STATS 42Q: Undergraduate Admissions to Selective Universities  a Statistical Perspective
The goal is the building of a statistical model, based on applicant data, for predicting admission to selective universities. The model will consider factors such as gender, ethnicity, legacy status, publicprivate schooling, test scores, effects of early action, and athletics. Common misconceptions and statistical pitfalls are investigated. The applicant data are not those associated with any specific university.
Terms: not given this year

Units: 2

Grading: Satisfactory/No Credit
STATS 48N: Riding the Data Wave
Imagine collecting a bit of your saliva and sending it in to one of the personalized genomics company: for very little money you will get back information about hundreds of thousands of variable sites in your genome. Records of exposure to a variety of chemicals in the areas you have lived are only a few clicks away on the web; as are thousands of studies and informal reports on the effects of different diets, to which you can compare your own. What does this all mean for you? Never before in history humans have recorded so much information about themselves and the world that surrounds them. Nor has this data been so readily available to the lay person. Expression as "data deluge'' are used to describe such wealth as well as the loss of proper bearings that it often generates. How to summarize all this information in a useful way? How to boil down millions of numbers to just a meaningful few? How to convey the gist of the story in a picture without misleading oversimplifications? To answer these questions we need to consider the use of the data, appreciate the diversity that they represent, and understand how people instinctively interpret numbers and pictures. During each week, we will consider a different data set to be summarized with a different goal. We will review analysis of similar problems carried out in the past and explore if and how the same tools can be useful today. We will pay attention to contemporary media (newspapers, blogs, etc.) to identify settings similar to the ones we are examining and critique the displays and summaries there documented. Taking an experimental approach, we will evaluate the effectiveness of different data summaries in conveying the desired information by testing them on subsets of the enrolled students.
Terms: Aut

Units: 3

UG Reqs: WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Sabatti, C. (PI)
;
SUR, P. (TA)
STATS 50: Mathematics of Sports (MCS 100)
The use of mathematics, statistics, and probability in the analysis of sports performance, sports records, and strategy. Topics include mathematical analysis of the physics of sports and the determinations of optimal strategies. New diagnostic statistics and strategies for each sport. Corequisite:
STATS 60, 110 or 116.
Terms: Spr

Units: 3

UG Reqs: GER:DBMath

Grading: Letter or Credit/No Credit
Instructors:
Powers, S. (PI)
STATS 60: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 160)
Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, ttests, correlation, and regression. Possible topics: analysis of variance and chisquare tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum

Units: 5

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Taylor, J. (PI)
;
Thomas, E. (PI)
;
Walther, G. (PI)
;
Xia, L. (PI)
...
more instructors for STATS 60 »
Instructors:
Taylor, J. (PI)
;
Thomas, E. (PI)
;
Walther, G. (PI)
;
Xia, L. (PI)
;
Chin, A. (TA)
;
Janson, L. (TA)
;
Patterson, E. (TA)
STATS 90: Mathematics in the Real World (MATH 16)
Introduction to noncalculus applications of mathematical ideas and principles in realworld problems. Topics include probability and counting, basic statistical concepts, geometric series. Applications include insurance, gambler's ruin, false positives in disease testing, present value of money, and mortgages. No knowledge of calculus required. Enrollment limited to students who do not have Stanford credit for a high school or college course in calculus or statistics.
Terms: Spr

Units: 3

UG Reqs: GER:DBMath

Grading: Letter or Credit/No Credit
Instructors:
Poulson, J. (PI)
STATS 110: Statistical Methods in Engineering and the Physical Sciences
Introduction to statistics for engineers and physical scientists. Topics: descriptive statistics, probability, interval estimation, tests of hypotheses, nonparametric methods, linear regression, analysis of variance, elementary experimental design. Prerequisite: one year of calculus.
Terms: Aut, Sum

Units: 45

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Rajaratnam, B. (PI)
;
Bhattacharya, B. (TA)
;
Bi, N. (TA)
;
Panigrahi, S. (TA)
...
more instructors for STATS 110 »
STATS 116: Theory of Probability
Probability spaces as models for phenomena with statistical regularity. Discrete spaces (binomial, hypergeometric, Poisson). Continuous spaces (normal, exponential) and densities. Random variables, expectation, independence, conditional probability. Introduction to the laws of large numbers and central limit theorem. Prerequisites:
MATH 52 and familiarity with infinite series, or equivalent.
Terms: Aut, Spr, Sum

Units: 35

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Wang, R. (PI)
;
Xia, L. (PI)
;
Huang, R. (TA)
;
Le, Y. (TA)
...
more instructors for STATS 116 »
STATS 141: Biostatistics (BIO 141)
Introductory statistical methods for biological data: describing data (numerical and graphical summaries); introduction to probability; and statistical inference (hypothesis tests and confidence intervals). Intermediate statistical methods: comparing groups (analysis of variance); analyzing associations (linear and logistic regression); and methods for categorical data (contingency tables and odds ratio). Course content integrated with statistical computing in R.
Terms: Aut

Units: 35

UG Reqs: GER:DBMath, WAYAQR

Grading: Letter or Credit/No Credit
Instructors:
Mukherjee, R. (PI)
;
Basu, K. (TA)
;
Fukuyama, J. (TA)
;
Guan, L. (TA)
...
more instructors for STATS 141 »
STATS 155: Statistical Methods in Computational Genetics
The computational methods necessary for the construction and evaluation of sequence alignments and phylogenies built from molecular data and genetic data such as microarrays and data base searches. How to formulate biological problems in an algorithmic decomposed form, and building blocks common to many problems such as Markovian models, multivariate analyses. Some software covered in labs (Python, Biopython, XGobi, MrBayes, HMMER, Probe). Prerequisites: knowledge of probability equivalent to
STATS 116,
STATS 202 and one class in computing at the
CS 106 level. Writing intensive course for undergraduates only. Instructor consent required. (WIM)
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Holmes, S. (PI)
STATS 160: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 60)
Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, ttests, correlation, and regression. Possible topics: analysis of variance and chisquare tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum

Units: 5

Grading: Letter or Credit/No Credit
Instructors:
Taylor, J. (PI)
;
Thomas, E. (PI)
;
Walther, G. (PI)
;
Xia, L. (PI)
...
more instructors for STATS 160 »
Filter Results: