
The Event Heap: An Enabling Infrastructure for Interactive
Workspaces

Brad Johanson, Armando Fox, Pat Hanrahan, Terry Winograd
Stanford University

Gates 3B-376
Serra Mall

Stanford, CA 94305-9035
{bjohanso,fox,hanrahan,winograd}@graphics.stanford.edu

Abstract

As computers and large displays become cheaper,
additional modes of human computer interaction are
becoming possible. One can now set up an interactive
workspace in which multiple computer displays and input
devices are simultaneously visible and usable by one or
more users. Unfortunately, the well-known event queue
metaphor, which works well for a single user sitting in front
of a single computer using a GUI, breaks down in such an
interactive workspace. We propose the Event Heap as a
novel mechanism by which multiple users, machines and
applications can all simultaneously interact as consumers
and generators of system events. The Event Heap is
flexible, robust to failure of individual interactors, and
sufficiently lightweight to be integrated easily with
“legacy” single-user-GUI applications.

Keywords: Multidevice interaction, event stream, tuple
space, interactive workspace

1 INTRODUCTION

“[A]n object-network OS…aimed at the intelligent-environment
R&D problem space…would enable researchers to focus more on
investigating intelligent environments and less on developing the
infrastructure to support those investigations.”

---R. Hasha, Needed: A common distributed-object platform,
IEEE Intelligent Systems, March/April 1999

Today’s standard environment for computer interaction
consists of a keyboard, mouse and monitor. This works
well for individual work, but it is not sufficient when
multiple people interact simultaneously, or when multiple
devices of different capacities need to be used together. An
alternative configuration is an interactive workspace: a
room or other work area with large projected screens that
can be seen and controlled by all participants. Users
interact with the displays using touch sensitive surfaces,
wireless mice, tablet input devices, or sophisticated
tracking techniques. In addition, laptops, PDA’s and other
portable computing devices with wireless networking
capabilities may be brought into the room and used, as
described in [4].

The traditional model for interaction in single-machine,
single-user systems today is the event queue. In this model,
all system events, including input events such as mouse and
keyboard activity and application-level events such as
window redraws, are placed in a queue and centrally
dispatched to the appropriate foreground window. This
system begins to break in a multi-person multi-device
workspace, in which events are being generated by multiple
entities and dispatched to different applications. The
decentralized nature of an interactive workspace also means
that the set of active event consumers and producers may
be frequently changing, for example, as users with mobile
computers enter and leave the environment while
applications continue to run.

The Event Heap is a software infrastructure designed to
provide for interactive workspaces what the event queue
provides for traditional single-user GUI’s. The system is
an extension of TSpaces, a tuplespace system from IBM
Research [22]. It is bulletin-board based, and applications
may post and retrieve events of interest.

 In addition to supporting interactions among multiple
users, machines, and applications, the Event Heap was
expressly designed to function well in the decentralized
environment of an interactive workspace. Because these
workspaces comprise a heterogeneous collection of
machines and must support existing (“legacy”) applications
as well as purpose-written applications, we made the Event
Heap fairly simple and portable across platforms. Because
the large number of independent software and hardware
entities in an interactive workspace make for a potentially
fragile distributed system, we designed the Event to isolate
failures: A misbehaving application using the Event Heap
will not crash other applications or the interactive
workspace as a whole, although clearly the functionality
provided by the crashed application is lost.

The Event Heap is a working system and has been in use
for over six months in an experimental interactive
workspace called the Interactive Room. Our experiences so
far suggest that the Event Heap successfully provides the
functionality just described.

2

In the rest of the paper we present the Event Heap system
in more detail and describe our experience using it as the
primary infrastructure for Stanford’s Interactive Room, or
iRoom, a prototype interactive workspace. In Section 2 we
start by giving an example of using an interactive
workspace to further motivate the need for the Event Heap.
In Section 3 we list the design goals for the Event Heap.
Section 4 gives the specifications for the Event Heap and
describes our implementation. In Sections 5 and 6 we
describe various substantial applications in production use
that exploit the Event Heap, and the lessons we have
learned so far from implementing and using them on a
regular basis. We describe related work in Section 7,
outline our continuing research agenda in Section 8, and
evaluate our contribution in Section 9.

2 MOTIVATING EXAMPLE

We set our scenario in the Interactive Room, or iRoom,
which we have built to investigate interactive workspaces.
As shown in the schematic of Figure 1, the iRoom features
three rear projected SmartBoard [16] touch screens along
one wall, a bottom projected table, and a front screen. The
three SmartBoards may be driven by individual machines
or by a single multi-head machine. Each display may also
be driven from a laptop drop cable exposed at the table. All
of the machines driving displays are Windows machines in
order to allow legacy applications to be run in the room. In
addition, the room has wireless LAN coverage, which
allows laptops or PDA’s to communicate with the other
machines in the room.

Figure 1 - Layout of the iRoom
Consider a group of construction management engineers
and contractors using the iRoom to plan a major
construction project. (We are working with the civil
engineering department on just such a project [8], but

similar scenarios apply for many domains requiring multi-
person collaborations and interacting with large amounts of

data.) Some project information is stored on laptops and
PDA’s they bring to the iRoom; other information is
already stored on the network or on the computers in the
room. Upon entering the room they use a touch sensitive
tablet to turn on the projectors for the three touch screens in
the side wall. The project manager has prepared a meeting
outline earlier, which he calls up by using the touch screen
on the left-most display. The outline lists the various
topics, of the meeting, and each topic is a link that calls up
appropriate information on the various screens in the room.
Figure 2 shows a photograph of the iRoom in use.

Figure 2 – Construction Management in the iRoom
The first few topics don’t require more information, but the
fourth topic is a change in the schedule for one aspect of
the construction. When the project manager taps the link
for that topic, the table display turns on automatically and
shows an aerial view of the building site. At the same time,
a 3-d model of the site at the time of the schedule change is
brought up on the middle touch screen.

As they discuss the scheduling change, they use a wireless
pointer to select points on the map on the table display.
Each time they do so, they see new views of the site in the
3-d viewer to visualize how the re-ordering of construction
will affect the site construction progress. During the
discussion they bring up supplemental data from their
laptops and display it on the screens in the room. They are
also able to redirect their laptops’ pointers and keyboards to
control the machines driving the displays when they need to
directly control applications from where they are sitting.

3 DESIGN GOALS

From our example we can extract certain capabilities that
would be desirable in an underlying infrastructure to
support similar interaction scenarios. One is the ability to
control the displays and environment through different
paths including directly through a touch tablet, or indirectly
by having the screen turn on when there is data being
displayed on it. Users need to be able to display data on
any of the screens in the room based on their current topic

multi-headed computer

laptop drop

front

smartboard 1 smartboard 3smartboard 2

table

room controller

computer

laptop
source

3

of discussion. Applications need to be able to
communicate back and forth to coordinate among each
other. Users need to be able to control displays directly
using touch, or indirectly using remote keyboards, pointers
and portable computers. These observations led to our
design goals for the Event Heap:

• Multi-User, Multi-Application, Multi-Machine:
Multiple users must be able to interact at the same
time, either with different applications, or within the
same application, regardless of which machines are
running the applications.

• Heterogeneous Machines, Legacy Support: As
much as possible, the infrastructure should allow the
deployment of interactive workspaces using a variety
of machines and operating systems. This allows
groups to use legacy (single-user) applications in the
interactive workspace despite the fact these were
designed for a single-user environment. We also want
users with PDA’s and other personal computing
devices to be able to participate in the workspace using
their devices.

• Failure Isolation: The failure of any given application
should not effect any applications with which it is not
interacting, and should only effect those with which it
is interacting to the extent that its functionality is lost.
This allows the entry and exit of transient machines, as
well as protecting the system as a whole from failure in
any given member.

In the next section we present the Event Heap, a system
designed to satisfy these goals.

4 THE EVENT HEAP ARCHITECTURE

The Event Heap is a loosely typed, bulletin-board based
message exchange system. Applications can post events of
a certain type or request events that match certain criteria.
Applications need not know about one another ahead of
time to exchange events—they merely need to be producer
and consumer of matching types. Since there is no direct
communication between producers and consumers of
events, the system as a whole does not rely on the presence
or robustness of specific interactors: Events that are not
consumed time out and are automatically erased from the
Event Heap without further effect. The system is also
inherently non-blocking: any number of events of any type
may be posted and retrieved concurrently, and independent
collections of applications can interact without cross-
interference.

The Event Heap is not intended to replace the event queues
of the individual machines in an interactive workspace.
The level of control we desire is inter-application
synchronization, applications controlling other remote or
local applications, and redirection of input devices among

the machines in workspace.

Since most interactive workspaces are likely to be
composed of machines running traditional operating
systems and legacy applications, the Event Heap API
makes it easy to integrate them seamlessly. The interface
provided by the Event Heap is simple enough to allow for
easy integration into legacy applications for which we have
the source code. It is also relatively straightforward to use
application hooks (such as Visual Basic or VBScript) to
allow legacy applications to participate in the interactive
workspace by using the Event Heap. We have also
provided a proxy-based connection that allow links on web
pages to submit events into the system, allowing the
construction of simple web interfaces that interact with the
entire workspace.

4.1 Event Queue versus Event Heap

Before going into the details of the Event Heap, it is
important to understand concretely why an event queue is
not appropriate to accomplish the goals set out in the
previous section. Figure 3 shows schematically the
difference between an Event Queue and the Event Heap.

Window System

App

App

Input

Device

Window

Manager

Event Queue

Application

Application

WidgetWindow

Control Path

Event Path

(a) Typical Event Queue for a Windowing System

Input
device

App

Input
device

OS

Event Heap

Machine 1

Laptop
OS

Machine 2

App

App

Input
device

OS

(b) The Event Heap

4

Figure 3 - Event Queue versus Event Heap
A typical event queue that might be used for a workstation
windowing system is shown in Figure 3a. In such a system
applications, input devices and the window manager submit
events into the queue. When an event reaches the front of
the queue, it is read by whichever application is currently
the target of the queue (usually the application that is in
focus). The windowing or operating system explicitly
manages the connection of event generators to the queue,
the current destination of events in the front of the queue,
and the chain of event recipients. The monolithic nature of
the queue makes it difficult for the queue to handle multiple
distinct users, since only one application is the target of
events at any given time.

The Event Heap is shown in Figure 3b. In this case there is
no explicit serialized flow of events through the system.
An application on machine 2 can post events to be
consumed by other applications on both machine 1 and the
laptop. At the same time, the mouse on the laptop can be
controlling the display of machine 1 by posting a series of
mouse events to be consumed by the operating system on
machine 1. Finally, there may be a direct exchange of
events between the applications on the laptop and machine
1. The inherently many-to-many connectivity of the Event
Heap allows it to function better in the distributed multi-
machine, multi-application, multi-user environment of an
interactive workspace.

4.2 TSpaces and Tuples

The Event Heap is built on top of the TSpaces (Tuple
Spaces) system from IBM Research [22]. TSpaces is an
implementation of tuple spaces as first described by
Cisnero and Gelerntner for the Linda system [1]. Many of
the concepts used in the Event Heap are derived from the
underlying TSpace, so we briefly describe that system here.

A tuple is an ordered collection of fields. Each field has a
type, name and value, any of which may be left undefined.
Because the fields are ordered, each field has a unique
index. Because the name, type and value are stored with
every instance of the tuple, the tuple is self-describing—it
is not necessary for the consumer of a tuple to know in
advance how to “unmarshal” it.

A tuple space is a conceptual space into which tuples can
be placed and from which tuples can be extracted by an
application. To submit something to a tuple space, the
source application fills in fields with the desired names,
types and values, then calls an appropriate routine to
deposit the tuple in the tuple space. Applications that are
interested in certain tuples retrieve them from the tuple
space by submitting a template tuple to the tuple space.
The tuple space then returns all tuples that have the same
type, name and value for fields that were explicitly defined
in the template; fields that were left undefined in the
template are filled in with types, names and values based on

the matching tuples found in the tuple space. Tuple
extraction may be destructive (the matching tuple is
removed from the tuple space) or nondestructive (a copy of
the matching tuple is returned).

While a tuple space may be run on one machine, it is most
powerful when used by clients on multiple machines. In
this case the tuple space becomes a clearinghouse in which
applications running on different machines may exchange
data with each other.

4.3 Event Format Description

The basic event used by the Event Heap is similar to a
TSpace tuple, and in our implementation we use tuples
directly to carry events. As with the tuple, an event is
characterized by fields that contain names, types and
values. Unlike tuples, we treat the fields as an unordered
collection, and the Event Heap API’s allow references to
tuple fields only by name, not by index. In addition,
template events need only specify some combination of
name, type and value for fields that are required in returned
events to get all events that have those fields. This differs
from the basic TSpaces semantics, which also requires
specifying the correct field ordering, field types and total
number of fields in the returned event. Our actual
implementation uses various TSpaces query functions,
which allow more flexible methods of tuple retrieval, to
implement this functionality.

Event types should be flexibly defined, so that extending
the event structure, either as part of the evolution of an
event type or as a dynamic extension by a specific
application, does not break existing consumers that do not
understand the supplemental information. This is the main
reason for our loose definition of an event as an unordered
collection of fields. Since matches are done on only those
fields desired by the recipient, additional fields that may be
in use as extensions in a particular event will not prevent its
delivery. For example, all mouse events may have x, y and
button state as required fields. If a mouse with scroll wheel
is added to the system, the generator of events for it could
add another field with scroll wheel position without
preventing the delivery of the basic information to receivers
that only understand the old format. Listeners aware of this
field, however, could check for its presence in any retrieved
event and use the values found therein. A systematic
treatment of the benefits of flexible typing for evolvable
systems appears in [11].

Every valid Event Heap event has some mandatory fields,
with at least name and type defined.. Some of the fields
(marked ‘*’ in Table 1) must also have their value set.
Table 1 lists the mandatory fields, and briefly describes
their use:

5

Field Name Meaning

EventType* A string that uniquely identifies an
intended event type, and is associated
with the declaration of extra fields
associated with this type.

SourceID* The unique identifier of the sender of
this event.

TargetID The ID of the desired target of this
event. May or may not be the
SourceID of the target.

PersonID An identifier for the human who
generated or is associated with this
event.

GroupID The application group for which this
event is intended.

SequenceID Used for ordering events.
NumAccesses* Number of times this event may be

read before it is deleted.
TimeToLive* Milliseconds after submission when

the event will be removed.
TimeStamp* Time when this event was last

submitted to the Event Heap
Table 1 - Required Event Heap Fields

The required fields fall into several different categories.
The first and most important field is the EventType, which
must always be set by the source. Each EventType maps to
a specific set of additional fields that will be in this event.
SourceID is used to identify the sender of an event, and can
be used by clients to receive events from only one source.
TargetID, PersonID and GroupID can be used to restrict
which clients receive an event. Their use is discussed in
Section 4.4 on event delivery and ordering. That section
also discusses the SequenceID, NumAccesses, and
TimeToLive fields, which are used to control event
ordering. The final field, the TimeStamp field, is provided
primarily as a way to do logging of sessions using the
Event Heap. In addition, the field can be used to provide
synchronization between applications interacting through
the Event Heap.

4.4 Event Delivery and Ordering

As mentioned earlier, the mechanism of use for Event Heap
participants is to either create an event and its associated
fields and post it to the Event Heap, or to create a template
event with fields filled in with desired values and request
events matching the template. Calls are provided in the
API for both of these actions.

Event delivery is controlled by source applications setting
their SourceID, TargetID, GroupID and PersonID to
specific values, and having clients match on specific values
for those same fields. A client can receive from only
specific sources by setting the SourceID field in their
template event to values corresponding to the sources from
which they desire to receive events. In practice most event
routing is done by having the source application set the

TargetID to that of the client application they wish to
notify. A variety of communication modes are possible
depending on how the fields are set, as shown in Table 2.

Comm. Type Effect Fields to Set

Dedicated-
Receiver

Receives from
specific source(s)

SourceID of
receiver

Dedicated-
Source

Sends to specific
receiver(s)

TargetID of
source

Dedicated-Link Send between
specific source
and receiver

SourceID of
receiver and
TargetID of
source

Constrained to
Group

Events only seen
within app group

GroupID of all
apps in group

Restricted by
Person

Receive only
events created by
one person

PersonID of
receiver

Table 2- Event Heap Communication Types

Ordering of events is controlled with the SequenceID,
NumAccesses and, peripherally, the TimeToLive field.
Unlike in TSpaces, which has destructive and non-
destructive gets, there is only one Get method for the Event
Heap; the NumAccesses field determines whether the Get
is destructive by specifying how many times the event may
be accessed before it is removed. NumAccesses is
decremented for each access by an application and the
event is removed when this count reaches zero. Typically
its initial value is either infinity for a message of broad
interest or 1 for a message sent to one recipient or
requesting an action that should be done only once.

Event ordering is fairly straightforward in the case of
NumAccesses set to one. In this case applications that are
waiting for these events get them from the Event Heap in
the order which they arrive and they are immediately
removed. Handling infinite NumAccesses is more tricky:
the semantics of the TSpaces API’s are such that a repeated
match on an event template would return the same event
over and over again.

We get around this by maintaining a special token tuple per
event type. The token has a single field containing the
current sequence number for events of that type.
Applications posting an event atomically take this tuple,
copy the sequence number to their SequenceID field,
increment the sequence number, and replace the tuple. The
atomicity is provided by the TSpace transaction
mechanism, and is necessary to ensure that clients don’t die
while holding the unique token tuple. Clients begin by
matching on SequenceID fields greater than one, and then
increment events of interest every time they get a new
event. This maintains a global ordering per event type as
well as proper ordering at each of the clients.

6

One potential problem with this technique is that clients
that join an Event Heap late may receive many old, non-
applicable events before getting to ones currently relevant.
This is mitigated by the TimeToLive field which specifies
how long (in time units, not number of accesses) the event
is relevant. After this time period it is removed by the
Event Heap’s garbage collection mechanism.

In practice, there are two types of applications that tend to
run in an interactive workspace: active participants, and
monitoring programs. The latter are applications which
monitor events sent through the Event Heap to keep track
of the room, log actions, or display activity to the user.
Since these applications don’t actively respond to events, a
snooping version of the Get operation is available that
returns matching events without changing the
NumAccesses field.

4.5 Naming Considerations

One important consideration in a flexible system like the
Event Heap is how to manage the namespace for events,
client and server applications. Events themselves are
uniquely determined by the EventType field. Currently
program authors may choose the value for their event type
at their discretion, and authors of applications that want to
interact must agree on the event type and its field ordering.

This may seem to be a recipe for chaos, but the nature of
the Event Heap makes the situation much better than it may
first seem. For example, a collision between events with
the same name is unlikely to have deleterious effects.
Since events are self describing, applications query and set
field values using their string names, not their indices. So,
even if two applications were to choose the same event
type, as long as their field names were different, receivers
would not be able to extract values from fields of the
conflicting event type. Of course, it is the receiver’s
responsibility to handle this case, but receivers must
incorporate error handling code anyway.

Another benefit of self-describing events is that a carefully
programmed application can learn about new event types
just by watching the Event Heap. A user could then be
prompted to map the fields of that event onto appropriate
behavior within the application.

The namespace for client and servers is also currently
controlled by application writers, who choose meanings for
values sent in SourceID and TargetID fields. Since the
Event Heap is partitioned by event type, this has turned out
not to be a problem.

While our current technique for managing the namespace
has worked so far, as we scale to more complicated
interactions we will probably need a more formal allocation
and management scheme. This is an important issue that
we intend to address in more detail in the future.

4.6 Paths to the Event Heap

One of our design goals was to support a heterogeneous
collection of machines and legacy applications. To do so
we have implemented a variety of paths through which
applications can communicate with the Event Heap. Some
of these are designed primarily to allow new applications to
be created, and others are more useful to allow legacy
systems to interact with the Event Heap. These paths are
shown in Figure 4.

Tspaces (server)

Tspaces (cli)

Tspaces (cli)

EventHeap EventHeap

Java/C glue

EventHeap

Java servlet

ProxiWeb

ProxiWare
Gateway

Netscape/IE

RMILite (cli)

RMILite (svr)

ProxiNet

IBM Almaden

UCB Ninja

Stanford iRoom

PDA app
(Waba)

PDA app
(Web-based)

Desktop app
(Web-based)

Desktop app
(Java)

Desktop app
(C/C++)

HTTP

JavaRM

Other

Figure 4 - Application Paths into the Event Heap
The typical way of creating an Event Heap enabled
application is to use either the Java or C/C++ API libraries.
TSpaces itself is written in Java, and both it and the Java
version of the API are portable to any platform supporting
JDK 1.1.8 or higher. The JNI interface is used to create a
virtual machine inside any C or C++ application using the
C/C++ version of our API. The embedded JVM runs the
underlying TSpaces Java code. The C/C++ version works
under both Linux and Win32 platforms.

For PDA’s, including both Windows CE and Palm Pilots,
application development is supported under Waba [19],
which is a sub-set of Java that can be run on PDA’s. There
are several key restrictions to Waba that prevent TSpaces
from running directly under Waba: there is no threading
and RMI is not supported. Since the Event Heap relies on
TSpaces, we use RMILite from U.C. Berkeley’s Ninja
project [5] to provide a means of making TSpaces calls.
RMI Lite is a stripped down version of RMI that passes
calls from Waba on a PDA to a proxy running on a server
machine.

We have also created a path for event submission through
the web. This is accomplished by means of a Java servlet,
which we call an usher, that takes HTTP forms submissions
and generates an event in the Event Heap based on
information encoded therein. Since form submissions can
be encoded in a URL, it is possible to create links on web
pages that submit arbitrary events into the Event Heap. The
servlet is also set up to encode the desired return URL with

7

the form submission. The ability to submit events using
web pages makes it very easy to set up control interfaces
that are accessible from any machine, whether transient or
permanently in the workspace. This mechanism is
described in more detail in [4].

Most PDA’s do not support native web browsers, so the
ProxiWeb [12] browser can be used to view web pages on
them. ProxiWeb works by serving all web pages for the
PDA through a third party server which reformats the pages
for viewing on the small screen format. Using this
mechanism and simple web pages, PDA’s can be provided
with basic access to functions of an interactive workspace.

Using the described paths and software API’s, the Event
Heap is currently supported on Windows, Linux, Palm OS,
and Windows CE.

5 APPLICATIONS

The Event Heap infrastructure system has been in use since
October of 1999 in the iRoom. It has provided an easy way
of testing application configurations for the room and has
proven to be remarkably robust and stable, in part due to
the TSpaces code underlying the Event Heap.

More than a dozen Event Heap-aware applications have
now been written. Since most of them use the Event Heap
in a similar fashion, in this section we will present the
applications most relevant to the functionality described in
the motivating example in Section 2. These applications
use the Event Heap to control the physical environment
(hardware in the iRoom), move information between
displays, link data views between applications, and redirect
input from I/O devices.

• Projector Controller: Used to turn on projectors
from a tablet computer, and to automatically turn
on table display when there was information for it.

• Multibrowsing: Used to provide links from
meeting schedule document to pulling up map and
3d model information on other screens.

• 4D Viewer: Adjusts 3d model view of
construction site based on clicking on a map on
the table.

• PointRight: A system to redirect pointer and
keyboard input between multiple machines. This
is discussed in detail in [7].

5.1 Projector Controller

The projectors we use in the iRoom can be controlled
through the serial ports of host machines. Our projector
controller application is a daemon (projcontrold) that runs
on machines in the room that are connected to the
projectors. They wait for projector control events sent over

the Event Heap that have their TargetID. When they get
these events they send the appropriate signal over the serial
port to the projector. The most common commands are to
turn the projector on or off, and to tell the projector to
switch to displaying a different screen, such as the signal
from the laptop drop. Figure 6 shows how events are sent
to projcontrold. It also shows event paths for
multibrowsing, which will be discussed next.

Figure 5 - Web Based Projector Control
Events for the projector control daemons are generated in
two ways. The Java based room controller is a custom
application that integrates Event Heap code to allow it to
submit the projector control events. The second method is
using the web path discussed in Section 4.6. Users can
click special links on web pages that perform the
appropriate form submission for the action specified by the
link. One such controller that uses an image map is shown
in Figure 5.

5.2 Multibrowsing

Multibrowsing is a system that allows one to call up web
pages or other data on a machine by submitting a
multibrowse event. It works in a similar fashion to the
projector control system. Each machine that is a valid
target for multibrowsing runs a multibrowse daemon that
waits for events with its TargetID. The events encode a
particular command to execute on the target machine.
Since the daemon uses Windows shell extensions, URLs
are brought up in the default web browser for that machine,
and data files, such as Power Point presentations, are
brought up in the appropriate application. Executable
applications can also be submitted, in which case they are
run by the multibrowse daemon. The submission paths for
multibrowsing are shown in Figure 6.

8

Front Machine, Target = 6

ProjControld

MultiBrowsed

Event HeapEvent Heap

Java Room Controller

Web Projector
Control Page

MultiBrowsable
Web Page

Projector Usher/Java Servlet

MultiBrowse Usher/Java Servlet

Target = 6 Target = 6

MultiBrowse events
Projector Control events

Figure 6 - Event Heap Control Paths

As with projector control, both web pages and custom
applications can submit multibrowse events. The same
room controller that can change projector settings also
allows users to drag and drop information onto an iconic
representation of the screens in the room. It then submits a
multibrowse event to that machine to load that information.
This provides a simple mechanism to bring up the data you
want anywhere in the room.

In a running version of the scenario presented in Section 2 a
web page with tasks for the meeting was created using
Macromedia Flash [11]. The links on the page submit
multibrowse commands to load web pages with data on
various displays in the room. One of the links also brings
up a 3D construction site visualization tool by submitting
the command to run the application.

5.3 4D Viewer

The CIFE group at Stanford [8] has created a custom
application that shows a 3D model of a construction site as
it will appear at any selected point during building, which
they call 4D Viewer. Their application writer was able to
integrate the Event Heap into their application so that it
listened for view change events. They also constructed a
web page with an image map of an aerial view of the layout
of the construction site; clicking on the image map uses the
web-forms event submission path to submit view change
events, which are routed to the 4D viewer running on a
different display. The work required to enhance their
application to use the Event Heap and take advantage of the
multiple displays in the iRoom took just a few days.

5.4 Other Event Heap Applications

To give some idea of the scope of what has been done with
the event heap, here are some other examples of
applications we have running in the iRoom:

• Light Control via X10: allows selected lights in the
room to be turned on and off using event submission.

• SmartPPT: Allows a PowerPoint presentation to be
authored for multiple screens and then displayed across
the 4 vertically oriented screens in the room.

• PDA PowerPoint: Allows a PowerPoint presentation
to be displayed and annotated on a PDA, and allows
audience members to exchange comments and
questions via the Event Heap during a PowerPoint
presentation.

• Collaborative Film Editing: A team of artist and
director can quickly scan in images, display them in an
image sorter on one screen, and then compose them
into an animated storyboard in Adobe Premiere on two
of the other screens.

• Sound Server: Allows sounds to be spatially located
on a surround sound system and controlled through the
Event Heap.

• PointRight: Allows pointer/keyboard connected to
any machine to be used to control machines displaying
to the screens in the room.

Many of the above were implemented as class projects for a
course taught on Interactive Workspaces in the Fall of
1999. They were done over about a one-month period by
teams of three to five students, which gives some idea of
the relative ease with which applications can be developed
using the Event Heap.

6 DISCUSSION

Ease of implementation, the ability to leverage many
different devices, and the ability to isolate failures have
proven to be the Event Heap’s biggest strengths in our
experiences over the past six months.

6.1 Ease of Implementing Interactive Workspace
Applications

By designing a simple API and multiple access paths for
the Event Heap, we intended for it to be relatively
straightforward to get applications running in the iRoom.
This has generally proven to be true.

As mentioned earlier, the six student groups in the class
were able to create programs with relatively complex
behavior in about one month. The software was also
simple enough that only one or two bugs showed up in our
initial implementation of the Event Heap during that period.
The simple interface also allowed legacy applications to be
hooked into the Event Heap with a minimal amount of
coding. This allowed the student groups to focus on the
inter-application communication structure rather than on
the details of the Event Heap framework.

The web interface to the Event Heap has also been very
important, making it easy to create web pages that allow

9

integrated display across the screens in the room. Using
Macromedia Flash we have been able to mock up even
more complex behavior by hiding the URLs in menus and
animated buttons. Although the web interface offers more
limited functionality than writing applications directly, it
provides a path for non-programmers to easily exploit the
iRoom’s multiple displays and controllable environment.

The one access path that has not been as easy to use is
development on PDA’s. While the mechanism provided
has worked, the development environments available for
PDA’s and the relative lack of maturity of PDA wireless
communication have made implementation of applications
on the PDA’s somewhat frustrating.

6.2 Support Across a Variety of Devices

Another success for us has been our ability to integrate a
heterogeneous collection of devices and machines. The
display machines in the room are running various flavors of
Windows, including Windows 98, Windows NT and
Windows 2000. A Linux server runs the TSpace for the
Event Heap and the PointRight software for mouse control.

Portable devices have also been used. The PDA
PowerPoint application allows Windows CE users to view
slides while in the room. The web interfaces have also
allowed both Palms and Windows CE devices to control the
environment in the room, and cause web pages to be
brought up on the various screens in the room.

6.3 Failure Isolation

For the last several months, all of our group meetings have
been held in the iRoom, and we have given numerous
demos there. Overall the system has proven to be very
reliable. Even when interactive workspace software on a
particular machine periodically crashed, the rest of the
room continued to function correctly, and when we have
rebooted the machine or restarted our software, that
machine immediately returned to being a functioning part
of the room. This property made demos much less
stressful.

Our one failed demo was due to running the TSpace server
under an unstable Java virtual machine under Linux. This
raises the issue of the TSpace server being a single point of
failure for our system. Although TSpaces is a logical single
point of failure, nothing about the TSpaces architecture
prevents it from being implemented on multiple machines
to exploit some redundancy, and we are aware that
continuing work at IBM is exploring this avenue.

7 RELATED WORK

Although a few research environments have been
constructed that fit the description of an interactive
workspace [2][3][9][12][18], they have been designed to
investigate specific topics such as computer vision,

distributed object systems, and agent interaction, so they
have not focused on developing a robust general-purpose
infrastructure for interactive workspaces. The specific
requirements for such an infrastructure have not, therefore,
been very well defined.

The iLand environment built at GMD-IPSI in Darmstadt
[18] is physically similar to our interactive workspace.
Their BEACH software platform is built in Smalltalk,
based on an object-oriented framework called COAST for
synchronizing multiple simultaneous access to objects. This
enables them to develop sophisticated groupware
environments that depend on object synchronization, but it
does not support the use of standard UNIX or Windows
applications as regular components of the environment. In
contrast, it is a design goal of the Event Heap to be able to
easily integrate existing applications, including web
browsing and desktop applications augmented with
collaborative behaviors (e.g. the SmartPPT application
mentioned previously).

Jini [20] provides a rendezvous mechanism for Java-based
entities to communicate. The Event Heap works at a higher
layer than Jini, and is more directly comparable to
JavaSpaces [15]. Like TSpaces, JavaSpaces implements a
tuple space in the Java environment. We chose to use
TSpaces instead to leverage some of its querying semantics,
but we believe the Event Heap could also be easily built on
top of the JavaSpaces system.

In [6], Hasha describes some of the requirements for a
distributed object OS, mostly in his case for controlling
homes filled with smart appliances, sensors and
input/output devices. His proposal to use
broadcast/subscribe meshes well with the function of the
Event Heap, although we use a more flexible event typing
scheme which keeps things less tightly bound.

MacIntyre and Feiner present the COTERIE system in [6].
Their system provides language level support for
distributed virtual environments. It provides applications
with the ability to create shared objects that are accessible
across machines.

8 FUTURE WORK

While the Event Heap is already useful as currently
implemented, there are several things we hope to improve.
The first is to add event streams as part of the API. Event
streams would allow an application to sign up to generate a
sequence of events of a certain type, or subscribe to all
events matching a certain template event. This provides
syntactic sugar for applications to make coding simpler,
and also would allow us to open direct socket connections
“under the covers” between sources and receivers of low
latency events. We already use a limited subset of this
functionality for low latency events, since the performance
of TSpaces is not fast enough to stay below the perception

10

threshold (although we are aware that the TSpaces team is
working on this problem). This fast path would be
automatically used whenever an application specifies an
event with TimeToLive of zero.

We also plan to construct a set of flexible Event Heap
managers. Currently routing of events between
applications is controlled by how the application writers
choose to use the mandatory fields, and consequently tends
to be fairly static and hard-wired to the specific layout of
the iRoom. We plan to extend the Event Heap so that it
will report the types of events applications use, and allow
the TargetID, GroupID, and PersonID fields to be set by
other applications managing the room. These managers
will be able to reconfigure applications to work in different
workspaces, and control which applications interact with on
another. They will serve a similar purpose in an Interactive
Workspace to window managers on desktop systems.

Workspace managers will also make it easier to set up
event intermediation. For example, applications that
strokes for entry can be connected to a gesture recognizer,
which in turn subscribes to mouse events. We have begun
to explore this issue and some initial work is described in
[13].

Further consideration is also needed in the area of
namespaces. Part of adding support for managers will be
the ability to give applications specific names that are well
understood by other applications in the interactive
workspace. To manage the configuration of the workspace
we are currently working on a database for the Interactive
Workspaces infrastructure. Applications will be able to use
the database to determine configuration and names, and
will also be able to register to receive an event when the
database is updated.

In the long term we hope to extend the Event Heap to be a
framework to support ubiquitous computing in general.
This will include the ability to bridge Event Heaps in
different interactive workspaces so that people can interact
remotely. We hope this will enable more sophisticated
distance learning, remote collaboration and tele-
conferencing with a simpler implementation route.

9 CONCLUSION

In this paper we have presented the Event Heap, an
enabling infrastructure for interactive workspaces. The
Event Heap avoids the problems caused by using an event
queue in the distributed environment found in an interactive
workspace by decoupling communication between
applications—instead of direct connections, events are
exchanged through a bulletin board mechanism. Our event
specification is also flexible, so applications need not be
recompiled when structures change as long as fields are not
removed from the specification. Finally, our system has
been in day to day use for over six months now with few

major crashes or problems, demonstrating that it is
workable in real world situations. We hope that the cross-
platform, legacy-application-friendly nature of the Event
Heap will encourage others to use it in their ubiquitous
computing work.

Acknowledgments

The Interactive Workspaces project is the result of efforts
by too many students to name, both in our research group
and in the Interactive Workspaces course. Bryn Forbes,
Greg Hutchins, Emre Kiciman, Brian Lee, Shankar
Ponnekanti and Rito Trevino helped with the
implementation of the Event Heap and various pieces of the
infrastructure described in this paper. Kathleen Liston,
Meenakshy Chakravorty and several others from the CIFE
project implemented the Civil Engineering scenario. Toby
Lehman and the TSpaces team at IBM Almaden receive our
grateful thanks for putting together a stable base on which
to build the Event Heap and supporting our efforts to use it.
Finally, we give special thanks to Susan Shepard for
keeping the iRoom functional, and to John Gerth for
additional administrative support. See
http://graphics.stanford.edu/projects/iwork for an
exhaustive list of participants and more complete project
information. The work described here is supported by DoE
grant B504665, by NSF Graduate Fellowships, and by
donations of equipment and software from Intel Corp.,
InFocus, IBM Corp. and Microsoft Corp.

References

[1] Cisnero, N., and D.Gelerntner, Applications
Experience with Linda. Proc ACM Symposium on
Parallel Programming ACM, 1988, New Haven CT

[2] Coen, M., Building Brains for Rooms: Designing
Distributed Software Agents. In Proceedings of the
Ninth Conference on Innovative Applications of
Artificial Intelligence. (IAAI97). Providence, R.I.
1997.

[3] Darrell, T., Maes, P., Blumberg, B., and Pentland, A.,
``A Novel Environment for Situated Vision and
Behavior'', in Proc. IEEE Workshop on Visual
Behaviors, IEEE Computer Society Press, Seattle,
1994.

[4] Fox, A., Johanson, B., Hanrahan, P., Winograd, T.,
“PDA’s in Interactive Workspaces,” Computer
Graphics and Animation, May, 2000.

[5] Gribble, Steven D., Welsh, M., Brewer, E., and Culler,
D. The MultiSpace: an Evolutionary Platform for
Infrastructural Services. Proceedings of the 1999
Usenix Annual Technical Conference, Monterey, CA,
June 1999. Also available at
http://ninja.cs.berkeley.edu/pubs/pubs.html .

[6] Hasha, R., Needed: A common distributed object
platform, IEEE Intelligent Systems. March/April

11

1999.

[7] Johanson, B., Hutchins, G., Winograd, T., “PointRight:
A System for Pointer/Keyboard Redirection Between
Multiple Displays and Machines”, submitted to
UIST’2000, San Diego, CA, USA, 2000.

[8] Liston, K., Kunz, J., and Fischer, M., “Requirements
and Benefits of Interactive Information Workspaces in
Construction,” submitted to the 8th International
Conference on Computing in Civil and Building
Engineering, Stanford, USA, 2000.

[9] Lucente, Mark, Gert-Jan Zwart, and Andrew George,
Visualization Space: A Testbed for Deviceless
Multimodal User Interface, AAAI Spring Symposium
Series, March 23-25, 1998, Stanford University, p. 84.

[10] Blair MacIntyre and Steven Feiner. Language-level
support for exploratory programming of distributed
virtual environments Proceedings of the ACM
Symposium on User Interface Software and
Technology November 6 - 8, 1996, Seattle, WA USA
Page 83
(http://www.acm.org/pubs/citations/proceedings/uist/2
37091/p83-macintyre/).

[11] Macromedia Corporation, Macromedia Flash,
http://www.macromedia.com.

[12] MIT Media Lab, Smart Rooms Project,
http://vismod.www.media.mit.edu/vismod/demos/smar
troom/

[13] Michelle Munson and Armando Fox, "Dynamic
Control in Tuple Spaces for Sustainable Evolution in
Pervasive Computing Applications". To appear in
IBM Sys. J., special issue on Pervasive Computing

[14] ProxiNet Inc. ProxiWeb browser. See
http://www.proxinet.com.

[15] Sun Microsystems Labs, JavaSpaces Specification,
http://www.sun.com/jini/specs/js.pdf.

[16] Smart Technologies SMART Board,
http://www.smarttech.com/smartboard/.

[17] Spreitzer, M. and Begel, A. More Flexible Data
Types. In Proc. Eighth IEEE International Workshop
on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET-ICE 99), 1999.

[18] N.A. Streitz et al., i-LAND: An interactive Landscape
for Creativity and Innovation. In Proc. ACM
Conference on Human Factors in Computing Systems
(CHI '99) , Pittsburgh, Pennsylvania, U.S.A., May 15-
20, 1999. ACM Press, New York, 1999, pp. 120-127.

[19] WabaSoft Inc. Waba virtual machine and
documentation. See http://www.wabasoft.com.

[20] Waldo, Jim, Jini Technology Architectural Overview,
Sun White Paper, 1999

[21] Terry Winograd, Towards a Human-Centered

Interaction Architecture, to appear in J. Carroll, ed.,
Human-Computer Interaction in the New Millennium,
2000, Addison-Wesley, in press. Available as working
paper:
http://graphics.stanford.EDU/projects/iwork/papers/hu
mcent/

[22] P. Wyckoff, S. W. McLaughry, T. J. Lehman and D.
A. Ford. TSpaces. IBM Systems Journal 37(3). Also
available at http://www.almaden.ibm.com/cs/TSpaces.

