constraint length for the same complexity. However, both
techniques require extensive memory storage, approximately

bits, for each survivor path. Extending
each survivor path thus requires substantial memory transfer,
which, depending on the ratio of addition-to-memory-transfer
clock cycles, can have a significant impact on overall decoding
speed. In our C++ simulations, we found that PDFD was
two to three times slower than BDFE, which translates into
approximately a unit constraint-length difference.

Fig. 3 shows the theoretical and simulated performance of
the various decoding techniques for TC 8-PPM with
on a severe ISI channel, . The theoretical curves are
the minimum-distance and union-bound curves averaged over
20 randomly chosen transmitted paths. The simulation curves
for PDFD and ideal BDFE (perfect feedback decisions) both
lie between their respective lower and upper bounds, which
verifies the accuracy of the theory. The simulations show that
decision errors in BDFE cause a 0.43 dB penalty with respect
to ideal BDFE at , which is significant but not
excessive.

Fig. 4 shows the theoretical performance of MLSD of TC 8-
PPM with and , and MLSD of TC 16-PPM with
and , at over a range of channels. These curves are
minimum-distance lower bounds averaged over 50 randomly
chosen transmitted paths. The performance of MLSD provides
a baseline from which to compare that of PDFD and BDFE.

Using these same paths, we evaluated the performance of
PDFD and BDFE. For each constraint length to for

Fig. 4. Normalized power requirement versus normalized delay spread for
MLSD of TC 8-PPM with� = 4 and10, and TC 16-PPM with� = 4 and9.
All curves are minimum-distance lower bounds averaged over 50 randomly
chosen transmitted paths. The vertical axis shows the SNR required to achieve
Pe = 10

�5. The 0-dB optical-power reference level is on–off keying on the
ideal channel.

Fig. 5. Average suboptimal-decoding SNR penalties of PDFD and ideal
BDFE with respect to MLSD for TC 8-PPM for� = 4 to 10 at Pe = 10

�5

over a range of channels. These penalties are computed from the mini-
mum-distance lower bounds. Also shown are average coding gains due to
a unit increase in the code constraint length�.

TC 8-PPM, and to for TC 16-PPM, we calculated
the electrical SNR required for each technique at ,
and the resulting PDFD and ideal BDFE SNR penalties with
respect to MLSD. We then averaged these penalties over the
different constraint lengths. We also calculated the average
coding gain as increased from 4 to 10 or 9, for TC 8-PPM
and TC 16-PPM, respectively.

Figs. 5 and 6 show these average theoretical suboptimal-
decoding penalties for PDFD and ideal BDFE for TC 8-PPM
and TC 16-PPM, respectively, at over a range
of channels. The figures also show the average coding gains
for a unit increase in the code constraint length. These coding
gains range from 0.45 dB to 0.40 dB for TC 8-PPM, and
from 0.54 dB to 0.34 dB for TC 16-PPM. By contrast, the
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Fig. 6. Average suboptimal-decoding SNR penalties of PDFD and ideal
BDFE with respect to MLSD for TC 16-PPM for� = 4 to 9 at Pe = 10

�5

over a range of channels. These penalties are computed from the mini-
mum-distance lower bounds. Also shown are the average coding gains due to
a unit increase in the code constraint length�.

Fig. 7. Simulation results on the difference in performance of BDFE and
ideal BDFE as compared to PDFD for TC 8-PPM and TC 16-PPM at
Pe = 10

�5 over a range of channels.

penalties over the entire range of channels are much lower
than these coding gains, which indicates that one can always
obtain a net gain, for the same complexity, by using PDFD or
ideal BDFE instead of MLSD. This net gain can range from
half a decibel to a few decibles as the delay spread increases.
Indeed, the penalties are so small that the theoretical bounds,
which accurately predict the performances within a fraction of
a decibel, can only provide an order-of-magnitude estimate of
these differences in performance. For TC 8-PPM on channels
with , these penalties are negligible; on channels
with , the penalties are around 0.15 dB. For TC
16-PPM on all channels, the penalties are under 0.1 dB.

In order to determine more precisely the difference in
performance between PDFD and ideal BDFE, as well as to
determine the impact of decision errors in BDFE, we con-
ducted extensive simulations. Fig. 7 shows simulation results
of the SNR penalties of BDFE and ideal BDFE with respect

to PDFD for at . Ideal BDFE for both
TC 8-PPM and TC 16-PPM performs about 0.15 dB worse
than PDFD. For TC 16-PPM, decision errors in BDFE cause
an additional penalty of up to 0.15 dB, for a total penalty of
about 0.2 to 0.3 dB, which is less than the coding gain of 0.34
to 0.54 dB, so that BDFE gives the best overall performance
for the same complexity. For TC 8-PPM, however, decision
errors in BDFE cause substantially larger penalties, from 0.1
to 0.43 dB, for total penalties of 0.2 to 0.6 dB. In particular,
for , the difference in performance between BDFE
and PDFD is larger than the coding gain of 0.4 dB, so that
PDFD gives the best overall performance in that region.

VI. CONCLUSION

We have analyzed the performance of TC-PPM with BDFE
and PDFD. We also investigated the effect of decision errors
in BDFE through simulations. We quantified the computa-
tional complexities of BDFE, PDFD, and MLSD. We then
showed that the reduced complexities of BDFE and PDFD as
compared to MLSD allow for better codes whose increased
coding gains are greater than the penalties due to suboptimal
detection, thus providing net gains in performance for the same
complexity. We quantified these net gains over a wide range
of multipath channels. For TC 16-PPM, BDFE provides the
best performance. For TC 8-PPM, BDFE provides the best
performance for normalized delay spreads , but
because of significant penalties due to decision errors in BDFE,
PDFD provides the best performance for .
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