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Upper-Bounding the Capacity of Optical IM/DD Channels We explore the facts that the Fourier coefficients of band-limited
With Multiple-Subcarrier Modulation and Fixed Bias nonnegative functions must form finite positive semidefinite (p.s.d.)
Using Trigonometric Moment Space Method sequences and the convex hull of these finite sequences is bounded
by the moment space of trigonometric functions. Therefore, the study
Roy You Student Member, IEEBNd Joseph M. Kahrirellow, IEEE  of trigonometric moment spaces allows us to determine the regions
where the input signals lie, which leads to upper bounds of the channel
capacities for optical IM/DD channels. This bounding technique gives

| Abdsggct—\é\/e COF‘Sid(e”/he C)ha””e' capacity °f| ‘?‘rl‘ opti%alint_ensity(-jmlod- us geometrical intuition regarding to the signal space and becomes
ulated direct-detection (IM/DD) system using multiple-subcarrier modula- .

tion (MSM) with fixed bias. The channel is modeled as an additive white asymptotically exact for QAM syStemS' . .

Gaussian noise (AWGN) channel with nonnegative input waveform. The [N summary, we present the following facts in this correspondence.

mean of the nonnegative input waveform is the average transmitted optical » The synchronous waveform channel with the band-limited input

power. The mean of the waveform during a symbol period is called the d.c. . o e ; : .
bias of the symbol. In this work, a fixed bias is used for all symbols. There- waveforma;(#) during itsith symbol interval is equivalent to a

fore, the power used for each symbol is constant and equals the average d'SC'VEte‘t'me vector channel with th(i vector inpyt,]r—, fo.r
transmitted power. The main result of this correspondence shows that, be- theith symbol, where the vectde;, ,.|;.—, is the set of Fourier
cause the input waveforms during each symbol period are nonnegative and series coefficients of the waveform (¢). Because the optical

have fixed mean, their Fourier coefficients must lie inside certain trigono- IM/DD channel under consideration is memoryless and the noise
metric moment spaces. These moment spaces are characterized both al-

gebraically and geometrically. Through the geometrical characterization, !S white, Fhe Charlnel capacity Can be ,aChleV?d .by Wavgform
we determine the volumes of these moment spaces. The channel capacities inputs which are independent and identically distributed (i.i.d.)
of quadrature amplitude modulation (QAM) and pulse amplitude modu- from symbol to symbol. Thus, the single-shot vector channel
lation (PAM) systems are shown to be upper-bounded by sphere-packing model is used in this correspondence.

Gaussian noise in the respective moment spaces.

For both PAM and QAM systems, during each symbol interval,
because of the nonnegativity constraint on the band-limited input
waveformz(t), the corresponding vector inpjat,]%_; must lie

inside certain corresponding trigonometric moment spaces.

Index Terms—Multiple-subcarrier modulation (MSM), optical inten-
sity-modulated direct-detection (IM/DD) channel, trigonometric moment
space.

» The trigonometric moment spaces are first characterized alge-
braically through p.s.d. sequences. This characterization gives a
In this correspondence, we are concerned with the channel capacity Simple test to see if a sequence is inside a trigonometric moment

of an optical intensity-modulated direct-detection (IM/DD) channel. ~ Space.

Intensity modulation means that information is modulated onto the in- « Then, the trigonometric moment spaces are characterized geo-

tensity of optical signal, which is proportional to the signal’s instan-  metrically by showing that they are equivalent to the convex hulls

taneous power. Direct detection means that the receiver detects the in- of certain curves. The volumes of the moment spaces are calcu-
stantaneous power of the received signal. This type of system has been |ated subsequently.

widely used in both fiber and free-space optical communication sys- , The high-SNR channel capacities of optical IM/DD MSM chan-

tems. . ) . ) . nels are upper-bounded by sphere-packing Gaussian noise in the
Specifically, we study optical multiple-subcarrier modulation moment spaces.

systems, where input data is modulated onto orthogonal frequency car- ) ) . ) ) .

riers. In some respect, optical multiple-subcarrier modulation (MSM) * Further interpretations are given to illuminate the obtained re-
systems are very similar to electrical MSM systems, which have sults.

been well studied especially because of the popularity of modulation

schemes such as discrete multitone modulation (DMT) and orthogonal IIl. CHANNEL MODEL AND NOTATION

frequency division multiplexing (OFDM). However, optical MSM The optical IM/DD channel is often modeled as a baseband linear
signal is different from electrical MSM signal in one key respeckystem [2]

Since the optical MSM signal is modulated onto optical intensity

(instantaneous power), the transmitted waveform must be nonnegative, Y(t)=R-X(t) @ h(t)+ N(t) (1)

and the average transmitted power is the mean of the input waveform

instead of its mean square. In th_is_ corre;pondence, we investigatem%reym is the output currentR is the photon-detector respon-
consequences of the nonnegativity of input waveform through g (1) is the instantaneous input powét;) is channel impulse
properties of its Fourier coefficients while assuming that the_ 'np?'ésponseN(t) is the channel noise, and denotes the convolution
waveform has the same average power during each symbol 'nterYﬁJeration. In this correspondence, we assume that the channel is fre-
guency nonselective (i.6h{t) = H - §(¢)) and the noiseV () is white
Manuscript received November 6, 2000; revised June 6, 2001. This work viRd Gau_s5|an with power spectral de_rﬁslt%' These are appro_prlate )
supported by the National Science Foundation under Grant ECS-9710065. aissumptions for optical systems dominated by thermal electrical noise
material in this correspondence was presented in part at the International Cane/or strong ambient light noise (such as line-of-sight free-space op-

ference on Communications, Helsinki, Finland, 2001. tical systems and fiber-optical systems with negligible dispersion) [3].
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|. INTRODUCTION

IFor an introductory exposition of MSM schemes on electrical signals, we
refer the reader to [1]. 2ThisistosaythaRy (1) = E[N(t+7)N*(t)] = Noé(7) and® ( f) = No.
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Fig. 1. Channel model.

Furthermore, in this correspondence, we deal with multiple subcé-no information conveyed through the bias. Hence, for PAM, uBing
rier systems, where input data is modulated onto orthogonal frequemeyriers is equivalent to havirigorthogonal channels; for QAM, using
carriers. The channel model is shown in Fig. 1. The input waveforincarriers is equivalent to havirdg: orthogonal channels. Becaysg)

over all time is

oo

X(t)= Y wi(t)p(t—iT)

I=—o0

@)

is a rectangular pulse of duratidn the power spectrum of each mod-
ulated subcarrier has nulls at frequerey. hertz above and below the
subcarrier frequency. The total bandwidth required byktiseibcarrier
signal X (¢) is therefore considered to be

wherez~ is the frequency separation between subcarriérs, %" is

the symbol duratiory(¢) is the mean amplitude pulse shape function
P, 0<t<T

p(t) = {0, otherwise @

with P > 0. z;(t) is a real nonnegative input waveform for b sig-

naling interval. Because we use multiple subcarrier modulatigt)

is of the following form:

hertz, which corresponds to the first null in the power spectruii @f
above the highest subcarrier frequency.

To recover information, the received waveforifi(¢) is passed
through a matched-filter demodulator wherig) is matched tq(¢)
and is normalized to have an energy2oHence,

I\»
xi(t) = Z i eI g(t) = { \/g’ 0<t<T

— 0, otherwise.
Thus, the output of the demodulator will be

T
i = / Y (t)g(t) cos(nwt)dt = RHP 1/ %(Li,n +n;, (8)
0

w

()

k k
1 .
=3 aio+ E ai,n cos(nwt) + E bi,n sin(nwt) (5)

n=1 n=1

where
k

Ne
bin = / Y (t)g(t)sin(nwt)dt = RHP 4/ g bin+n;, (9
o 2

wheren; ,, andn; ,, are independent and 8f (0, N,) distributions.
For compactness of notation, we denote

1 A e . 1 .
[Ci,n]flyZI é [ci,fn]:‘r:l é |:§(afi,n +]bi,n):|
n=1

denotes the information transmitted during thle symbol interval.
¢; _, denotes the complex conjugate @f_,,, andk is the number
of subcarriers excluding baseband.

! . Ci,n :l(ai,n + jbin) (10)
Because of the conjugate symmetry, the teym = f; a;, o is always 2 '
real. Furthermore, for nonnegative(t), ¢;, o must be nonnegative and T 1 S, +jni ) (11)
does not equal zero unless all other terms vanish [4]. Thus, we call ’ 2 T
% a;, o P the d.c. bias, since it ensures the nonnegativity of input wave- Cin = % (Gi,n + ‘;’f)i, n)- (12)

form X (¢). It has been shown that in binary phase shift keying (BPSK)
and quadrature phase shift keying (QPSK) optical MSM systems,
erage-power efficiency can be improved if the biga( o P) is allowed
to vary from symbol to symbol [5]. However, most optical MSM sys-
tems use a fixed bias for the simplicity of implementation. Therefore,

we consider the fixed bias case andjet; o P’ be a constant. Without with the further requirement tht:;, »]5_, represents nonnegative
loss of generality, we can allow to take care of the mean amplitudex;(¢). Notice that, for PAM systems, the imaginary part of the above
scaling and Ie% a; o = 1. Since% a;, 0 = 1 for each symbol, there equation will be discarded and ,.’s are i.i.d. real Gaussian random

av_Then, after the above manipulation, the waveform channel is repre-
sented equivalently by the vector channel

. T . ,,
[Finlimy = RHP Y5 [einlumy + inlimy. i€Z (13)
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variables with variancé%, while for QAM, b; , # 0 andn; ,'s are For QAM, the sequenc{azen],’,i:l must fall in the finite-dimensional
i.i.d. proper complex Gaussian random variables with varia%ﬂ:e trigonometric moment space

Since the channel is memoryless and the noise is i.i.d. from symbol 1
to symbol, the channel capacity can be achieved by i.i.d. vector i = {[Cil]ﬁzlt = T/ Al () dt, 2 (8) > 0,
puts. Therefore, to calculate the channel capacity, we only need to con- 0 o
sider the capacity of one signaling interval. Thus, we will consider this 1 / 2 (t)dt = 1} . (20)
single-shot vector channel model in the remainder of the correspon- T Jj,
dence. From now on, we will drop the subscrigor theith symbol |t is obvious thatC#% and CHZ lie inside M{ and M, respec-
and denote our input waveform during the considered symbol duratigfely, which gives the condition necessary fox]*_, to represent a
asu(t). nonnegative input waveform(t) > 0, ¢ € [0, T') for PAM and QAM
systems. However, we emphasize that these conditions are only neces-
sary but not sufficient. Although it is true that each point inside
andME,2 has at least one corresponding (not necessarily band-limited)

The most important difference between an optical IM/DD channBpnnegative functior’(¢), it is not true that each point can represent a
and a conventional electrical channel is that the optical channel inji@nd-limited nonnegative function(#) with & subcarriers, because in
is intensity. This has two significant consequences. First, since #i definition of moment spaces(t) is not necessarily band-limited
input is intensity, it must be nonnegative. Second, since the inputdg We have imposed upon our intensity input function.
intensity, the average optical power is proportional to the mean of Thus, for a generak’(#), it may be necessary to use an infinite se-

oo

J H J 1k H 7
the input. Therefore, we impose these two constraints on the optiG4€ncelcy]o=1 to specify it, whergc, ], is only the truncation of

IIl. I NPUT CONSTRAINTS AND RELAXATION

IM/DD channel input the infinite sequence in the firét terms. However, the trigonometric
moment spaces; and Mﬁ? do provide upper bounds to the sets

x(t)p(t) > 0, telo, T) (14) of possible inpu'C’Hf’ andCHZE . Furthermore, in the case of QAM,

o because the input function(t) is specified by the set of basis func-

P, =E {l / a()p(t) dt} - F F aop:| . (15) tions{cos(nwt),sin(nwt), n =1, 2, ..., k}, then, as the number of

T Jo 2 subcarrierg: grows large, the seﬂH? approaches the set of arbitrary

However, in previous section, we have reformulated the optical IM/DBPNN€gative input wavgforms, which is also the limit of the trigono-
channel model from a waveform channel with input) to a vector Metric moment spacé4;’. Thus, we can consider the bound for QAM

channel with inpu[cn]ﬁ;zl. Thus, we need to impose the constraintSYStems becomes asymptotically exack @es t_o infinity. .
on the vector input correspondingly. As we can see, the problem of communicating over optical IM/DD

The power constraint can be easily satisfied. Since we use fixed b}dSM channels is intimately rela_f_(:]d Vé'trf‘_ the charfactt_enzanon of
for each symbolL a, P is a constant and equals average pollgy,  Uldonometric moment spaces. The definitions of trigonometric

id AAR A
Becausel ao = 1, we see that the average transmitted optical pow8ioment spaces; and M7 given so far are only conceptual. We
equalsP need some operational definitions of the moment spaces to tell us more

about where the sequende’§]ﬁ:1 lie. We do this in the next section.

P. =P (16)
IV. TRIGONOMETRICMOMENT SPACES
Furthermore, we still need to impose the nonnegativity constraintIn this section, we will characterize the trigonometric moment spaces
onto the corresponding vector representafigri:_, . We define the both algebraically and geometrically. The algebraic characterization
sets of Fourier coefficient sequences representing band-limited nimthrough p.s.d. sequences, while the geometric characterization is

negative functions for PAM and QAM systems as through convex hulls of certain curves. Although the geometric char-
. acterization is more direct and provides more insight for the capacity
S T e 1 bounding problem, the algebraic characterization gives us an easy test
CHi = {[C"]"" 1+ Zl @n cos(nwt) 2 0, en = 2 a’”} an to see if a sequence lies inside the trigonometric moment spaces. Thus,

we will present both characterizations subsequently.

k
CHE = Cn f,: 14+ an cos(nwt) + by sin(nwt) > 0,
i {[ b= Z ) (nwt) 2 0, A. Algebraic Characterization

n=1
1 ] First, we consider the case of comp[eX]i‘;:1 , Which corresponds
=35 (an +jbn) 0 (18) 1o MZ. A sequencdc,]k_, of complex humbers is callepositive
semidefinitaf and only if

It is desired to find the necessary and sufficient conditions on the se- n»_ = ) )
quencefc,]¥—; such that it represents a nonnegative trigonometric Z picizipi =0, wherec_,, 2 ¢, cf 21 (21)
polynomialx(#) for PAM and QAM, correspondingly. Unfortunately, =1 j=1
we cannot find such conditions because of the band-limited naturefef all sets of complex numbef,, ..., p.} wherel < n < k [4].
z(t). In [4], it is also shown thafc,]%_, is p.s.d. if and only if there is a
However, if we relax the band-limit condition ar{t), the problem functionz'(#) > 0 such that
of nonnegativity can be easily solved. For PAM, the sequéngdé—_, s 9
must fall in the finite-dimensional cosine moment space ey = T/ e (1) dt, whereT = TW (22)
0 ‘

ME = {[cgl]ﬁ:“ ¢ = l /T cos(nwt)a' (t) dt, ' (t) > 0, Therefore[c}]5_, € MY is equivalent to requiring that the complex

T Jo sequencéc, ]k_, forms a p.s.d. sequence. Conversgly]_, being

k

1 (T, Nt = 1 19 p.s.d. implies thafi,,]:_, € M. Furthermore, it has been shown [6]
T/O w(tydt=1¢. (19)  ihat a sequencle’, )% _, is p.s.d. if and only if its Toeplitz matrix”,
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is a p.s.d. matrix for ald < n < k, where the Toeplitz matrix of the C = {[vn (£)]%_,: [vn(£)]F—,

sequencgc),]h_, is defined as follows fob < n < k: = [cos(wt) cos(2wt) -+ cos(kwt)]T, t €0, T)}.  (29)
[ o ¢ e The key fact presented here is that the trigpnometric moment spaces
, R < NN are equivalent to the convex hulls of these space curves and the volume
Cn = : . . e of the convex hulls can be determined.
, , ; The convex hull of a set is defined as the smallest convex set
LOon Ca-1ottr Co containing the original set [8]. We denote the convex hulo&nd
r el c ce T C asconv(&) andconv(C), correspondingly. We want to show that
R RO ME = COIlV(g) and_Mf = conv(C). _
= . . . . (23) Here, we first derive the complex case which correspond&l@.
: : : Given the conceptual definition 0\‘/!,?, we realize that we can define
L e ] the vectoric, |k, € M% as

v
This set of necessary and sufficient conditions[drl’_; gives the [L)h_, = l/ 2OV (]2, dt, where[V,, (1)]5_, € €.
first operational characterization g# T Jo
(30)
If we consider the curvé as a set of points, then, becausét) > 0
(24) and fol #'(t) dt = 1, we can see thdt,]“_, is actually the convex
combination of the pointl/, (+)]%_, in € with 2'(¢) as the weight for
each point. ThusM¥ C conv(E).
M ={[ch)i=i: € isp.s.d. foralld < n < k, ¢, isreal. (25) To show thatconv(€) C MY, we use the separating hyperplane
theorem [8]. Suppose there exists a poifi*_; € M,f? that does not

Althcj)Jugh itis possible to use the p.s.d. property to c_hgracte\vljje belong taconv(&). Then, by the separating hyperplane theorem, there
and M, [7], itis much easier to check the positive definitenes€pf exists a vectofA,]¢_, # 0 and a real constant such that

which defines the interior regions of the moment spaces. To find the

M2 = {[c]h_1: Clisp.s.d. foralb < n < k, ¢, is complex.

Similarly, we can find the algebraic characterization\df,

mFenor regions of the moment spaces, we can use the leading principal R Z Al < (31)
minor test n=1
det Cf = det [(’6] >0 k
5 17 a k S
- RS A,Jn} >u, VIVi]ho, € conv(€). (32)
det C{ = det " , >0 n=1
c1 C Then, for all[V;, (t)]5=, € &, we have
/ ! ! k
Co €1 O w1,
det C‘; = det C,T 06 0/1 >0 R Zlkn"n(t) > .
3 i Thus,
1 T k k
(26) R |% / +'(1) [Z A:vn(t)} dt| =R |3 A:ci,} > p. (33)
A 0 n— n=
Givench 2 1, we carry out the calculation of the above conditions and ' o '
obtain the following: We have reached a contradiction. Thereforay (€) C M. Conse-
quently, M¥ = conv(€).
1>0 Similarly, we can show thatonv(C) = MY . The two- and three-
1—|leyl> >0 dimensional examples o¥1}, are shown in Fig. 2.
L= 2|12 = [|eb]1? + ciche's + ¢ Tl >0 More importantly, the geometrical characterization gives us infor-

mation regarding to the volume of the trigonometric moment spaces.
(27) We have shown that1? = conv(&). As we recognize, the cunge

L . o . is a linear transformation of the generalized ellipse
The interior region o\ is defined by the set of complex sequences

[cﬁl]f‘;:f} _that s_atisﬁes all the constraints above, while _the interior rt_agion Ge — { P(cos pot 4 jsin Wt)} k e {0’ 2_7) } |
of M, is defined by the set of real sequence satisfying the conditions. n I w
The boundaries of the moment spaces can be approached arbitr
close by the interior points and have meadure

However, as we can see, this algebraic characterization becomes - 2kt (34)

?{Was been shown [9] that the volume@huv(GE) is

complicated as the number of subcarrikiacreases. It requires a dif- EY(2k)!
ferent approach to characterize the trigonometric moment spaces. Applying the linear transformation , we get the volume OMkQ
. 2k k!
VE = () (k) -V = % (35)
In this subsection, we characterize the trigonometric moment spaces (2k)!
ML and,/\/li,2 from a geometrical approach. For this purpose, we first For M1, , the analytical expression for the volume of thav(C) is
define two space curves given in [10]

€ ={Va®ims: [Va By = [ ™7 1 € [0, 7)) ey 2 T,
(28) Ve =2 H(Zi—i—l) k>0 (36)

B. Geometric Characterization
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Fig. 2. Examples of cosine moment spaces.

where the above simple result is derived by observing certain relation- V. CHANNEL CAPACITY BOUNDS

ship between the autocorrelation sequence (p.s.d) and the reflection CQh this section. we derive the optical IM/DD channel capacity bounds

efficients. However, we remark that it can also be derived by a I'neﬁ‘éing the sphere-packing argument. Because there is a clear parallel
transformation of the polynomial moment space. It has been shown

nik existing between the PAM case and the QAM case, we will primarily
Eﬁlls] rt:srtnf:;t{gur]\’;;s' t € [0, 1}, the volume of the convex hull of derive our result for PAM and state the result for QAM later.

. Through the demodulation process, we get
I50INQ)

o N . T
V! = 1—[1 —r(%) , wherel'(7) is the gamma functian (37) [&nm:] :/ [RHPx(t) + N(1)]
1= 0
Then, let 2 . ot at g
cosh — » v (26— 1) -UT[CObw cos 2wt -+ cosnwt] dt
P 22— 2 . Ak
cos 26 = 20 — 1 st = REP\| % aulicy + [05)hos. (40)
cos 30 = 4 — 3z = (2t —1)° (38) N . ) I
To simplify the vector notations, we definE = 3 [d,];=1,
: : X = L{an]t_,, andN = L [#5]%5_,. Then, for PAM
Note _that thg first column is a set (_)f Qhebyshev po_Iyn_omiaIs of the Y = RHP /T X4+ N (41)
first kind, while the second column is simply a substitution of a vari- 2

able. It is obvious that there is a linear transformation fiefj*_, whereY andX are real vectors an ~ A/(0, % I;.). We define the
to [cos n6]%_; . Since the two transformations are both triangular, it iSNR over the bandwidth of one subcarrier as
easy to find the Jacobian, and we find tHat 2*°. Then, we have SNR— (RHP)*T (42)
P 1 ok? 11 No
Vi =J-Vi=2" -V (39)  and the normalized noise variance is definedas= 1/SNR. To sim-
Now, for both M[ andeQ, we have characterized the trigono-plify the presentation, we further introduce the notations
metric moment spaces geometrically as convex hulls of certain curves. . T
This characterization not only tells us where the input sequences must Y =Y/ (RHP\/;)
lie but also gives us the volume of the trigonometeric moment spaces.
Knowing the volume of the moment spaces, we can derive the up

bounds to the optical IM/DD MSM channel capacities using the argu- N' =N/|RHP [T )
ment of sphere-packing Gaussian noise in the moment spaces. 2
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Regionfl

Fig. 3. Three regions of entropy integration.

Then, we have over bounded support, the maximum possible entropy contribution of
Y’ aroundM ¥ will be the differential entropy of uniform distribution
) (43) in M7 . Denoting the random vector with the uniform distribution in

2
M,f' asX .nir, We want to show that

The capacity betweelX andY is defined as follows, where the
supremum is taken over all distributions & corresponding to WY') < h(Xumie) + o(0) (46)
nonnegative input waveforms:

2
Y=X+N., N~N <o, 7 I

whereo(o) is the entropy residue, which vanishes exponentially fast

Ch o = % sup I(X;Y). (44) aso — 0.
Px: XECHT The detailed proof of the above inequality is shown in the Appendix.
The mutual information betweek andY is However, we give a brief outline here. As we said before, when the SNR
is high (i.e.,c — 0),Y" is approximately bounded withittZ . Thus,
I(X:Y)=n(Y)— h(N) the uniform distribution in\t% will bound A(Y"). To make this claim
} concrete, we use the following strategy. We divide the whtlespace
=nY') + klog <RHP\/Z> _k log <2m A_O) into three regions as shown in Fig. 3. Region | is the extension of the
2 2 4 cosine moment space in all direction by lengttwhere

k. (RHP)’T

=YY"+ E log (45) 2 = /—ko?log2na? — 02 log o2 (47)

meNy
Since the noiséV is Gaussian, the outplt is a continuous-valued is @ function of the noise varianee’ and the system dimension
random vector with a smooth nonzero probability density function edlotice that the extension lengthwill shrink with smallers*. Region
erywhere, which means that it has well-defined differential entropyis the gap between the moment space extension and the smallest
1(Y).Y' isonly arescaling o, hence, the differential entropy Y ) sphere encircling the moment space extension. This sphere is centered
is also well defined. To find the capacity, we need to maximig’) ~ at origin with the radius/ + =, where
by varying the input distributiod®x with the constraint thaX is in
the region of possible inpui€*%. However, for an additive white
Gaussian noise (AWGN) channel, at high SNR, will almost en-

tirely be bounded within wher& is distributed. Thus, the differen- js the length of the outermost point belonging to the cosine moment
tial entropy/(Y") will mostly consist of the contribution & within  space. Region Il is the part outside of the sphere. As the SNR becomes
the possible input regiod;, with some residue. Because we do nohigh, the entropy o, 4(Y"), vanishes in regions Il and IiI, while
have an operational characterizationdgtz, , we use the geometrical region | approaches the cosine moment space. Thus, we claim
characterization foM~ as an upper bound. Because the differential

entropy function:(-) is concave with respect to smooth distributions R(Y') < h(Xunit) + o(0).

d= sup_|lz| (48)

zE,r\/(kP
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Upper Bounds for PAM and QAM
18 T T | T T 1 I T T
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- e
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(e +]

SNR (dB)

Fig. 4. The capacity bounds of PAM and QAM systems.

The entropy ofX .,i¢ is the logarithm of the volume of cosine mo- The capacity bounds are shown in Fig. 4 for a different number of

ment spacd;’ . Then, we get the upper bound to capacity subcarriers in PAM and QAM systems, respectively. Itis worth noticing
) that the capacity increment has diminishing return with the number
. 1 k HP)*T i i ion is fi
Chau < = {1()?; VP + ¥ log (R ,) + O(U)} _ (49) of .subcarrlers. Becguse the §ubcarr|.er separation is fIX%d laertz, .
T 2 melNg using more subcarriers does indeed increase the total system capacity.

o ) However, to maintain nonnegativity of input waveform, each subse-
For QAM, a similar argument can be given except tHaand X' quently added subcarrier is constrained by the preceding subcarriers.
are complex vectorsy ~ CN(0, = I1.), and the possible input and 1 the capacity increment will not be linear in the number of subcar-
bounding regions aréH;? and. M. With these substitutions, we getiers. Therefore, as a result, the spectral efficiency of the multiple sub-
carrier system suffers. Also, the upper bound of capacity shown in the
+ O(J)} . (50) figure is not the tightest possible, because we made some approxima-
tions to achieve the analytical bound. Thus, a more exact upper bound
can be obtained if it is calculated numerically.
We now try to analyze the obtained results to obtain further insight.
VI. RESULTS AND INTERPRETATIONS Because of the compactness of the QAM result, we will use it as an
From the previous section, we obtain the following results. For PAgXample. Using Stirling’s formula for the factorial
systems, the channel capacity is bounded by
! 2\ 2rnn"e " (53)

1 k 2i \""
k k
A < = o |2
Cram < 7 (l"“ [ ZI:II <2i + 1)

k RHP)’T A ok ko T Lk o=k -\ 2*
+35 log {7( ) }+0(0)>- (51) C2t = & log | S V2R (RHP,/%)

(RHP)’T

weNy

. 1
Coam < T {log Vi + klog

we can get the following close approximation at lakgend high SNR:

5 N T '8 | amah(2h)he—2
For QAM systems, the channel capacity is bounded by k 1 <2 No)
— = log | 2me —
. T
- 1 2k akp! (RHP)*T
) < = :log | ———F— . 2
Cam < T <10g |: (2k)! + klog weNg +olo) — i lo (RHP)'T (54)

(52) T 7 2. 2% kN,
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Furthermore, substituting the system bandwidth of the multiple-sub- + / — Py log Py dy
carrier signal given by (6), we can get yERy
) k } (RHP)2 k+1 1 —1—/ — Py log Py dy. (58)
2k - " T
Coam = Fr1 Wlog W N, k 2.9% /) (55) YERs
) S . We define the following notation:
As the number of subcarriefsgoes to infinity, the channel capacity .
converges to (Y = / — Py log Py dy (59)
(RHP)® 1 yeth
. 2k i | .
Jm Coam = Wlog {—WNO ' 5} : (56) ha(Y') = / — Pyrlog Py dy (60)
yELR

Clearly,(RHP)?/W N, = SNR/(k + 1), and we can consider this

guantity to be the SNR over the entire bandwidth occupied by the mul-
tiple-subcarrier signal. It must be greater tieato have reliable and

nonclipping communications. A. Region |

ha (V') = / _ Py log Py dy. (61)
yER3

First, we examiné: (Y’
VII. CONCLUSION 1(Y")

In this correspondence, we have shown that, for multiple-subcarrier- 71 (Y") = / — Py log Py dy
modulated optical IM/DD channels, the input vectors must form finite ?GRI
p.s.d. sequences. These sequences are constrained inside the trigono- — / _ {L P(y € R, )}
metric moment spaces, which are convex hulls of certain space curves. yERy Ply € R)
We calculated the volume of the moment spaces and used it to find the Py
upper bounds to the channel capacities for MSM systems with fixed -log {m Py € Rl)} dy
bias. T
=Py e Rl)/
APPENDIX yERL

PrROOF OF THEASYMPTOTIC UPPERBOUND
OOF O SYMPTOTICU ou — Py, {log Pyrjse, +log Py € Ri)} dy

In thi di that
n tis appendix, we prove fha =P(y € R)MY'|R.) — P(y € Ri)log P(y € Ry)
Y < h{( X unir) + o(0) (57) ) >
<P(y € Ry) (h(Xllnif) + klog (1 + E))
whereo(s) — 0 asoc — 0.

To facilitate the proof, we first make and repeat a few definitions. — P(y € Ri)log P(y € Ry)
T =(1—-P(y € R2 URy))
1 ‘T ; [+ . z
M = {m|a: = f/o 2 (1) [on ()]n=n dt, ' (t) > 0, : (h(xunif) + klog (1 n d_/))
" — P(y € Ri)log P(y € Ry)
%/ :v'(t)dt:l} (y € Ri)log P(y € R
’ =W Xunir) + 01(0). (62)

be thek-dimensional cosine moment space. Hered' = inf ., p |l2|. What we are saying is that if we scale the
k

* Let original convex hullin all axes by a factor bf- > /d’, we are obviously
- - ‘ ‘ i hull enclosing our extensiéh and the volume of this
2= /—kotlog 270? — o2 log o2 going to get a hull en nsin
\/ orlogena 7eloea scale extension is going to be+ z/d’)’”V,f. We remark that, as —
be the extension length. 0,P(y € Ry) — landR, — My . ThereforeP(y € RoURs) — 0,
. P Ry)log P(; R 0, andz 0. Thus,hi (Y’
» Letd = sup, ¢ » ||zl be the longest convex hull radius. h((}!i’ GT) log Ply € Ri) — - u(¥’) —
s LetR, = {y| ||ly — 2|| < =z, foranyz € ML} be the extended
convex hull. B. Pl’obablllty Bound
o Let Before we start to deal with regions Il and Ill, we first make a claim
» about the probability density &’ outside of region I.
R ={ylllyll <d+z [ly -zl >z Ve e My} The probability density of thé-dimensional Gaussian noid€' is
be the gap region between the extended convex hull and the en- 1 2 ol
o L . Pyi(x) = -exp | —
circling hypersphere of origifi and radiusi + =. \/Wk 2

Let Rs = {yly ¢ R1 U R:} be the region outside of the encir-
cling hypersphere. =

ey (N
\ /27r02k 202

2 27 o 2
— exp <_ [|||” + L;' 710g 2no ) . 63)
o2

. In a slight abuse of notation, we denote
= — Dy log Py di
/yeRl viios Sy dy Pyr(z) = Py (l2])). (64)

Also, the entropy o' is

Y’ = / . — Py log Pyr dy
yERF
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Then, we have the probability densityBf in regions Il and Il

Pyr(y) < Pynr(2),

where P x (||2]]) is defined as above and

forally € R, U R3

z= \/—k02 log 276? — g2 log a2.
We get this as follows:

PY’(y):/ ur Pni(y — z)Px () dz
e P
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We claim that whemr approaches, the right-hand side approaches
65 0. Without loss of generality, we assume that. 1. This assumptionis
(65) equivalent to requiring the noise power to be less than the signal power

. L2
hs(Y) < —Sk/ % e 'z
£/ 27o?

W

. {—% — klog \/27r02} (d+ 0$)k710d1’

: s [Tl T it en) e
=5 - € - ox Yo du
= / o Piny(lly — =) Px (x) da EN T 2
rE./ i
. ,1_ k—1
< / . Pynry(2) Px () de + Siklog V2no? . Z(d+ox)" oda.
rEM;7 z
T (71)
= P”N/H(Z) =e 2 = 0. (66)
If o is small enough (i.e.; is big), then we know that there exists
C. Region Il 5 > 0 such that
Then, we show that __=? 22 22 Fet z
- e 20+ >e” 2 —(d4+ox) ", Vo > —. (72)
}IQ(YI): / —PyrlOgPy/ dy - 2 ' To
velts / Therefore,
< P‘N’H( )lOg_PHN/”( )‘/r()l(Rg). (67) )
In showing this, we use the fact thB%-/ (y) disappears in region I h3(Y) < pV1 + / 1 : e~ TTE da
whens — 0. Again, we remark that, as — 0, z — 0. Thus, the Varer T S \2r(146)
entropy— P nv| (#)log Pyn7(2) — 0. The volume ofR; is finite. SOy
Hence /s (Y') =0 Sev1+6 10%7\/1271'0'
V2ro?
D. Region llI 00 1 e
Atlast, we show that the entropy in region H(Y') is bounded and e erite) D de
diminishes asymptotically witlr*. To show this, we need to change 7
from Cartesian coordinates to polar coordinates and do a radial inte- SVl +6 < z )
gration \/WL 1 oV1+6
ha(Y) = /UERS_P“OgPY y Wlogﬁ@( . ) -
N o146

< /Om —{ Py (= + 1)} {log Pywy (= + 1)}

- {surface(d + z +7)} dr

= /Do —DPyny () log Py (r{surface(d +r)} dr.  (68)

Thus, asr — 0, hs(Y) — 0.

E. Conclusion

We now sum up the results for the three regions

Here, the fl]nctioraurface(d+ r) is the surface area of thhedimen-

sional encircling sphere with radids+ . We know that
] £ k—1 k
surfaceg {d + r} = kr? (d+r)* /T ( s+ 1)

andd = v/k. DefineSy, = kx% /T( + 1). Then

hs (Y) < Sk / —PHN”('I“)IOgIDHNH(r)(d—i- T‘)k_1 dr

2
—_Sk/ e 242
z \/2702
2
{ ;2 klog V2ma? }(r]—i—rl‘ U dr.
We now change a variable. Let= ~. Then
oo 1 L2
AT
: V2m0?

2

{———klog\/?mﬂ} d—i—o‘r o dr.

sup h(Y, o) <q11ph (Y,0)+n(Y, 0)+ h3(Y, o)

Px

<sup hi(Y, o) +sup hi (Y, o) +sup i (Y, o).
Px Px Px
(74)
Then

lim sup (Y, o) < lim [sup hi(Y, o) +sup ki (Y, o)
7= py e=0 \ Py Px

+sup hi (Y, 0’))
Px

(69) =1 (X unit)- (75)
Thus, the claim is proven.
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by an explicit example, and Section IV gives the proof. In a future
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Consider coding a source strid§f = X5 --- X, from a finite al-

Abstract—Entropy coding is a well-known technique to reduce the rate phabetY into a codeworgy = 1 - - - y; from a finite alphabed’ under
of a quantizer. It plays a particularly important role in universal quantiza-  the distortion constraint
tion, where the quantizer codebook is not matched to the source statistics. L
We investigate the gain due to entropy coding by considering the entropy A
of the index of the first codeword, in a mismatched random codebook, that d(X,y) =1/ Z d(Xi yi) <D 1)
D-matches the source word. We show that the index entropy is strictly
lower than the “uncoded” rate of the code, provided that the entropy is whered: X x Y — [0, oo) is a finite distortion measure. If (1) holds,

conditioned on the codebook. The number of bits saved by conditional en- e say thatf D-matchesX.” We shall assume th& is generated by

tropy coding is equal to the divergence between the “favorite type” (the - gt g (P e v

limiting empirical distribution of the first .D-matching codeword) and the amemoryless source having a distributiBr= IP(I)’. N e, f1 b

codebook-generating distribution. Specific examples are provided. Suppose a random COde_bomiv Y,, ... of Wprq§ in)" is gener-
ated such that each letter in each codeword is i.i.dYas {Q(y).

Somzxcgsirrgszﬁicter?spgfgﬁgﬁgzg?iZ‘gt'za“on’ favorite type, mismatched y € Y}. Let N, denote the index of the first codeword that satisfies
' ' 1), i.e.,

AX.Y)>D, i=1,...,N—1dX.Yx,)<D.

To avoid technical subtleties we assume that the distortion measure is

Entropy coding is an efficient method for enhancing quantizer pegy,ch that every source letter has a perfect reconstruction letter, i.e., for
formance [6], [2]. This correspondence investigates the role of entrogy.p..

coding when the quantizer codebookrigsmatchedvith respect to the
source distribution. d(z, y) =0, for somey. 2)

=1

|. INTRODUCTION

We also assume th&)(y) > 0 for all y in ). It follows that for any
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