2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Browse
by subject...
    Schedule
view...
 

1 - 10 of 18 results for: BIOMEDIN ; Currently searching winter courses. You can expand your search to include all quarters

BIOMEDIN 201: Biomedical Informatics Student Seminar

Participants report on recent articles from the Biomedical Informatics literature or their research projects. Goals are to teach critical reading of scientific papers and presentation skills. May be repeated three times for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit
Instructors: Musen, M. (PI)

BIOMEDIN 208: Clinical Informatics Literature Review Seminar

Focus is on reading and discussing seminal papers in clinical and health informatics. Topics include biomedical informatics methods, systems design, implementation and evaluation. Limited enrollment.
Terms: Win | Units: 1 | Grading: Medical Satisfactory/No Credit

BIOMEDIN 210: Modeling Biomedical Systems: Ontology, Terminology, Problem Solving (CS 270)

Methods for modeling biomedical systems and for making those models explicit in the context of building software systems. Emphasis is on intelligent systems for decision support and Semantic Web applications. Topics: knowledge representation, controlled terminologies, ontologies, reusable problem solvers, and knowledge acquisition. Recommended: exposure to object-oriented systems, basic biology.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

BIOMEDIN 217: Translational Bioinformatics (CS 275)

Analytic, storage, and interpretive methods to optimize the transformation of genetic, genomic, and biological data into diagnostics and therapeutics for medicine. Topics: access and utility of publicly available data sources; types of genome-scale measurements in molecular biology and genomic medicine; analysis of microarray data; analysis of polymorphisms, proteomics, and protein interactions; linking genome-scale data to clinical data and phenotypes; and new questions in biomedicine using bioinformatics. Case studies. Prerequisites: programming ability at the level of CS 106A and familiarity with statistics and biology.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOMEDIN 218: Translational Bioinformatics Lectures

Same content as BIOMEDIN 217; for medical and graduate students who attend lectures and participate in limited assignments and final project. Analytic, storage, and interpretive methods to optimize the transformation of genetic, genomic, and biological data into diagnostics and therapeutics for medicine. Topics: access and utility of publicly available data sources; types of genome-scale measurements in molecular biology and genomic medicine; analysis of microarray data; analysis of polymorphisms, proteomics, and protein interactions; linking genome-scale data to clinical data and phenotypes; and new questions in biomedicine using bioinformatics. Case studies. Prerequisites: programming at the level of CS 106A; familiarity with statistics and biology.
Terms: Win | Units: 2 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOMEDIN 219: Mathematical Models and Medical Decisions

Analytic methods for determining the optimal diagnostic and therapeutic decisions for the care of individual patients and for the design of policies affecting the care of patient populations. Topics: utility theory and probability modeling, empirical methods for estimating disease prevalence, probability models for periodic processes, binary decision-making techniques, Markov models of dynamic disease state problems, utility assessment techniques, parametric utility models, utility models for multidimensional outcomes, analysis of time-varying clinical outcomes, and the design of cost-contstrained clinical policies. Extensive problem sets compliment course materials. Prerequisites: introduction to calculus and basic statistics.
Terms: Win | Units: 2 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Higgins, M. (PI)

BIOMEDIN 224: Principles of Pharmacogenomics (GENE 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Win | Units: 3 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Altman, R. (PI)

BIOMEDIN 233: Intermediate Biostatistics: Analysis of Discrete Data (HRP 261, STATS 261)

Methods for analyzing data from case-control and cross-sectional studies: the 2x2 table, chi-square test, Fisher's exact test, odds ratios, Mantel-Haenzel methods, stratification, tests for matched data, logistic regression, conditional logistic regression. Emphasis is on data analysis in SAS. Special topics: cross-fold validation and bootstrap inference.
Terms: Win | Units: 3 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Sainani, K. (PI)

BIOMEDIN 262: Computational Genomics (CS 262)

Applications of computer science to genomics, and concepts in genomics from a computer science point of view. Topics: dynamic programming, sequence alignments, hidden Markov models, Gibbs sampling, and probabilistic context-free grammars. Applications of these tools to sequence analysis: comparative genomics, DNA sequencing and assembly, genomic annotation of repeats, genes, and regulatory sequences, microarrays and gene expression, phylogeny and molecular evolution, and RNA structure. Prerequisites: 161 or familiarity with basic algorithmic concepts. Recommended: basic knowledge of genetics.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

BIOMEDIN 290: Biomedical Informatics Teaching Methods

Hands-on training in biomedical informatics pedagogy. Practical experience in pedagogical approaches, variously including didactic, inquiry, project, team, case, field, and/or problem-based approaches. Students create course content, including lectures, exercises, and assessments, and evaluate learning activities and outcomes. Prerequisite: instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Altman, R. (PI) ; Ashley, E. (PI) ; Bagley, S. (PI) ; Bassik, M. (PI) ; Batzoglou, S. (PI) ; Bayati, M. (PI) ; Bejerano, G. (PI) ; Bhattacharya, J. (PI) ; Blish, C. (PI) ; Boahen, K. (PI) ; Brandeau, M. (PI) ; Brutlag, D. (PI) ; Bustamante, C. (PI) ; Butte, A. (PI) ; Chang, H. (PI) ; Cherry, J. (PI) ; Cohen, S. (PI) ; Covert, M. (PI) ; Curtis, C. (PI) ; Das, R. (PI) ; Davis, R. (PI) ; Delp, S. (PI) ; Desai, M. (PI) ; Dill, D. (PI) ; Dumontier, M. (PI) ; Elias, J. (PI) ; Ferrell, J. (PI) ; Fraser, H. (PI) ; Gambhir, S. (PI) ; Gerritsen, M. (PI) ; Gevaert, O. (PI) ; Goldstein, M. (PI) ; Greenleaf, W. (PI) ; Guibas, L. (PI) ; Hastie, T. (PI) ; Hlatky, M. (PI) ; Holmes, S. (PI) ; Ji, H. (PI) ; Karp, P. (PI) ; Khatri, P. (PI) ; Kirkegaard, K. (PI) ; Klein, T. (PI) ; Koller, D. (PI) ; Krummel, T. (PI) ; Kundaje, A. (PI) ; Levitt, M. (PI) ; Li, J. (PI) ; Longhurst, C. (PI) ; Lowe, H. (PI) ; Mallick, P. (PI) ; McAdams, H. (PI) ; Menon, V. (PI) ; Montgomery, S. (PI) ; Musen, M. (PI) ; Napel, S. (PI) ; Nolan, G. (PI) ; Olshen, R. (PI) ; Owen, A. (PI) ; Owens, D. (PI) ; Paik, D. (PI) ; Pande, V. (PI) ; Petrov, D. (PI) ; Plevritis, S. (PI) ; Poldrack, R. (PI) ; Pritchard, J. (PI) ; Relman, D. (PI) ; Riedel-Kruse, I. (PI) ; Rubin, D. (PI) ; Sabatti, C. (PI) ; Salzman, J. (PI) ; Shachter, R. (PI) ; Shafer, R. (PI) ; Shah, N. (PI) ; Sherlock, G. (PI) ; Sidow, A. (PI) ; Snyder, M. (PI) ; Tang, H. (PI) ; Taylor, C. (PI) ; Theriot, J. (PI) ; Tibshirani, R. (PI) ; Utz, P. (PI) ; Walker, M. (PI) ; Wall, D. (PI) ; Winograd, T. (PI) ; Wong, W. (PI) ; Xing, L. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints