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High-throughput screening (HTS) searches large libraries of
chemical compounds for those that can modulate the activity
of a particular biological target; it is the dominant technique
used in early-stage drug discovery. A key problem in HTS is
the prevalence of nonspecific or ‘promiscuous’ inhibitors.
These molecules have peculiar properties, act on unrelated
targets and can dominate the results from screening
campaigns1. Several explanations have been proposed to
account for promiscuous inhibitors, including chemical
reactivity1,2, interference in assay read-out2, high molecular
flexibility3 and hydrophobicity2,4. The diversity of these models
reflects the apparently unrelated molecules whose behaviors
they seek to explain. However, a single mechanism may
explain the effects of many promiscuous inhibitors: some
organic molecules form large colloid-like aggregates that
sequester and thereby inhibit enzymes5. Hits from HTS, leads
for drug discovery and even several drugs appear to act
through this mechanism at micromolar concentrations5–9.
Here, we report two rapid assays for detecting promiscuous
aggregates that we tested against 1,030 ‘drug-like’ molecules.
The results from these assays were used to test two preliminary
computational models of this phenomenon and as benchmarks
to develop new models.

To investigate the severity of the problem posed by promiscuous
aggregation, and to allow others to examine their own libraries, we
developed two rapid assays using 96-well-plate format to detect this
behavior. The first assay screens for the detergent-sensitive nature of
aggregate-based inhibition5,10. Inhibition of b-lactamase7 was mea-
sured in the presence and absence of 0.1% Triton X-100; molecules
that inhibit only in the absence of detergent are considered likely
promiscuous aggregators. The second uses a dynamic light scattering
(DLS) plate reader to measure particle formation. Control experi-
ments suggested that both assays behaved comparably to their low-
throughput counterparts5,7,9 and could distinguish known aggregators
from known nonaggregators and known promiscuous inhibitors from
specific inhibitors (Supplementary Figs. 1 and 2 online).

We selected 1,030 molecules to test these assays, purchased from
Chemical Diversity, Inc., a major supplier of HTS libraries. The
molecules were chosen by several criteria, including full Lipinski
compliance11 and chemical diversity; overall, the molecules covered
the same physical property space as did the Comprehensive Medicinal

Chemistry (CMC) database (MDL Information Systems, Inc., 2004) of
drugs (Supplementary Table 1 online). They comprised three subsets:
298 were chosen at random, 493 were predicted aggregators and 239
were predicted nonaggregators. The latter two classes were selected
with two preliminary computation models for aggregation (see later
discussion and Supplementary Methods online). All molecules were
screened at 30 mM in the DLS assay and at both 30 and 5 mM in the
detergent-dependent enzyme assay.

In the detergent-dependent inhibition assay, an unexpected 19% of
the randomly selected molecules were detergent-sensitive inhibitors at
30 mM. Of the predicted aggregators, 39% showed detergent-sensitive
inhibition, whereas only 6% of predicted nonaggregators did so
(Fig. 1a). Some of these molecules were visibly insoluble; after these
were removed from consideration, 21% of the random set, 40% of the
predicted aggregators and 7% of the predicted nonaggregators showed
detergent-sensitive inhibition. For all molecules, any inhibition shown
in the absence of detergent was largely or completely attenuated in the
presence of 0.1% Triton X-100, a property characteristic of aggregate-
based inhibition10.
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Figure 1 Results of the high-throughput assays applied to random drug-like

molecules. (a,b) Behavior of 298 randomly selected molecules in (a) the

detergent-dependent inhibition screen and (b) the DLS screen. The
statistical percent confidence of the assignments is given in parentheses.

Both assays were conducted at 30 mM.
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To examine the reliability of these results, we tested molecules
from the putative inhibitor and noninhibitor populations by a more
sensitive, low-throughput version of the assay. Nine molecules from
each population were tested one at a time; their behavior in the two
assays was well correlated. All putative inhibitors also inhibited
chymotrypsin at 100 mM, consistent with the observation that
detergent sensitivity is a good proxy for aggregate-based promiscuity
(Supplementary Table 2 online).

In the DLS assay, 36% of the 298 randomly selected molecules
scattered light at intensities high enough to indicate particle formation
(Fig. 1b); 52% of the predicted aggregators and 15% of the predicted
nonaggregators did so as well. As in the enzyme assay, 13 molecules
from the putative scattering population and 12 from the nonscattering
population were tested in a more rigorous, low-throughput version of
the assay (Supplementary Table 3 online). All behaved much the same
in this more sensitive assay as in the high-throughput assay. Thus, the
identification of particle formation by the DLS plate reader seems
reliable, with three caveats. First, other aggregative phenomena, such
as precipitation, can also lead to light scattering. Second, because of
the size heterogeneity of aggregates in solution, many data acquisitions
were required to obtain sufficient data for DLS analysis; DLS assays
sometimes required up to 3 h of acquisition per plate. Third, many
molecules scattered light with intermediate intensity, with over one-
quarter not clearly a member of either population. The presence of
particles could not be determined for these cases.

There are notable discrepancies in the results of the two screens.
Whereas 39% of tested molecules scatter light, only 26% promiscu-
ously inhibit (Fig. 2). Insoluble, light-scattering precipitates that lack
inhibitory activity contribute to this discrepancy. Indeed, among
visibly insoluble molecules, only 14% inhibited, suggesting that
precipitation and aggregation are distinct phenomena. Conversely,
four detergent-sensitive inhibitors did not scatter light by DLS. These
molecules may have optical properties that interfere with observation
in DLS; this is the case for many known aggregators such as Congo
red, which can only be studied by DLS at concentrations 100 times its
half-maximal inhibitory concentration (IC50) versus b-lactamase7.
Overall, our view is that the detergent-dependent enzyme assay
gives the fastest and most reliable single indication of aggregate-
based inhibition.

To investigate the concentration dependence of aggregate-based
inhibition, all 1,030 molecules were rescreened in the enzyme assay at

5 mM. Detergent-dependent inhibition among the random molecules
dropped to 1.4% (from 19%); 8.6% of predicted aggregators and none
of the predicted nonaggregators from either model inhibited (Fig. 3).

Until now, we have referred to the computational predictions of
promiscuous aggregating and nonaggregating molecules as coherent
sets. In fact, two models were used to select these molecules: a naive
Bayesian (NB) method and a previously described recursive partition-
ing (RP) method9 (Supplementary Methods). Whereas both models
successfully enriched for promiscuous inhibitors among their pre-
dicted aggregators and noninhibitors among predicted nonaggrega-
tors, both also predicted many false positives and false negatives
(Fig. 3). Overall, the NB model seemed better at predicting
aggregate-based inhibition, although both scored comparably at
predicting light scattering.

To improve model accuracy, the experimental results from the
predicted molecule sets were used to retrain the two models; the
298 molecules from the random subset were withheld as a test set.
Originally, both the NB and RP models had a misclassification rate
(MR) of 26% for the random set. Upon retraining, the MR of the
refined NB model improved to 20%. A random forest model12

replaced the RP model; upon training with the larger set, the MR
for this model was 11% (Supplementary Table 4 online). Notably,
both computational models were more accurate at predicting
inhibitors than DLS (MR ¼ 46%), suggesting that aggregation-
based inhibition involves more than particle formation alone. A caveat
to these computational models is that they remain too crude to
capture the concentration dependence of aggregate formation.

Four noteworthy results emerge from these studies. First, a high
percentage (19%) of randomly selected, drug-like molecules form
promiscuous aggregates at screening-relevant concentrations (here, at
30 mM) in simple biochemical buffers. This percentage is so high as to
dominate any high-throughput screen not controlling for this effect.
Even at 5 mM, 1.4% of randomly selected molecules acted as
promiscuous aggregates, a number large enough to complicate
many screens. Second, and more optimistically, promiscuous aggre-
gates may be detected rapidly and robustly. The detergent-dependent
enzyme assay, in particular, should be applicable to libraries much
larger than that described here. Third, this phenomenon has a steep
concentration dependence, possibly reflecting an underlying critical-
point phenomenon. Fourth, predictive models show some potential
for predicting aggregation-based promiscuity in large libraries. To
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Figure 2 Comparison of the two high-throughput assays, showing overlap

of positive results from the DLS and the detergent-dependent enzyme

assays at 30 mM.
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Figure 3 Accuracy of preliminary predictive models. Percentage of positive

results among the subsets of test molecules predicted by the NB and RP

models in the DLS and detergent-dependent inhibition screens.
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allow for further development, we have made our experimental results
for all 1,030 molecules available (Supplementary Table 5 online and
http://shoichetlab.ucsf.edu). In summary, promiscuous inhibition
induced by aggregation is common among drug-like molecules at
micromolar concentrations, and simple assays may be used to rapidly
and reliably detect such inhibitors.

METHODS
DLS plate-reader and low-throughput assays. Plate-reader assays were con-

ducted on a Proterion DynaPro Plate Reader. The Dynamics Software package

version 6.0 was used to analyze the data. All compound solutions were made up

in filtered 50 mM potassium phosphate, pH 7.0. Samples were diluted from

10 mM stocks (neat DMSO) and analyzed in 10-s data acquisitions at 30% laser

power. Samples were analyzed in Corning 96-well UV-transparent plates

(model no. 3679). Low-throughput DLS assays were conducted on a DynaPro

MS/X light-scattering instrument as previously described9.

b-lactamase assays. AmpC b-lactamase was purified and assayed

as described7,13.

Reactions contained 1 nM AmpC b-lactamase, 100 mM nitrocefin in 50 mM

potassium phosphate, pH 7.0, at room temperature (22 1C). These reactions

also contained 0.00002% Triton X-100 to stabilize the enzyme. Compound and

enzyme were incubated together for 5 min before the reaction was initiated by

the addition of substrate. Nitrocefin hydrolysis was monitored at 482 nm on a

SpectraMax 340 UV-visible plate reader for high-throughput assays and an

HP8453 UV-visible spectrophotometer for the low-throughput assays. To test

for detergent effects on putative aggregators, reactions were conducted as

described here with the exception that buffer containing 0.1% Triton X-100 was

added before the introduction of compound.

Chymotrypsin assays. All chymotrypsin assays were conducted as previously

described7.

Calibration of high-throughput assays. The high-throughput enzyme assay

was calibrated on a set of 19 known aggregators and 27 known nonaggregators.

The high-throughput DLS assay was calibrated with a set of 16 known

aggregators and 33 known nonaggregators. In both assays, the behavior of

these control compounds was used to develop statistical cutoffs for classifying

unknown molecules (Supplementary Methods online).

Test set selection. The 1,030 test set molecules were purchased from Chemical

Diversity, Inc. Prediction set molecules were classified as either promiscuous

aggregators or nonaggregators by one of two models: a previously described RP

model9 or an NB model (Supplementary Methods online). The predicted set

contained 493 predicted aggregators (200 NB and 293 RP) and 239 predicted

nonaggregators (97 NB and 142 RP). The random set contained 298 molecules.

All compounds were prepared as 10 mM stocks in neat DMSO.

All selected compounds satisfied the following Lipinski criteria:

(Nitrogen_Count + Oxygen_Count) o¼ 10, Molecular_Weight o¼ 500,

Num_H-Bond_Donors o¼ 5, and AlogP o¼ 5.611. An upper bound of

5.6 is more appropriate for the AlogP-based estimation of logP14. To further

ensure that our test sets were reasonable representations of drug-like molecules,

we compared common physical property distributions in our prediction

set, the random set and the CMC database. The CMC was filtered to remove

compounds that were unlikely to be orally bioavailable, such as contrast

agents, solvents and pharmaceutical aids; the filtered database was denoted

CMC*14. The interquartile ranges of chemical properties for both the predic-

tion and random sets are similar to those of the CMC* (Supplementary

Methods online).

Statistical analyses. Population normality and confidence intervals for the

enzyme inhibition data were calculated with GraphpadPro (Prism Software).

The NB DLS classifier and the NB predictive model for aggregate-based

inhibitors were developed with the NB classifier algorithm in Pipeline Pilot

4.5.0 (Scitegic, Inc). The algorithm calculates the sum of conditional prob-

abilities for the occurrence of a given feature in a set of molecules representing

two classes. The random forest model was developed with the Arbor software

package (Supplementary Methods online).

Other methods. Assay development procedures, the predictive models, sample

DLS data, screening results and a complete list of the 1,030 molecules

(Supplementary Table 5) are available online and at http://shoichetlab.ucsf.edu.

Accession codes. BIND identifiers (http://bind.ca/): 266517–266779.

Note: Supplementary information is available on the Nature Chemical Biology website.
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