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Upper-Bounding the Capacity of Optical IM/DD Channels
With Multiple-Subcarrier Modulation and Fixed Bias

Using Trigonometric Moment Space Method
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Abstract—We consider the channel capacity of an optical intensity-mod-
ulated direct-detection (IM/DD) system using multiple-subcarrier modula-
tion (MSM) with fixed bias. The channel is modeled as an additive white
Gaussian noise (AWGN) channel with nonnegative input waveform. The
mean of the nonnegative input waveform is the average transmitted optical
power. The mean of the waveform during a symbol period is called the d.c.
bias of the symbol. In this work, a fixed bias is used for all symbols. There-
fore, the power used for each symbol is constant and equals the average
transmitted power. The main result of this correspondence shows that, be-
cause the input waveforms during each symbol period are nonnegative and
have fixed mean, their Fourier coefficients must lie inside certain trigono-
metric moment spaces. These moment spaces are characterized both al-
gebraically and geometrically. Through the geometrical characterization,
we determine the volumes of these moment spaces. The channel capacities
of quadrature amplitude modulation (QAM) and pulse amplitude modu-
lation (PAM) systems are shown to be upper-bounded by sphere-packing
Gaussian noise in the respective moment spaces.

Index Terms—Multiple-subcarrier modulation (MSM), optical inten-
sity-modulated direct-detection (IM/DD) channel, trigonometric moment
space.

I. INTRODUCTION

In this correspondence, we are concerned with the channel capacity
of an optical intensity-modulated direct-detection (IM/DD) channel.
Intensity modulation means that information is modulated onto the in-
tensity of optical signal, which is proportional to the signal’s instan-
taneous power. Direct detection means that the receiver detects the in-
stantaneous power of the received signal. This type of system has been
widely used in both fiber and free-space optical communication sys-
tems.

Specifically, we study optical multiple-subcarrier modulation
systems, where input data is modulated onto orthogonal frequency car-
riers. In some respect, optical multiple-subcarrier modulation (MSM)
systems are very similar to electrical MSM systems, which have
been well studied especially because of the popularity of modulation
schemes such as discrete multitone modulation (DMT) and orthogonal
frequency division multiplexing (OFDM).1 However, optical MSM
signal is different from electrical MSM signal in one key respect.
Since the optical MSM signal is modulated onto optical intensity
(instantaneous power), the transmitted waveform must be nonnegative,
and the average transmitted power is the mean of the input waveform
instead of its mean square. In this correspondence, we investigate the
consequences of the nonnegativity of input waveform through the
properties of its Fourier coefficients while assuming that the input
waveform has the same average power during each symbol interval.
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1For an introductory exposition of MSM schemes on electrical signals, we
refer the reader to [1].

We explore the facts that the Fourier coefficients of band-limited
nonnegative functions must form finite positive semidefinite (p.s.d.)
sequences and the convex hull of these finite sequences is bounded
by the moment space of trigonometric functions. Therefore, the study
of trigonometric moment spaces allows us to determine the regions
where the input signals lie, which leads to upper bounds of the channel
capacities for optical IM/DD channels. This bounding technique gives
us geometrical intuition regarding to the signal space and becomes
asymptotically exact for QAM systems.

In summary, we present the following facts in this correspondence.

• The synchronous waveform channel with the band-limited input
waveformxi(t) during itsith symbol interval is equivalent to a
discrete-time vector channel with the vector input[ci; n]

k
n=1 for

the ith symbol, where the vector[ci; n]kn=1 is the set of Fourier
series coefficients of the waveformxi(t). Because the optical
IM/DD channel under consideration is memoryless and the noise
is white, the channel capacity can be achieved by waveform
inputs which are independent and identically distributed (i.i.d.)
from symbol to symbol. Thus, the single-shot vector channel
model is used in this correspondence.

• For both PAM and QAM systems, during each symbol interval,
because of the nonnegativity constraint on the band-limited input
waveformx(t), the corresponding vector input[cn]kn=1 must lie
inside certain corresponding trigonometric moment spaces.

• The trigonometric moment spaces are first characterized alge-
braically through p.s.d. sequences. This characterization gives a
simple test to see if a sequence is inside a trigonometric moment
space.

• Then, the trigonometric moment spaces are characterized geo-
metrically by showing that they are equivalent to the convex hulls
of certain curves. The volumes of the moment spaces are calcu-
lated subsequently.

• The high-SNR channel capacities of optical IM/DD MSM chan-
nels are upper-bounded by sphere-packing Gaussian noise in the
moment spaces.

• Further interpretations are given to illuminate the obtained re-
sults.

II. CHANNEL MODEL AND NOTATION

The optical IM/DD channel is often modeled as a baseband linear
system [2]

Y (t) = R �X(t)
 h(t) +N(t) (1)

whereY (t) is the output current,R is the photon-detector respon-
sivity, X(t) is the instantaneous input power,h(t) is channel impulse
response,N(t) is the channel noise, and
 denotes the convolution
operation. In this correspondence, we assume that the channel is fre-
quency nonselective (i.e.,h(t) = H � �(t)) and the noiseN(t) is white
and Gaussian with power spectral density2 N0. These are appropriate
assumptions for optical systems dominated by thermal electrical noise
and/or strong ambient light noise (such as line-of-sight free-space op-
tical systems and fiber-optical systems with negligible dispersion) [3].
With the above assumptions, we will simply rewrite the channel model
as

Y (t) = R �H �X(t) +N(t): (2)

2This is to say thatR (�)=E[N(t+�)N (t)]=N �(�) and� (f)=N .

0018–9448/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 515

Fig. 1. Channel model.

Furthermore, in this correspondence, we deal with multiple subcar-
rier systems, where input data is modulated onto orthogonal frequency
carriers. The channel model is shown in Fig. 1. The input waveform
over all time is

X(t) =

1

i=�1

xi(t)p(t� iT ) (3)

where !

2�
is the frequency separation between subcarriers,T = 2�

!
is

the symbol duration,p(t) is the mean amplitude pulse shape function

p(t) =
P; 0 � t < T

0; otherwise
(4)

with P > 0. xi(t) is a real nonnegative input waveform for theith sig-
naling interval. Because we use multiple subcarrier modulation,xi(t)
is of the following form:

xi(t) =

k

n=�k

ci;n e
�jn!t

=
1

2
ai;0 +

k

n=1

ai;n cos(n!t) +

k

n=1

bi;n sin(n!t) (5)

where

[ci; n]
k
n=1

�
= [c�i;�n]

k
n=1

�
=

1

2
(ai; n + jbi; n)

k

n=1

denotes the information transmitted during theith symbol interval.
c�i;�n denotes the complex conjugate ofci;�n, andk is the number
of subcarriers excluding baseband.

Because of the conjugate symmetry, the termci; 0 = 1

2
ai; 0 is always

real. Furthermore, for nonnegativexi(t), ci; 0 must be nonnegative and
does not equal zero unless all other terms vanish [4]. Thus, we call
1

2
ai; 0P the d.c. bias, since it ensures the nonnegativity of input wave-

formX(t). It has been shown that in binary phase shift keying (BPSK)
and quadrature phase shift keying (QPSK) optical MSM systems, av-
erage-power efficiency can be improved if the bias (1

2
ai; 0P ) is allowed

to vary from symbol to symbol [5]. However, most optical MSM sys-
tems use a fixed bias for the simplicity of implementation. Therefore,
we consider the fixed bias case and let1

2
ai; 0P be a constant. Without

loss of generality, we can allowP to take care of the mean amplitude
scaling and let1

2
ai; 0 = 1. Since 1

2
ai; 0 = 1 for each symbol, there

is no information conveyed through the bias. Hence, for PAM, usingk

carriers is equivalent to havingk orthogonal channels; for QAM, using
k carriers is equivalent to having2k orthogonal channels. Becausep(t)
is a rectangular pulse of durationT , the power spectrum of each mod-
ulated subcarrier has nulls at frequency� 1

T
hertz above and below the

subcarrier frequency. The total bandwidth required by thek-subcarrier
signalX(t) is therefore considered to be

W =
k + 1

T
(6)

hertz, which corresponds to the first null in the power spectrum ofX(t)
above the highest subcarrier frequency.

To recover information, the received waveformY (t) is passed
through a matched-filter demodulator whereg(t) is matched top(t)
and is normalized to have an energy of2. Hence,

g(t) =
2

T
; 0 � t < T

0; otherwise.
(7)

Thus, the output of the demodulator will be

âi;n =
T

0

Y (t)g(t) cos(n!t)dt = RHP
T

2
ai;n + n

c
i;n (8)

b̂i;n =
T

0

Y (t)g(t) sin(n!t)dt = RHP
T

2
bi;n + n

s
i;n (9)

wherenci; n andnsi; n are independent and ofN (0; N0) distributions.
For compactness of notation, we denote

ci; n =
1

2
(ai; n + jbi; n) (10)

ni; n =
1

2
(nci; n + jn

s
i; n) (11)

ĉi; n =
1

2
(âi; n + jb̂i; n): (12)

Then, after the above manipulation, the waveform channel is repre-
sented equivalently by the vector channel

[ĉi;n]
k
n=1 = RHP

T

2
[ci;n]

k
n=1 + [ni;n]

k
n=1; i 2 (13)

with the further requirement that[ci; n]kn=1 represents nonnegative
xi(t). Notice that, for PAM systems, the imaginary part of the above
equation will be discarded andni; n’s are i.i.d. real Gaussian random
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variables with varianceN
4

, while for QAM, bi; n 6� 0 andni; n’s are
i.i.d. proper complex Gaussian random variables with varianceN

2
.

Since the channel is memoryless and the noise is i.i.d. from symbol
to symbol, the channel capacity can be achieved by i.i.d. vector in-
puts. Therefore, to calculate the channel capacity, we only need to con-
sider the capacity of one signaling interval. Thus, we will consider this
single-shot vector channel model in the remainder of the correspon-
dence. From now on, we will drop the subscripti for the ith symbol
and denote our input waveform during the considered symbol duration
asx(t).

III. I NPUT CONSTRAINTS AND RELAXATION

The most important difference between an optical IM/DD channel
and a conventional electrical channel is that the optical channel input
is intensity. This has two significant consequences. First, since the
input is intensity, it must be nonnegative. Second, since the input is
intensity, the average optical power is proportional to the mean of
the input. Therefore, we impose these two constraints on the optical
IM/DD channel input

x(t)p(t) � 0; t 2 [0; T ) (14)

Pav =E
1

T

T

0

x(t)p(t)dt = E
1

2
a0P : (15)

However, in previous section, we have reformulated the optical IM/DD
channel model from a waveform channel with inputx(t) to a vector
channel with input[cn]kn=1. Thus, we need to impose the constraints
on the vector input correspondingly.

The power constraint can be easily satisfied. Since we use fixed bias
for each symbol,1

2
a0P is a constant and equals average powerPav.

Because1
2
a0 = 1, we see that the average transmitted optical power

equalsP

Pav = P: (16)

Furthermore, we still need to impose the nonnegativity constraint
onto the corresponding vector representation[cn]

k
n=1. We define the

sets of Fourier coefficient sequences representing band-limited non-
negative functions for PAM and QAM systems as

CHP
k = [cn]

k
n=1: 1 +

k

n=1

an cos(n!t) � 0; cn =
1

2
an (17)

CHQ

k = [cn]
k
n=1: 1 +

k

n=1

an cos(n!t) + bn sin(n!t) � 0;

cn =
1

2
(an + jbn) : (18)

It is desired to find the necessary and sufficient conditions on the se-
quence[cn]kn=1 such that it represents a nonnegative trigonometric
polynomialx(t) for PAM and QAM, correspondingly. Unfortunately,
we cannot find such conditions because of the band-limited nature of
x(t).

However, if we relax the band-limit condition onx(t), the problem
of nonnegativity can be easily solved. For PAM, the sequence[cn]

k
n=1

must fall in the finite-dimensional cosine moment space

MP
k = [c0

n]
k
n=1: c

0

n =
1

T

T

0

cos(n!t)x0(t)dt; x0(t) � 0;

1

T

T

0

x
0(t)dt = 1 : (19)

For QAM, the sequence[cn]kn=1 must fall in the finite-dimensional
trigonometric moment space

MQ

k = [c0

n]
k
n=1: c

0

n =
1

T

T

0

e
jn!t

x
0(t) dt; x0(t) � 0;

1

T

T

0

x
0(t)dt = 1 : (20)

It is obvious thatCHP
k andCHQ

k lie insideMP
k andMQ

k , respec-
tively, which gives the condition necessary for[cn]

k
n=1 to represent a

nonnegative input waveformx(t) � 0; t 2 [0; T ) for PAM and QAM
systems. However, we emphasize that these conditions are only neces-
sary but not sufficient. Although it is true that each point insideMP

k

andMQ

k has at least one corresponding (not necessarily band-limited)
nonnegative functionx0(t), it is not true that each point can represent a
band-limited nonnegative functionx(t) with k subcarriers, because in
the definition of moment spacesx0(t) is not necessarily band-limited
as we have imposed upon our intensity input functionx(t).

Thus, for a generalx0(t), it may be necessary to use an infinite se-
quence[c0

n]
1

n=1 to specify it, where[c0n]
k
n=1 is only the truncation of

the infinite sequence in the firstk terms. However, the trigonometric
moment spacesMP

k andMQ

k do provide upper bounds to the sets
of possible inputCHQ

k andCHP
k . Furthermore, in the case of QAM,

because the input functionx(t) is specified by the set of basis func-
tionsfcos(n!t); sin(n!t); n = 1; 2; . . . ; kg, then, as the number of
subcarriersk grows large, the setCHQ

k approaches the set of arbitrary
nonnegative input waveforms, which is also the limit of the trigono-
metric moment spaceMQ

k . Thus, we can consider the bound for QAM
systems becomes asymptotically exact ask goes to infinity.

As we can see, the problem of communicating over optical IM/DD
MSM channels is intimately related with the characterization of
trigonometric moment spaces. The definitions of trigonometric
moment spacesMP

k andMQ

k given so far are only conceptual. We
need some operational definitions of the moment spaces to tell us more
about where the sequences[c0n]

k
n=1 lie. We do this in the next section.

IV. TRIGONOMETRICMOMENT SPACES

In this section, we will characterize the trigonometric moment spaces
both algebraically and geometrically. The algebraic characterization
is through p.s.d. sequences, while the geometric characterization is
through convex hulls of certain curves. Although the geometric char-
acterization is more direct and provides more insight for the capacity
bounding problem, the algebraic characterization gives us an easy test
to see if a sequence lies inside the trigonometric moment spaces. Thus,
we will present both characterizations subsequently.

A. Algebraic Characterization

First, we consider the case of complex[c0n]
k
n=1, which corresponds

to MQ

k . A sequence[c0n]
k
n=1 of complex numbers is calledpositive

semidefiniteif and only if
n

i=1

n

j=1

�
�

i c
0

i�j�j � 0; wherec0�n
�
= c

0�

n; c
0

0

�
= 1 (21)

for all sets of complex numbersf�1; ; . . . ; �ng where1 � n � k [4].
In [4], it is also shown that[c0n]

k
n=1 is p.s.d. if and only if there is a

functionx0(t) � 0 such that

c
0

n =
1

T

T

0

e
jn!t

x
0(t) dt; whereT =

2�

!
: (22)

Therefore,[c0n]
k
n=1 2 M

Q

k is equivalent to requiring that the complex
sequence[c0n]

k
n=1 forms a p.s.d. sequence. Conversely,[c0n]

k
n=1 being

p.s.d. implies that[c0n]
k
n=1 2M

Q

k . Furthermore, it has been shown [6]
that a sequence[c0n]

k
n=1 is p.s.d. if and only if its Toeplitz matrixC 0

n
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is a p.s.d. matrix for all0 � n � k, where the Toeplitz matrix of the
sequence[c0

n]
k
n=1 is defined as follows for0 � n � k:

C
0

n =

c0

0 c0

1 � � � c0

n

c0

�1 c00 � � � c0n�1
...

...
. . .

...
c0�n c0n�1 � � � c00

; c
0

�n

�
= c

0�

n; c
0

0

�
= 1

=

c00 c01 � � � c0n

c0
�

1 c00 � � � c0n�1
...

...
. . .

...
c0
�

n c0
�

n�1 � � � c00

: (23)

This set of necessary and sufficient conditions on[c0n]
k
n=1 gives the

first operational characterization ofMQ

k

MQ

k = f[c0n]
k
n=1: C

0

n is p.s.d. for all0 � n � k; c
0

n is complexg:

(24)

Similarly, we can find the algebraic characterization ofMP
k

MP
k = f[c0n]

k
n=1: C

0

n is p.s.d. for all0 � n � k; c
0

n is realg: (25)

Although it is possible to use the p.s.d. property to characterizeMQ

k

andMP
k [7], it is much easier to check the positive definiteness ofC 0

n,
which defines the interior regions of the moment spaces. To find the
interior regions of the moment spaces, we can use the leading principal
minor test

detC 0

0 = det c
0

0 > 0

detC 0

1 = det
c00 c01

c0
�

1 c00
> 0

detC 0

2 = det

c00 c01 c02

c0
�

1 c00 c01

c0
�

2 c0
�

1 c00

> 0

... (26)

Givenc00
�
= 1, we carry out the calculation of the above conditions and

obtain the following:

1 > 0

1� kc01k
2
> 0

1� 2kc01k
2 � kc02k

2 + c
0

1c
0

1c
0�

2 + c
0�

1c
0�

1c
0

2 > 0

... (27)

The interior region ofMQ

k is defined by the set of complex sequences
[c0n]

k
n=1 that satisfies all the constraints above, while the interior region

ofMP
k is defined by the set of real sequence satisfying the conditions.

The boundaries of the moment spaces can be approached arbitrarily
close by the interior points and have measure0.

However, as we can see, this algebraic characterization becomes
complicated as the number of subcarriersk increases. It requires a dif-
ferent approach to characterize the trigonometric moment spaces.

B. Geometric Characterization

In this subsection, we characterize the trigonometric moment spaces
MP

k andMQ

k from a geometrical approach. For this purpose, we first
define two space curves

E = f[Vn(t)]
k
n=1: [Vn(t)]

k
n=1 = [ej!tej2!t � � � ejk!t]T ; t 2 [0; T )g

(28)

C = f[vn(t)]
k
n=1: [vn(t)]

k
n=1

= [cos(!t) cos(2!t) � � � cos(k!t)]T ; t 2 [0; T )g: (29)

The key fact presented here is that the trigonometric moment spaces
are equivalent to the convex hulls of these space curves and the volume
of the convex hulls can be determined.

The convex hull of a set is defined as the smallest convex set
containing the original set [8]. We denote the convex hull ofE and
C as conv(E) andconv(C), correspondingly. We want to show that
MQ

k = conv(E) andMP
k = conv(C).

Here, we first derive the complex case which corresponds toMQ

k .
Given the conceptual definition ofMQ

k , we realize that we can define
the vector[c0n]

k
n=1 2 MQ

k as

[c0n]
k
n=1 =

1

T

T

0

x
0(t)[Vn(t)]

k
n=1 dt; where[Vn(t)]

k
n=1 2 E :

(30)

If we consider the curveE as a set of points, then, becausex0(t) � 0

and 1

T

T

0
x0(t)dt = 1, we can see that[c0n]

k
n=1 is actually the convex

combination of the points[Vn(t)]kn=1 in E with x0(t) as the weight for
each point. Thus,MQ

k � conv(E).
To show thatconv(E) � MQ

k , we use the separating hyperplane
theorem [8]. Suppose there exists a point[c0n]

k
n=1 2M

Q

k that does not
belong toconv(E). Then, by the separating hyperplane theorem, there
exists a vector[�n]kn=1 6� 0 and a real constant� such that

<

k

n=1

�
�

nc
0

n <� (31)

<

k

n=1

�
�

nVn ��; 8 [Vn]
k
n=1 2 conv(E): (32)

Then, for all[Vn(t)]kn=1 2 E , we have

<

k

n=1

�
�

nVn(t) � �:

Thus,

<
1

T

T

0

x
0(t)

k

n=1

�
�

nVn(t) dt = <

k

n=1

�
�

nc
0

n � �: (33)

We have reached a contradiction. Therefore,conv(E) �MQ

k . Conse-
quently,MQ

k = conv(E).
Similarly, we can show thatconv(C) = MP

k . The two- and three-
dimensional examples ofMP

k are shown in Fig. 2.
More importantly, the geometrical characterization gives us infor-

mation regarding to the volume of the trigonometric moment spaces.
We have shown thatMQ

k = conv(E). As we recognize, the curveE
is a linear transformation of the generalized ellipse

GE =
1

n
(cosn!t+ j sinn!t)

k

n=1

: t 2 0;
2�

!
:

It has been shown [9] that the volume ofconv(GE) is

V =
2k�k

k!(2k)!
: (34)

Applying the linear transformation toE , we get the volume ofMQ

k

V
Q

k = (k!)(k!) � V =
2k�kk!

(2k)!
: (35)

ForMP
k , the analytical expression for the volume of theconv(C) is

given in [10]

V
P
k = 2k

k

i=1

2i

2i+ 1

k�i

; k > 0 (36)
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Fig. 2. Examples of cosine moment spaces.

where the above simple result is derived by observing certain relation-
ship between the autocorrelation sequence (p.s.d) and the reflection co-
efficients. However, we remark that it can also be derived by a linear
transformation of the polynomial moment space. It has been shown
[11] that forf[tn]kn=1: t 2 [0; 1]g, the volume of the convex hull of
this moment curve is

V 0 =

k

i=1

�(i)�(i)

�(2i)
; where�(i) is the gamma function: (37)

Then, let

cos � = x

cos 2� = 2x2 � 1

cos 3� = 4x3 � 3x

...

x = (2t� 1)

x2 = (2t� 1)2

x3 = (2t� 1)3

...

(38)

Note that the first column is a set of Chebyshev polynomials of the
first kind, while the second column is simply a substitution of a vari-
able. It is obvious that there is a linear transformation from[tn]kn=1
to [cosn�]kn=1. Since the two transformations are both triangular, it is
easy to find the Jacobian, and we find thatJ = 2k . Then, we have

V P
k = J � V 0 = 2k � V 0: (39)

Now, for bothMP
k andMQ

k , we have characterized the trigono-
metric moment spaces geometrically as convex hulls of certain curves.
This characterization not only tells us where the input sequences must
lie but also gives us the volume of the trigonometeric moment spaces.
Knowing the volume of the moment spaces, we can derive the upper
bounds to the optical IM/DD MSM channel capacities using the argu-
ment of sphere-packing Gaussian noise in the moment spaces.

V. CHANNEL CAPACITY BOUNDS

In this section, we derive the optical IM/DD channel capacity bounds
using the sphere-packing argument. Because there is a clear parallel
existing between the PAM case and the QAM case, we will primarily
derive our result for PAM and state the result for QAM later.

Through the demodulation process, we get

[ân]
k
n=1 =

T

0

[RHPx(t) +N(t)]

�
2

T
[cos!t cos 2!t � � � cosn!t]T dt

=RHP
T

2
[an]

k
n=1 + [ncn]

k
n=1: (40)

To simplify the vector notations, we defineYYY = 1

2
[ân]

k
n=1,

XXX = 1

2
[an]

k
n=1, andNNN = 1

2
[ncn]

k
n=1. Then, for PAM

YYY = RHP
T

2
XXX +NNN (41)

whereYYY andXXX are real vectors andNNN � N (0; N
4
Ik). We define the

SNR over the bandwidth of one subcarrier as

SNR=
(RHP )2T

N0

(42)

and the normalized noise variance is defined as�2 = 1=SNR. To sim-
plify the presentation, we further introduce the notations

YYY 0 = YYY = RHP
T

2

and

NNN 0 = NNN= RHP
T

2
:
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Fig. 3. Three regions of entropy integration.

Then, we have

YYY
0 = XXX +NNN

0

; NNN
0 � N 0;

�2

2
Ik : (43)

The capacity betweenXXX and YYY is defined as follows, where the
supremum is taken over all distributions ofXXX corresponding to
nonnegative input waveforms:

C
k

PAM =
1

T
sup

P :XXX2CH

I(XXX; YYY ): (44)

The mutual information betweenXXX andYYY is

I(XXX; YYY ) =h(YYY )� h(NNN)

=h(YYY 0) + k log RHP
T

2
�
k

2
log 2�e

N0

4

=h(YYY 0) +
k

2
log

(RHP )2T

�eN0

: (45)

Since the noiseNNN is Gaussian, the outputYYY is a continuous-valued
random vector with a smooth nonzero probability density function ev-
erywhere, which means that it has well-defined differential entropy
h(YYY ).YYY 0 is only a rescaling ofYYY , hence, the differential entropyh(YYY 0)
is also well defined. To find the capacity, we need to maximizeh(YYY 0)
by varying the input distributionPXXX with the constraint thatXXX is in
the region of possible inputsCHPk . However, for an additive white
Gaussian noise (AWGN) channel, at high SNR,YYY

0 will almost en-
tirely be bounded within whereXXX is distributed. Thus, the differen-
tial entropyh(YYY 0) will mostly consist of the contribution ofYYY 0 within
the possible input regionCHPk with some residue. Because we do not
have an operational characterization forCHPk , we use the geometrical
characterization forMP

k as an upper bound. Because the differential
entropy functionh(�) is concave with respect to smooth distributions

over bounded support, the maximum possible entropy contribution of
YYY
0 aroundMP

k will be the differential entropy of uniform distribution
in MP

k . Denoting the random vector with the uniform distribution in
MP

k asXXXunif , we want to show that

h(YYY 0) � h(XXXunif) + o(�) (46)

whereo(�) is the entropy residue, which vanishes exponentially fast
as� ! 0.

The detailed proof of the above inequality is shown in the Appendix.
However, we give a brief outline here. As we said before, when the SNR
is high (i.e.,� ! 0), YYY 0 is approximately bounded withinMP

k . Thus,
the uniform distribution inMP

k will boundh(YYY 0). To make this claim
concrete, we use the following strategy. We divide the wholek space
into three regions as shown in Fig. 3. Region I is the extension of the
cosine moment space in all direction by lengthz, where

z = �k�2 log 2��2 � �2 log �2 (47)

is a function of the noise variance�2 and the system dimensionk.
Notice that the extension lengthz will shrink with smaller�2. Region
II is the gap between the moment space extension and the smallest
sphere encircling the moment space extension. This sphere is centered
at origin with the radiusd + z, where

d = sup
xxx2M

kxxxk (48)

is the length of the outermost point belonging to the cosine moment
space. Region III is the part outside of the sphere. As the SNR becomes
high, the entropy ofYYY 0, h(YYY 0), vanishes in regions II and III, while
region I approaches the cosine moment space. Thus, we claim

h(YYY 0) � h(XXXunif) + o(�):
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Fig. 4. The capacity bounds of PAM and QAM systems.

The entropy ofXXXunif is the logarithm of the volume of cosine mo-
ment spaceV P

k . Then, we get the upper bound to capacity

C
k
PAM � 1

T
logV P

k +
k

2
log

(RHP )2T

�eN0

+ o(�) : (49)

For QAM, a similar argument can be given except thatYYY andXXX
are complex vectors,NNN � CN (0; N

2
Ik), and the possible input and

bounding regions areCHQ

k andMQ

k . With these substitutions, we get

C
k
QAM � 1

T
log V Q

k + k log
(RHP )2T

�eN0

+ o(�) : (50)

VI. RESULTS AND INTERPRETATIONS

From the previous section, we obtain the following results. For PAM
systems, the channel capacity is bounded by

C
k
PAM � 1

T
log 2k

k

i=1

2i

2i+ 1

k�i

+
k

2
log

(RHP )2T

�eN0

+ o(�) : (51)

For QAM systems, the channel capacity is bounded by

C
2k
QAM � 1

T
log

2k�kk!

(2k)!
+ k log

(RHP )2T

�eN0

+ o(�) :

(52)

The capacity bounds are shown in Fig. 4 for a different number of
subcarriers in PAM and QAM systems, respectively. It is worth noticing
that the capacity increment has diminishing return with the number
of subcarriers. Because the subcarrier separation is fixed at1

T
hertz,

using more subcarriers does indeed increase the total system capacity.
However, to maintain nonnegativity of input waveform, each subse-
quently added subcarrier is constrained by the preceding subcarriers.
Thus, the capacity increment will not be linear in the number of subcar-
riers. Therefore, as a result, the spectral efficiency of the multiple sub-
carrier system suffers. Also, the upper bound of capacity shown in the
figure is not the tightest possible, because we made some approxima-
tions to achieve the analytical bound. Thus, a more exact upper bound
can be obtained if it is calculated numerically.

We now try to analyze the obtained results to obtain further insight.
Because of the compactness of the QAM result, we will use it as an
example. Using Stirling’s formula for the factorial

n! �=
p
2�nnn e�n (53)

we can get the following close approximation at largek and high SNR:

C
2k
QAM

1

T
log

2k�k
p
2�kkke�kp

2�2k(2k)2ke�2k
RHP

T

2

2k

� k

T
log 2�e

N0

4

=
k

T
log

(RHP )2T

2 � 2 kN0

: (54)
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Furthermore, substituting the system bandwidth of the multiple-sub-
carrier signal given by (6), we can get

C2k
QAM

k

k + 1
W log

(RHP )2

WN0

k + 1

k

1

2 � 2
: (55)

As the number of subcarriersk goes to infinity, the channel capacity
converges to

lim
k!1

C2k
QAM = W log

(RHP )2

WN0

� 1
2

: (56)

Clearly,(RHP )2=WN0 = SNR=(k + 1), and we can consider this
quantity to be the SNR over the entire bandwidth occupied by the mul-
tiple-subcarrier signal. It must be greater than2 to have reliable and
nonclipping communications.

VII. CONCLUSION

In this correspondence, we have shown that, for multiple-subcarrier-
modulated optical IM/DD channels, the input vectors must form finite
p.s.d. sequences. These sequences are constrained inside the trigono-
metric moment spaces, which are convex hulls of certain space curves.
We calculated the volume of the moment spaces and used it to find the
upper bounds to the channel capacities for MSM systems with fixed
bias.

APPENDIX

PROOF OF THEASYMPTOTIC UPPERBOUND

In this appendix, we prove that

h(YYY 0) � h(XXXunif) + o(�) (57)

whereo(�) ! 0 as� ! 0.
To facilitate the proof, we first make and repeat a few definitions.

• Let

MP
k = xxxjxxx =

1

T

T

0

x0(t)[vn(t)]
k
n=1 dt; x

0(t) � 0;

1

T

T

0

x0(t)dt = 1

be thek-dimensional cosine moment space.

• Let

z = �k�2 log 2��2 � �2 log �2

be the extension length.

• Let d = supxxx2M kxxxk be the longest convex hull radius.

• LetR1 = fyyyj kyyy � xxxk � z, for anyxxx 2 MP
k g be the extended

convex hull.

• Let

R2 = fyyyj kyyyk � d+ z; kyyy � xxxk > z; 8xxx 2MP
k g

be the gap region between the extended convex hull and the en-
circling hypersphere of origin0 and radiusd+ z.

• LetR3 = fyyyjyyy 62 R1 [ R2g be the region outside of the encir-
cling hypersphere.

Also, the entropy ofYYY 0 is

h(YYY 0) =
y2

�PYYY logPYYY dy

=
y2R

�PYYY logPYYY dy

+
y2R

�PYYY logPYYY dy

+
y2R

�PYYY logPYYY dy: (58)

We define the following notation:

h1(YYY
0) =

y2R

�PYYY logPYYY dy (59)

h2(YYY
0) =

y2R

�PYYY logPYYY dy (60)

h3(YYY
0) =

y2R

�PYYY logPYYY dy: (61)

A. Region I

First, we examineh1(YYY 0)

h1(YYY
0) =

y2R

�PYYY logPYYY dy

=
y2R

� PYYY
P (y 2 R1)

P (y 2 R1)

� log PYYY
P (y 2 R1)

P (y 2 R1) dy

=P (y 2 R1)
y2R

� PYYY jR logPYYY jR + logP (y 2 R1) dy

=P (y 2 R1)h(YYY
0jR1)� P (y 2 R1) logP (y 2 R1)

�P (y 2 R1) h(XXXunif) + k log 1 +
z

d0

� P (y 2 R1) logP (y 2 R1)

= (1� P (y 2 R2 [R3))

� h(XXXunif) + k log 1 +
z

d0

� P (y 2 R1) logP (y 2 R1)

=h(XXXunif) + o1(�): (62)

Hered0 = infxxx2M kxxxk. What we are saying is that if we scale the

original convex hull in all axes by a factor of1+z=d0, we are obviously
going to get a hull enclosing our extensionR1 and the volume of this
scale extension is going to be(1+z=d0)kV P

k . We remark that, as� !
0,P (y 2 R1)! 1 andR1 !MP

k . Therefore,P (y 2 R2[R3)! 0,
P (y 2 R1) logP (y 2 R1) ! 0, andz ! 0. Thus,h1(YYY

0) !
h(XXXunif).

B. Probability Bound

Before we start to deal with regions II and III, we first make a claim
about the probability density ofYYY 0 outside of region I.

The probability density of thek-dimensional Gaussian noiseNNN 0 is

PNNN (xxx) =
1p

2��2
k
exp �xxx

�Ik�
2xxx

2

=
1p

2��2
k
exp �kxxxk

2

2�2

= exp �kxxxk
2 + k�2 log 2��2

2�2
: (63)

In a slight abuse of notation, we denote

PNNN (xxx) = PkNNN k(kxxxk): (64)
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Then, we have the probability density ofYYY 0 in regions II and III

PYYY (y) � PkNNN k(z); for all y 2 R2 [R3 (65)

wherePkNNN k(kxxxk) is defined as above and

z = �k�2 log 2��2 � �2 log �2:

We get this as follows:

PYYY (y) =
x2M

PNNN (y � x)PXXX(x) dx

=
x2M

PkNNN k(kyyy � xxxk)PXXX(x)dx

�
x2M

PkNNN k(z)PXXX(x)dx

=PkNNN k(z) = e = �: (66)

C. Region II

Then, we show that

h2(YYY
0) =

y2R

�PYYY logPYYY dy

��PkNNN k(z) logPkNNN k(z)V ol(R2): (67)

In showing this, we use the fact thatPYYY (y) disappears in region II
when� ! 0. Again, we remark that, as� ! 0, z ! 0. Thus, the
entropy�PkNNN k(z) logPkNNN k(z) ! 0. The volume ofR2 is finite.
Hence,h2(YYY

0) ! 0.

D. Region III

At last, we show that the entropy in region IIIh3(YYY ) is bounded and
diminishes asymptotically with�2. To show this, we need to change
from Cartesian coordinates to polar coordinates and do a radial inte-
gration

h3(YYY ) =
y2R

�PYYY logPYYY dy

�
1

0

� PkNNNk(z + r) logPkNNNk(z + r)

� fsurface(d+ z + r)g dr

=
1

z

�PkNNNk(r) logPkNNNk(rfsurface(d+ r)gdr: (68)

Here, the functionsurface(d+r) is the surface area of thek-dimen-
sional encircling sphere with radiusd+ r. We know that

surfacekfd+ rg = k� (d+ r)k�1=�
k

2
+ 1

andd =
p
k. DefineSk = k� =�(k

2
+ 1). Then

h3(YYY ) �Sk
1

z

�PkNNNk(r) logPkNNNk(r)(d+ r)k�1 dr

=�Sk
1

z

1p
2��2

k
e
�

� � r2

2�2
� k log

p
2��2 (d+ r)k�1 dr: (69)

We now change a variable. Letx = r

�
. Then

h3(YYY ) � �Sk
1 1p

2��2
k
e�

� �x2

2
� k log

p
2��2 (d+ �x)k�1� dx: (70)

We claim that when� approaches0, the right-hand side approaches
0. Without loss of generality, we assume that� � 1. This assumption is
equivalent to requiring the noise power to be less than the signal power

h3(YYY ) ��Sk
1 1p

2��2
k
e�

� �x2

2
� k log

p
2��2 (d+ �x)k�1� dx

=Sk
1 1p

2��2
k
e�

x2

2
(d+ �x)k�1� dx

+ Skk log
p
2��2

1 1p
2�

e� (d+ �x)k�1� dx:

(71)

If � is small enough (i.e.,z
�

is big), then we know that there exists
� > 0 such that

e
� � e�

x2

2
(d+ �x)k�1; 8x � z

�
: (72)

Therefore,

h3(YYY ) � Sk
p
1 + �p

2��2
k�1

1 1

2�(1 + �)
e
�

dx

+
Sk
p
1 + � log

p
2��2

p
2��2

k�1

�
1 1

2�(1 + �)
e
�

dx

=
Sk
p
1 + �p

2��2
k�1

Q
z

�
p
1 + �

+
Sk
p
1 + � log

p
2��2

p
2��2

k�1
Q

z

�
p
1 + �

: (73)

Thus, as� ! 0, h3(YYY ) ! 0.

E. Conclusion

We now sum up the results for the three regions

sup
P

h(YYY ; �) � sup
P

h1(YYY ; �) + h2(YYY ; �) + h3(YYY ; �)

� sup
P

h1(YYY ; �) + sup
P

h1(YYY ; �) + sup
P

h1(YYY ; �):

(74)

Then

lim
�!0

sup
P

h(YYY ; �) � lim
�!0

sup
P

h1(YYY ; �) + sup
P

h1(YYY ; �)

+ sup
P

h1(YYY ; �)

=h(XXXunif): (75)

Thus, the claim is proven.
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The Index Entropy of a Mismatched Codebook

Ram Zamir, Senior Member, IEEE

Abstract—Entropy coding is a well-known technique to reduce the rate
of a quantizer. It plays a particularly important role in universal quantiza-
tion, where the quantizer codebook is not matched to the source statistics.
We investigate the gain due to entropy coding by considering the entropy
of the index of the first codeword, in a mismatched random codebook, that

-matches the source word. We show that the index entropy is strictly
lower than the “uncoded” rate of the code, provided that the entropy is
conditioned on the codebook. The number of bits saved by conditional en-
tropy coding is equal to the divergence between the “favorite type” (the
limiting empirical distribution of the first -matching codeword) and the
codebook-generating distribution. Specific examples are provided.

Index Terms—Entropy-coded quantization, favorite type, mismatched
source coding, universal quantization.

I. INTRODUCTION

Entropy coding is an efficient method for enhancing quantizer per-
formance [6], [2]. This correspondence investigates the role of entropy
coding when the quantizer codebook ismismatchedwith respect to the
source distribution.

Manuscript received April 29, 2001; revised August 27, 2001. This work was
supported in part by the United States–Israel Binational Science Foundation
under Grant 1998-309. The material in this correspondence was presented in
part at the International Symposium on Information Theory, Sorrento, Italy, June
2000.

The author is with the Department of Electrical Engineering–Systems,
Tel-Aviv University, Tel-Aviv 69978, Israel (e-mail: zamir@eng.tau.ac.il).

Communicated by P. A. Chou, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(02)00317-6.

The setting of optimum entropy coding of a mismatched codebook
is typical of universal quantization [16]. Although our main motiva-
tion originates from structured (e.g., lattice) codes and real-valued pro-
cesses, we confine our discussion to random codes and to discrete
memoryless sources. Our results are based on recent work by Yang
and Kieffer [11] and by Zamir and Rose [13] in the area of mismatched
codes.

Specifically, we investigate the entropy rate of the index of the
first codeword infYYY 1; YYY 2; . . .g which satisfiesd(XXX; YYY n) � D
(“D-match”), whereXXX is a sourcel-word generated independent and
identically distributed (i.i.d)�P , andfYYY 1; YYY 2; . . .g, the codebook,
is an infinite list of random codel-words drawn i.i.d.�Q. Let Nl

denote the indexn of the firstD-matching codeword. Our main result
characterizes the entropy rate ofNl in terms of single-letter informa-
tion quantities. It implies, for example, that the difference between the
index entropy and the conditional index entropy (conditional on the
codebook) is given by

lim
l!1

1

l
H(Nl)� lim

l!1

1

l
H(NljYYY 1; YYY 2; . . .) = D(Q�P;Q;DkQ)

whereD(�) denotes divergence, and the distributionQ�P;Q;D , called
the “favorite type,” is the limiting empirical distribution of the first
D-matching codeword [13].

Section II defines the setting, introduces some useful information
quantities, and gives the main result. Section III illustrates this result
by an explicit example, and Section IV gives the proof. In a future
work with Kontoyiannis [8], we will extend these concepts to general
alphabets and source distributions, and demonstrate their tight relation
to dithered lattice (universal) quantization [16], [12].

II. PRELIMINARIES AND MAIN RESULT

Consider coding a source stringXXX = X1 � � �Xl from a finite al-
phabetX into a codewordyyy = y1 � � � yl from a finite alphabetY under
the distortion constraint

d(XXX; yyy)
�
= 1=l

l

i=1

d(Xi; yi) � D (1)

whered: X � Y ! [0; 1) is a finite distortion measure. If (1) holds,
we say that “yyy D-matchesXXX.” We shall assume thatXXX is generated by
a memoryless source having a distributionP = fP (x); x 2 Xg.

Suppose a random codebookYYY 1; YYY 2; . . . of words inY l is gener-
ated such that each letter in each codeword is i.i.d. asQ = fQ(y);
y 2 Yg: Let N` denote the index of the first codeword that satisfies
(1), i.e.,

d(XXX; YYY i) > D; i = 1; . . . ; Nl � 1; d(XXX; YYY N ) � D:

To avoid technical subtleties we assume that the distortion measure is
such that every source letter has a perfect reconstruction letter, i.e., for
eachx

d(x; y) = 0; for somey: (2)

We also assume thatQ(y) > 0 for all y in Y . It follows that for any
source stringxxx andD � 0, there is a positive probabilitypmatch > 0
that each codewordYYY i will D-matchxxx. As a consequence

PrfNl <1jXXX = xxxg = 1

i.e., aD-match is found in the codebook with probability one. See,
e.g., [10], [15], [9], [11], [5] and the references therein, for various
settings of lossy source coding and the related topic of approximate
string matching.
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