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Abstract—Error-control codes can help to mitigate atmospheric
turbulence-induced signal fading in free-space optical communi-
cation links using intensity modulation/direct detection (IM/DD).
Error performance bound analysis can yield simple analytical
upper bounds or approximations to the bit-error probability. In
this letter, we first derive an upper bound on the pairwise code-
word-error probability for transmission through channels with
correlated turbulence-induced fading, which involves complicated
multidimensional integration. To simplify the computations, we
derive an approximate upper bound under the assumption of
weak turbulence. The accuracy of this approximation under
weak turbulence is verified by numerical simulation. Its invalidity
when applied to strong turbulence is also shown. This simple
approximate upper bound to the pairwise codeword-error prob-
ability is then applied to derive an upper bound to the bit-error
probability for block codes, convolutional codes, and turbo codes
for free-space optical communication through weak atmospheric
turbulence channels. We also discuss the choice of interleaver
length in block codes and turbo codes based on numerical evalua-

systems. In this approach, we find an expression for the
pairwise codeword-error probability and upper bound the
codeword-error probability, .. by
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j,CJESc

k.CLESC
7k

@)

whereS¢ is the set of all codewords and(C;) is the proba-
bility that codewordC; is transmitted. The pairwise error prob-
ability (PEP)P.(C};, Cy) is the probability that when codeword
C; is transmitted, the decoder favors selection of an incorrect
codewordC), over C;. With the knowledge of the weight enu-
merating function (WEF), we can further simplify the calcula-
tion of (1) and extend it to accurately estimate the error bound

of constituent codes where the number of codewords is infi-
nite, such as convolutional codes and turbo codes [5], [6]. Many
error bounds have been introduced for radio-frequency chan-
nels, which often can be well-modeled as Rayleigh or Rician
fading channels [3], [4].
In this letter, we will derive an error performance bound for
coded on-off keying (OOK) free-space optical communication
REE-SPACE optical links using intensity modulation anérough atmospheric turbulence channels, where the fading
direct detection (IM/DD) are useful in a variety of applicais described by a joint log-normal distribution. The letter
tions. However, atmospheric turbulence can greatly degrade theorganized as follows. In Section I, we review the joint
performance of free-space optical links, particularly over rang¥g-normal distribution for turbulence-induced fading in OOK
of the order of 1 km or longer. Error-control coding can be ajgystems. In Section Ill, we derive the PEP assuming perfect
p||ed to improve the error performance on such channels [1]_kn0W|8dge of the channel state information. We also present
The theoretical error performance of coded Systems Oﬁmulations to Verify the error bounds and define the limits of
time-varying channels has been under research for many ye&gir applicability. In Section IV, we apply the PEP upper bound
[2]-[4]. In most wireless communication systems, the chanri study the error performance through weak atmospheric tur-
is not memoryless. The error performance of such continuoddlence channels of various coding schemes including block
fading channels with memory often requires lengthy computépding, convolutional coding, and turbo coding. In Section V,
simulations. Performance-bound analysis has been widd§ Present simulation results of the approximate bit-error

adopted to study the error performance of communicatidobability upper bound for some practical coding schemes,
making use of the error performance analysis of Section IV. We

also discuss the use of interleaving which, in conjunction with
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of the desired signal. Let the bit interval 58 and assume bx (d) is the normalized log-amplitude covariance function and
that the receiver integrates the received photocurrent for @@ coherence time is

interval T, < T during each bit interval. We further assume d

that Tp << 79, where, denotes the coherence time for T = 20 7
atmospheric turbulence. Therefore, the light intensity can be Ll

viewed constant during each exposure interval. At the end Qhered, is the coherence length of turbulence-induced fading
the integration interval, the resulting electrical signal can kgqy,, is the wind velocity perpendicular to the light propaga-

expressed as tion direction. Here we assumsg_to be constant and ignore its
fluctuations.
re = (L + 1) + nw @) The joint distribution of the signal intensity of on-state sym-
wherel, is the received signal light intensity adgis the am- P0IS is, therefore, joint log-normal [1]
bient light intensity. The optical-to-electrical conversion effi- 1 1
ciency is given by [y Lgs ooy Iy )=

2mIl” | I, (27)% |CQn 3

n=ely- ©) tn (42)
he connd- Y22 o 2] oy | 2
wherey, is the qguantum efficiency of the photodetectois the 8 Iy Iy In (I )
electron charge) is the signal wavelengtt, is Plank’s con-
stant, and is the speed of light. The additive noisg is white (8)
and Gaussian, and has zero mean and varidih¢e, indepen-
dent of whether the received bit is off or on. In this letter, we as-
sume that the receiver has knowledge of the ambient light bias

1. PAIRWISE CODEWORD-ERROR PROBABILITY BOUND

nIy, and we denote the electrical signal torbe . — 11, after  In this analysis, we assume the turbulence-induced fading to

subtraction of the ambient light bias. be piecewise-constant during each bit interval and known to the
For an OOK free-space optical communication system, weceiver, i.e., receiver has perfect state information (SI) about

assume an-bit sequences = [si,s2,...,5,] transmitted. the channel. The receiver utilizes maximum-likelihood (ML)

Define the index subset of on-state symlstl,, = {n; € soft decoding.

{1,2,...,n},s,, = 1}7-,. We also have the index subset of Consider twon-bit codewordsC; = [¢},c, ..., cl] and

off-state symbolsSos = {l; € {1,2,...,n},s, = 0}7_[". Ci = [cf,¢5, ..., ch]. Define the symmetric difference of their

Ignoring intersymbol interference (ISl), the receiver wouldn-state symbol index subsets, i.e., the set consists of all those
only receive signal light through turbulence when on-state j®ints that belong to one or the other of the two sets but not to
transmitted. Théth on-state symbol intensity can be expressdibth
as

S¢ = {nie {1,2,...,n}.ch £k} (9)

I,, = Iyexp (2X,, — 2E[X]) 4
and define its complement set

whereX,,, is the so-called log-amplitude of the optical signal
and can be modeled as a Gaussian random variable with the g¢;.Cx — ={n;e{1,2,...,n},¢}, =ck TR (10)
ensemble average[X] and covariancer?.. I° is the signal / =t

light intensity without turbulence. The joint probability den- The energy over the symmetric difference set of two code-

sity function (PDF) of a Iog amplitude sequenge= [X,,, — words can be defined as
E[X], X, — F[X],..., X, — F[X]]isjointly Gaussian [1] _—
2
- 1 1 - 1 =T 0,0 = (nln,)" . (11)
(2m) % [OQn?

whereC Q™ is the covariance matrix of the on-state bit sequencBue to the linearity of the code, the PEP betwégnand Cy,
as shown in (6) at the bottom of the page. As explained in [ldan be denoted by the PEP between a codeword whose index

2 27 ||ni—na|T 2 [n1—nm|T
Ox O'Xb‘\ [Tdo 0-4\'b<\’ Tdo

C}(gn — | o%bx [Wdo} o o oXby [Mdo} )

70

2 [ =11 | T 2 [ —na |T . 2
aXbX[ il g ] oy [Inmsnel g, o .
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subset of on-state bits is the same as the symmetric differen 10’

setSS"“* and the all-zero codeword A—
0 T e
Ec. c, s
E[P.(C;,C)] = E [Q( N )] :
10”
= /f(x)-Q( E?%)dX. (12)
:? ’ 10° — Bound 6,~0.05

-6~ Bound o‘X:(l 15

-8 Bound o’x=0.25
---- Exact o'x=0.05

SinceQ(v/z) < 1/2exp(—=z/2), an upper bound on the PEP
is
-&- Exact o’x=0.15
0| -g3- Exact °X=0‘25

Pairwise Codeword Error Probability

B[R.(C5,C)) < 3 F [exp (—%)} R

Defining the average SNR= (nly)? /Ny, we can express (13) 102
as 0

2 4 6 8 10 12 14
Average SNR: y= (n]I)*N, (dB)

r 3\ Fig. 1. Pairwise codeword-error probability versus average SNR using exact
- integration (dashed lines) and using approximate upper bounds (solid lines) for
1 — y Ik 9 — various log-amplitude variancés x = 0.05,0.15,0.25).
<5 [1Eewd-T Y lewex, )P (X
= i=1
X n; GS:j . )
(
m; g oo N
~ 1 pe TN UXa )N 5
o E./f()() expa— [Z i dXx. (14)
i i=1 1=0 B
X g ES?j Ck

Under the assumption of weak turbulerfee; << 1), we can
approximate the upper bound (14) as

BIP(C;.Col <5+ [ F(X)

Bound 6,005 | SOy
10“ L —&— Bound GX:O.ZS * A
—5— Bound ©,=0.65
————— Exact ¢,=0.05

107 F -<-- Exact 0,025

Pairwise Codeword Error Probability

-+=-- Exact GX:0.65

X
10° : :
0 2 4 6 8 10
2 mj.0 1
4X,. - A SNR: y=(NI)¥N, (dB
exp _% 3 ( l'm) iX (15) verage SNR: Y= (NN, (dB)
1=0 iz(l o ) Fig. 2. Pairwise codeword-error probability versus average SNR using exact
n; €S, 7 0 integration (dashed lines) and using approximate upper bounds (solid lines) for
1 m;o 1 larger values of the log-amplitude varian¢esc = 0.05,0.25,0.65).
Ym0 '
BIPAC;, )] < & -exp(~1220) ([ e
2 4 1 VI+AyA higher error probability, the approximate PEP computed using

(16) in the log-amplitude, which we ignored in deriving (15), are
no longer negligible whewrx is large, even though the weak

where); is theith eigenvalue of the covariance matéi;” and grguilsezgﬁ;%perfcgﬁgtf'g?Ig;gge in (4) is still valid. Therefore,
X-

u; is the sum of the elements in the corresponding eigenvector.”. ) . .
Since most free-space optical communication systems will

T ify th f th imat bound (16 . .
o verify the accuracy of the approximate upper bound (16), rate only when turbulence is weak, the approximate upper

lculate the PEP of t dewords whose diff &e . . !
we %?E:ae © Of two codewords whose diiierence ound (16) should be widely applicable to estimate the PEP for

IS S = {1,3,4,6} versus the average SR, choosin ng block codes and constituent codes, such as convolutional
T /70 = 0.04. The approximate upper bounds for log-amplitud . ' . S
/7o bp bp g-amp odes and turbo codes, which can be useful in optimizing the

variancesrx = 0.05, 0.15, and 0.25 are indicated by the soliﬁ ) :
lines in Fig. 1. The pairwise codeword-error probability calc Jesign of codes for free-space optical turbulence channels.
lated using (12) is indicated by the dashed lines in Fig. 1 for
comparison. We can see that the upper bound (16) is accurate
under the assumption of smalk in weak turbulence region.

To demonstrate the limits of applicability of (16), we also Using the approximate pairwise codeword-error upper bound
consider larger values afy in Fig. 2. In Fig. 2, we see when that we have derived, we can compute upper bounds on the error
ox increases from 0.25to 0.65, which should obviously result probability for various coding schemes. In this section, we still

2,2\ (16) decreases instead. This is because terms of higher order
]

IV. ERRORPROBABILITY BOUNDS FOR
VARIOUS CODING SCHEMES
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consider linear codes, and assume that all codewords are Agplying (16) to (21), we obtain the approximate bit-error prob-
lected with equal probability. We derive upper bounds on trability
bit-error probability of block codes, convolutional codes, and

1 YWfree
turbo codes. ~ _ 1 Tiree
ElR) =5y - exp ( 4 )
A. Block Codes "i B i 1
For a binary linear, k) block code with a set of codewords = ” =1 41+ 47)\?1
{Cy, C1,...,Cy_;}, whereCy denotes the all-zero codeword, “i1 €5 ree
the average block-error probability with ML decoding is Y (ryui’>2
2k 1 exp ( L ) (22)
- i1 2 (14 49\
El[Poock] < Y E[P(C;, Co)] (17)
=1 We can also apply (16) to (20) to find an upper bound to the
and the average bit-error probability upper bound is bit-error probability
1 2k 1 1 00 yw Ty
EIR] < -3 BiEIP.(C),Co) (18) FIRIS 5 exp(- 1) Z
7=1 W=Wfree C’_,IESM
whereB; is_the Hamming weight of the information sequence w | w )\f’ (Wuf’)
corresponding to codeword,;. x | Bj,- H | exp
It is straightforward to apply (16) in (17) and (18) to obtain i=1 \/1-1-47/\{1 i=1 2(1-1—47/\1’)

performance bounds for block codes. (23)

B. Convolutional Codes In (22) and (23) /! is theith eigenvalue of the covariance ma-
Consider arat& = k/n linear convolutional code, whet&,  trix C4" andu’" is the sum of the elements in the corresponding

is the all-zero codeword and”;, j > 0} is the set of nonzero eigenvector.

codewords whose initial state is the all-zero state, which first To simplify (23), we can define the fading-induced degrada-

remerge with the all-zero state at their final state. With ML ddion factors

coding, the average bit-error probability can be upper bounded w )
by Qqyy = c esm%)é[< H \/j (24)
A Sowst SR 1+ 4’y)\§’
1 oo
B[R] < - Y BiE[P.(C5, o) (19) and ,
j=1 w o\ (uj’)
To estimate (19), we have to reorder the pairwise error elements P = s Z (25)

. . L . ; B Cj, €5y,1<I<ny, — (1 N 47)\?1) .
by sorting the codewords according to their Hamming weights.
Define wy (C;, C;) to be the Hamming distance between tWqote that (24) and (25) are functions of average SNRhe

codewords. Leb,, be the subset of codewords with Hamming,pper bound (23) can then be more simply expressed using
weightw: S,, = {C}, | wu(Cj,, Co) = w}ir,, wheren,, is the

number of codewords if,,. Equation (19) can be expressed as 1 > ~yw 9
< . w _
E[Pb] = o Z B oy, exp ( 1 + ﬂw’y ) (26)
W=Wfree
1 - = . .
B[Py < 7 > > B E[P.(C;,Co)lp (20) whereB" is the sum of allB;, for which codewordC;, has
W=Wiree =1 Hamming weightw. Note thatB™ can be obtained using the

Cjr€Sw

transfer function of the code [5], [6]. The upper bound (26) can

wherews,. is the free distance of the code, which is the mira!so be applied to long block codes, for which (18) would in-
imum Hamming weight of any codeword exceft. From [2], Volve a prohibitive amount of computation.
at high SNR, we can simplify the sum in (20) by ignoring neg-
ligible terms with large Hamming weights. Our simulations re=- Turbo Codes
sults in Section V also show such an approximation is quite ac-Turbo codes offer excellent performance in a variety of ap-
curate at high SNR. We can approximate the average bit-erpdications, including optical communications, and have aroused
probability by significant recentinterest in the coding community. Turbo codes
are parallel concatenated convolutional codes (PCCC) in which
o1 the encoder is formed by two or more constituent systematic
BlB] = e Z Bj E [Pe(Cjy. Co)l (21)  recursive convolutional encoders joined through an interleaver
€}y S [5], [6], [8], [9]. The information sequence is divided into blocks

Nwpree
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of length equal to the interleaver length The input to the first 10°
encoder is the original information bit sequence, and the inpu 5
to the other encoders are interleaved versions of the informig 10
tion block. The encoded sequence consists of the informaticg
sequence and the parity check bits from all encoders. Many d &
coding schemes and error-performance analyzes for turbo coc3,
have been documented in the literature. An abstract uniform irz
terleaver approach has been widely used to derive the avera;é
of the upper bounds obtainable for the whole class of determir s
istic interleavers [8]. ,
We start with the definition of the input-redundancy WeightE)
enumerating function (IRWEF) for systematic convolutionali:: 10
code

t-Err
>

1

10 : : ‘ :

o _ W,z W oz 4 6 8 10 12 14 16

Ais(W, 2) = Z AigWhz 27) Average SNR: Y= (1N, (dB)
w,z

. P R . ig. 3. The simulated bit-error probability (lines with circles) and the
where: andj denote the initial and final states of the COdeWOrdgpproximate upper bound (lines without circles) for (7, 4) Hamming codes

A;”]z denotes the number of codewords generated by an inpétkus average SNR. The log-amplitude variange= 0.2 and the ratio of the
information word having Hamming weight and having parity adjacent codeword bit intervl to the coherence time of turbulence-induced
. . . . fading(T/ 7o) is chosen to be 0.001, 0.4, and 1, respectively. We also show the
check bits Oflwelghb’ SO that the overall Hammlr,]g weight 0fsimulation results where a block interleaver is used iith /7, = 1000.
the systematic codewordis + z. We can also define the con-
ditional WEF _
which allows us to express (30) as
_ c ,
AP (w, Z2) = WYAS(Z) =W Y AYF 77 (28)
d

Making use of the properties of a uniform interleaver [8], we
obtain the average conditional WEF of all possible turbo codesWe can simplify (32) by ignoring the negligible higher
with respect to the whole class of interleavers order terms with larger Hamming weights as discussed in
Section IV-B.
Z) =W AL ) A2) (29)
(w, () V. RESULTS

w

A;;),jq
In this section, we will use the approximate error probability

here A1 (Z) and AS2(Z) are the conditional WEFs of . .
W ’“J( ) vi(%) " upper bounds derived above to numerically evaluate the perfor-

two encoders, respectively, arfd is the interleaver length. .

It has been shown whei is sufficiently large, we can mance_of some practical .COdeS' .

accurately approximate the error performance with the pathsWe f'.rSt study a Hamming (7 4) code. In Fig. 3.’ we pI(_)t the
which diverge from the off-states of both constituent encode@gproxmate bit-error probability upper bound (lines without

and remerge into off-states aftéf steps, which have WEF circles) versus average SNR with log-amplitude variance
Avooo(W, Z) = S, ALE W77, A ti’ght bound for the °X = 0-2- T /7, takes on the values 0.001, 0.4, and 1, respec-

pairwise codeword-error in correlated  turbulence-induc ively. We also present the bit-error probability estimated using

fading channel requires knowledge of the positions of differi onte—Carlo simulation (lines with circles) for comparison.

symbols, as we discussed above. For simplicity, we can loo ed: 3 shows that whefl'/r, increases, the average bit-error

the bound by making the pessimistic assumption that {obabilityfor (7, 4) Hamming codes will decrease. Therefore,

d = w + = differing symbols are adjacent [8]. Therefore thdve can implement interleaving to compensate for the coding
average bit-error probability is upper bounded as ' 7 gain penalty due to the memory of channel. Consider the normal

block interleaver of degre& [2], where the codewords are
E[Py) < Z % LA P (w + 2) it?;irsltranai;/;z Z? it;]titr\tgfs i(;g:;?egit bits of coded bi.t sequence are

. Fig. 3 shows that interleaving

. will improve the bit-error performance wheliT /7 is large.

_ Z w Z Awd=w p (d) (30) Howeve_r, whenKT_> T0, further increa;e of the interleaver

K 00,00 e depth will not significantly improve the bit-error performance.

= As shown in Fig. 3, whetikT' /7, increases from 1 to 1000, the
where P.(d) is the pairwise codeword-error bound of thé&orresponding average upper bounds to the bit-error probability

all-zero codeword and the codeword withadjacent on-state are very close. Therefore, itis not necessary to further increase
bits. Let us define the interleaver depth wheli 7" > 7.

For convolutional codes, we consider the example of a
— Z AyD? (31) rate-1/3 code, whose encoder diagram is shown in Fig. 4. We
d

w,z

W 0Ag0,00(W, Z)
K ow

W=2Z=D choose the log-amplitude varianeg; = 0.2. T'/7, takes on
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1
-Output
i 2 Bl
B 14
3 Interleaver

length =K T\

g. 4. Rate 1/3 convolutional encoder with three-stage shift registers. f

Y

Fi

Y2

Fig. 6. Encoder structure of a rate-1/3 turbo code with uniform interleaver of
1 length .

----- K=100
e R=1000
— K=10000

s

=

Average Bit-Error Probability

10' L 1 1 L L 2
4 6 8 10 12 14 16

Average SNR: v= (1])¥N, (dB)

t-Error Probability Upper Bound

s

1

Fig. 5. Average bit-error probability for a three-stage, rate-1/3 convolutiona®
code versus average SNR with log-amplitude variamge = 0.2 and for o
T /7o = 0.001 and 1. The estimates are provided by (22) (lines with squares s 10 |
(23) (lines with triangles) and (26) (lines with crosses), respectively. The

simulated average bit-error probability (lines with circles) is also shown fol "

; " ‘ . . N
comparison. 0 2 4 6 8 10 12

Average SNR: y= (nl)¥N, (dB)

Average

the values 0'00:_"_and 1, respectively. In Fig. 5, the appr_ommqil]: . 7. The simulated bit-error probability (lines with circles) and the
bit-error probability versus average SNR, computed using ( roximate upper bound (lines without circles) of a rate-1/3 turbo code versus
(lines with squares), (23) (lines with triangles) and (26) (linedyerage SNR with log-amplitude varianeg = 0.2 andZ/7o = 0.001. A

with crosses), respectively. The simulated bit-error probabili ”gg;’;égﬁgea"er with different interleaver deptfi = 100,1000,1000)

is also shown (lines with circles) in Fig. 5 for comparison. We '

see that (26) yields a very accurate estimate of the approxim{;ﬂe . o

o . Ticiently long. In Fig. 7, we see that the error-probability per-
upper _bound_(23). AISO.’ when the SNR is high, the hlgh(;f‘\(grmance of turbo codes continues to improve with increasing
Hamming weight terms in (23) are negligible, and the approx:

imate bit-error probability (22) merges with the approximat'é“erleaver length even wheliT" >, especially at low av-

upper bound (23). Interleaving can help to improve the systeter‘rr1age SNR [8]. This favors the use of longer interleavers with

. . urbo codes. However, system complexity and delays in coding
performance for convolutional codes as well. Similar to the . L . . ;

. . . L .. and decoding will limit the length of interleavers in practical
block-coding case, the interleaver depths sufficient when it :

g systems using turbo codes.
satisfiesKT > 7.

Finally, we present simulations for a rate-1/3 turbo-coded
system whose encoder structure is shown in Fig. 6. The ap-
proximate bit-error probability upper bound is calculated using Error-control codes can help to mitigate turbulence-induced
(32) with log-amplitude variancex = 0.2 andT' /7y = 0.001. signal fading in wireless optical communication through at-
The interleaver lengtk” of the uniform interleaver takes on themosphere turbulence. To study the efficiency of various coding
values 100, 1000, and 10000, respectively. In Fig. 7, we plethemes, performance bound analysis has been used for its
the approximate bit-error probability upper bound (lines withowimplicity.
circles) and the simulated bit-error probability (lines with cir- In this letter, we first derived an upper bound on the pair-
cles) versus the average SNR for comparison. Comparing thise codeword-error probability for correlated atmospheric
simulation results shown in Fig. 7 to those of the rate-1/3 coturbulence channels. To avoid complicated multidimensional
volutional code in Fig. 5, we see turbo coding can achieve bettetegration, we have also derived an approximation for this
bit-error probability performance through atmospheric turbwpper bound under the assumption of weak turbulence. The
lence-induced fading channels if the interleaver length is swecuracy and the limits of applicability of this approximation

VI. CONCLUSIONS
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have been demonstrated using numerical simulations. We the[s] F. Gagnonand D.Haccoun, “Bounds on the error performance of coding

applied this approximate upper bound to derive the error per-
formance bounds and their approximations for various coding[4
schemes through atmospheric turbulence channels, including
block coding, convolutional coding, and turbo coding. The
analytical upper bounds were then applied to compare thels]
performance of a few specific example codes. The effect of
varying the interleaver depth was studied through numericall®

evaluation of the performance bounds.

REFERENCES

[1] X. Zhu and J. M. Kahn, “Free-space optical communication through

atmospheric turbulence channelf£EE Trans. Communvol. 50, pp.
1293-1300, Aug. 2002.

[2] J. G. ProakisDigital Communication3rd ed. New York: McGraw-

Hill, 1995.

for nonindependent Rician-fading channellfEE Trans. Commun.
vol. 40, pp. 351-360, Feb. 1992.

] G. Kaplan and S. Shamai, “Achievable performance over the correlated

Rician channel,1EEE Trans. Communvol. 42, pp. 2967-2978, Nov.
1994.

T. M. Duman and M. Salehi, “Performance bounds for turbo-coded
modulation systemsJEEE Trans.Communvol. 47, pp. 511-521, Apr.
1999.

K. Kiasaleh, “Turbo-coded optical PPM communication systends,”
Lightwave Technalvol. 16, pp. 18-26, Jan. 1998.

[7] V. Hsu, J. M. Kahn, and K. S. J. Pister, “Wireless Communications for

Smart Dust,” Univ. of California, Berkeley, CA, Electron. Res. Lab.
Tech. Memo. M98/2, Feb. 1998.

[8] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on

parallel concatenated coding schemé¢SEE Trans. Communvol. 42,

pp. 409-428, Mar. 1996.

E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes on
Rayleigh fading channels|EEE J. Select. Areas Communwol. 16, pp.
160-174, Feb. 1998.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


