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Protein kinases 

Protein kinases (PKs) are important mediators of normal cellular signal transduction. By adding 

phosphate groups to substrate proteins, they direct the activity, localization and overall function of many 

proteins, and serve to orchestrate the activity of almost all cellular processes. Protein kinases play a key 

role in virtually all physiological processes including proliferation, angiogenesis, migration, cell cycle, 

etc. The diversity of essential functions mediated by kinases is shown by the conservation of more than 

50 distinct kinase families between yeast, invertebrate and mammalian kinomes. Of the 518 human 

protein kinases, 478 belong to a single superfamily whose catalytic domains are related in sequence. It is 

now recognized that abnormal phosphorylation of proteins mediated by kinases may result in diseases 

including cancer, diabetes, rheumatoid arthritis and hypertension, arteriosclerosis, psoriasis, and a large 

number of inflammatory responses [i]. The development of specific PK inhibitors as pharmacological 

tools and potential antiproliferative agents is an active and highly competitive area of research. The 

phylogenetic trees of the PK families, subfamilies and groups can be identified from the several 

databases [ii]. Despite extensive efforts of pharmaceutical companies and academic groups, there are 

only a few small molecule inhibitors of protein kinases widely available as drugs. The reason for the 

scarcity of PK-targeted drugs is the stringent criteria required for a therapeutically useful small molecule 

inhibitor of these enzymes. Inhibitors need to be highly potent, selective among the closely related 

enzymes, and also possess adequate pharmacodynamic properties for the target of interest. 

Protein kinases can be clustered into several distinct groups, families and sub-families, of 

increasing sequence similarity and biochemical function. The kinase dendrogram (Fig. 1) [iii] shows the 

sequence similarity between these catalytic domains: the distance along the branches between two 

kinases is proportional to the divergence between their sequences. Seven major groups are labeled and 

colored distinctly. For instance, the tyrosine kinases (TKs) form a distinct group, whose members 

phosphorylate proteins on tyrosine residues, whereas enzymes in all other groups phosphorylate 

primarily serine and threonine residues. 

Protein kinase inhibitors represent an important and still emerging class of targeted therapeutic 

agents. Drug discovery and development strategies have explored numerous approaches to target the 

inhibition of protein kinase signaling. 
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Fig. 1. The protein kinase dendrogram. Description: TK Tyrosine kinase; AGC Containing PKA, PKG, PKC families; 

CAMK Calcium/calmodulin-dependent protein kinase; CK1 Casein kinase 1; CMGC Containing CDK, MAPK, GSK3, 

CLK families; STE Homologs of yeast Sterile 7, Sterile 11, Sterile 20 kinases; TKL Tyrosine kinase-like 

 

Tyrosine kinase family 

Among the PTs discovered to date tyrosine kinases seem to be the most attractive biological 

targets for cancer therapy, as quite often their abnormal signaling has been linked with tumor 

development and growth [iv]. In addition, they play a critical role in other diseases, for example in 

inflammation [v] and rheumatoid arthritis [vi]. 

 
 



 

Tyrosine kinases are known as key switches in many cellular signal transduction pathways and 

catalyze transfer of ATP γ-phosphate onto a protein substrate. Although tyrosine kinases vary in size, 

mechanism of activation, subunit composition, and subcellular localization, they all share a structurally 

conserved ATP binding catalytic core [vii], the main binding site for most of TK inhibitors. The 

conserved nature of this binding site represents a challenge for the selection of inhibitors. Most of TK 

ligands share specific steric, lipophilic, H-binding, and other parameters. The combination of these 

physico-chemical properties constitutes the basis for a statistical model discriminating between TK 

ligands and non-TK-active agents. 

A large sub-family of TKs includes many groups which can be divided in two major classes in 

accordance to their localization and specificity: receptor tyrosine kinases and non-receptor 

(cytoplasmatic) tyrosine kinases (Fig. 2a,b). 

 

                                               (a)                                                                           (b) 
Fig. 2. (a) tyrosine kinase dendrogram; (b) histogram which displays the genetic and morphological similarity within the TK-

family enzymes 

 

For example, three tyrosine kinase families, the Src, Tec and Syk kinase families are intimately 

involved in TLR signalling, the critical first step in cellular recognition of invading pathogens and tissue 

damage. Their activity results in changes in gene expression in affected cells. Key amongst these genes 

are the cytokines, which orchestrate both the duration and extent of inflammation. Tyrosine kinases also 

play important roles in cytokine function, and are implicated in signalling through both pro- and anti-

inflammatory cytokines such as TNF, IL-6 and IL-10. 

 
 



 

Among various groups of TKs, abl-kinase and grow-factor receptor tyrosine kinases, especially 

FGFR, EGFR, VGFR and IGF1R kinases, are the most promising targets particularly implicated in 

cancer grow and progression. Thus, constitutive activated TKs stimulate multiple signaling pathways 

responsible for DNA repair, apoptosis, and cell proliferation. During the last few years, thorough 

analysis of the mechanism underlying tyrosine kinase's activity led to novel cancer therapy using TKs 

blockers. These drugs are remarkably effective in the treatment of various human tumors including head 

and neck, gastric, prostate and breast cancer and leukemias. The most successful example of kinase 

blockers is Imatinib (Imatinib mesylate, Gleevec, STI571), the inhibitor of bcr/abl oncoprotein, which 

has become a first-line therapy for chronic myelogenous leukemia. The introduction of STI571 for the 

treatment of leukemia in clinical oncology has had a dramatic impact on how this disease is currently 

managed. Others kinase inhibitors used recently in cancer therapy include Dasatinib (BMS-354825) 

specific for abl non-receptor cytoplasmic kinase, Gefitinib (Iressa), Erlotinib (OSI-774, Tarceva) and 

Sunitinib (SU 11248, Sutent) specific for VEGF receptor kinase, AMN107 (Nilotinib) and INNO-406 

(NS-187) specific for c-KIT kinase. The following TK blockers for treatment of various human tumors 

are in clinical development: Lapatinib (Lapatinib ditosylate, Tykerb, GW-572016), Canertinib (CI-

1033), Zactima (ZD6474), Vatalanib (PTK787/ZK 222584), Sorafenib (Bay 43-9006, Nexavar), and 

Leflunomide (SU101, Arava). In accordance with the examples just above, efficient tools are needed for 

the high-throughput search for novel candidates to be assayed as TK-targeted drugs. The key to 

harnessing the high therapeutic potential of TKs is in the design of high-quality small molecule libraries 

targeted against these proteins. 

 

Concept and Applications 

TK-targeted library design at CDL involves: 

• A combined profiling methodology that provides a consensus score and decision based on various 

advanced computational tools: 

1. Unique bioisosteric morphing and funneling procedures in designing novel potential TK ligands with 

high IP value. We apply CDL’s proprietary ChemosoftTM software and commercially available solutions 

from Accelrys, MOE, Daylight and other platforms. 

2. Neural Network tools for target-library profiling, in particular Self-organizing Kohonen maps, 

performed in SmartMining Software. We have also used the Sammon mapping and Support vector 

machine (SVM) methodology as more accurate computational tools to create our TK-focused library. 

3. A molecular docking approach to focused library design. 

4. Computational-based `in silico` ADME/Tox assessment for novel compounds includes prediction of 

human CYP P450-mediated metabolism and toxicity as well as many pharmacokinetic parameters, such 

 
 



 

as Brain-Blood Barrier (BBB) permeability, Human Intestinal Absorption (HIA), Plasma Protein 

binding (PPB), Plasma half-life time (T1/2), Volume of distribution in human plasma (Vd), etc. 

The fundamentals for these applications are described in a series of our recent articles on the design of 

exploratory small molecule chemistry for bioscreening [for related data visit ChemDiv. Inc. online 

source: www.chemdiv.com]. Our multi-step in silico approach to TK-focused library design is 

schematically illustrated in Fig. 3. 

 
Fig. 3. Multi-step computational approach to TK-targeted libraries design 

 

This common approach was effectively applied for the developing of our TK-focused, in 

particular for abl, VGFRs, Src, YES, ErbB, Met and IGF1R kinases. 

 

• Synthesis, biological evaluation and SAR study for the selected structures: 

1. High-throughput synthesis with multiple parallel library validation. Synthetic protocols, building 

blocks and chemical strategies are available. 

2. Library activity validation via bioscreening; SAR is implemented in the next library generation. 

 

Virtual screening on TK-specific activity 

The common TK-filter 

At the initial stage of our TK-targeted library design, we have collected a 22,110-compound 

database of known drugs and compounds entered into preclinical or clinical trials; their structures and 

assignments were obtained from Prous Science Integrity [viii]. Each compound in this database is 

characterized by a defined profile of target-specific activity, focused against 1 of more than 100 different 

protein targets. The database was filtered based on MW (not more than 800). Molecular features 

encoding the relevant physicochemical and topological properties of compounds were calculated from 

2D molecular representations and selected by PCA (Step 1, Fig. 3). These molecular descriptors encode 
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the most significant molecular features, such as molecular size, lipophilicity, H-binding capacity, 

flexibility, and molecular topology. Taken in combination, they define both pharmacokinetic and 

pharmacodynamic behavior of compounds and are effective for property-based classification of target-

specific groups of active agents. However, it should be noted that for each particular target-specific 

activity group, another, more optimal set of descriptors can be found, which provides better 

classification ability. As shown in Fig. 3, ‘front-line’ computational tools include Kohonen-based SOM 

generation as well as Neural-Net- and SVM-based modeling; these algorithms have been effectively 

used across the Step 2, decoded in Fig. 3. 

 

Self-organizing Kohonen mapping 

A Kohonen SOM of 22,110 pharmaceutical leads and drugs generated as a result of the 

unsupervised learning procedure is depicted in Fig. 4. It shows that the studied compounds occupy a 

wide area on the map, which can be characterized as the area of druglikeness. Distribution of various 

target-specific groups of ligands in the Kohonen map demonstrates that most of these groups have 

distinct locations in specific regions of the map (Fig. 5a-e). A possible explanation of these differences 

is in that, as a rule, receptors of one type share a structurally conserved ligand-binding site. The structure 

of this site determines molecular properties that a receptor-selective ligand should possess to properly 

bind the site. These properties include specific spatial, lipophilic, and H-binding parameters, as well as 

other features influencing the pharmacodynamic characteristics. Therefore, every group of active ligand 

molecules can be characterized by a unique combination of physicochemical parameters differentiating 

it from other target-specific groups of ligands. Another explanation of the observed phenomenon can be 

related to different pharmacokinetic requirements to drugs acting on different biotargets. 

 
Fig. 4. Property space of 22,110 pharmaceutical leads and drugs visualized using the 

Kohonen map (the data have been smoothed) 
 

The described algorithm represents an effective procedure for selection of target-focused 

compound subsets compatible with high throughput in silico evaluation of large virtual chemical space. 

Whenever a large enough set of active ligands is available for a particular receptor, the quantitative 
 
 



 

discrimination function can be generated allowing selection of a series of compounds to be assayed 

against the target. It is important to note that focusing on physicochemical rather than structural features 

makes this approach complementary to any available ligand structure similarity technique. 

 
                  (a)                                    (b)                                   (c)                                     (d)                                    (e) 

Fig. 5. Distribution of 5 large target-specific groups of pharmaceutical agents on the Kohonen map: (a) tyrosine kinase 

inhibitors (1423 compounds); (b) nuclear receptor agonists/antagonists (1122 compounds); (c) GPCR agonists/antagonists 

(12,711 compounds); (d) potassium channel activators (1143 compounds); (e) calcium channel antagonists (1321 

compounds) 
 

The predictive ability of the model constructed towards TK-active agents was approx. 77%. 

Therefore, this model can be satisfactorily used for targeted-library design and rational compound 

selection. 

  

Neural-Net modeling 

Using the same knowledgebase we have further developed a property-based neural network (NN) 

algorithm for effective discrimination between TK inhibitors and compounds belonging to non-kinase 

activity classes. Following our strategy, 1423 known TK ligands belonging to different TK classes were 

used as a positive training set, TK(+). A subset of over 8592 compounds, representing over 200 various 

non-kinase based active ligands was used as a negative training set, TK(-). Using a special feature 

selection procedure, a 19-descriptor set was chosen for NN experiments. These descriptors encode 

significant molecular properties, such as lipophilicity, charge distribution, topological features, steric 

and surface parameters. The back-propagated feed-forward nets were constructed and trained with the 

molecular descriptors as input values and activity scores as output values. To assess the predictive 

ability of the NN models generated, we used three independent randomizations within the reference 

dataset which included tree groups of compounds (training, cross-validation and test group). The 

resulting histogram is shown in Fig. 6. 

 
 



 

 
Fig. 6.  Distribution of TK-active and TK-inactive compounds from the test set. An average predictive accuracy was 76% 

 

The classification quality was approximately the same in each of these three independent cycles: 

up to 82% of TK ligands and 70% of non-TK ligands were correctly classified in the corresponding test 

sets. We carried out a wet lab experimental validation of the developed model via highthroughput 

screening of 5,000 compounds from the CDL corporate compound database against abl-kinase (see 

below). The experimental activity data (hit rate) was consistent with the expected from NN calculations, 

which demonstrates a high utility of NNs in designing TK-specific combinatorial libraries. The model 

demonstrated an enhanced level of discrimination between “active” and “inactive” libraries. 

 

SVM-based modeling 

Recently, a so-called Support Vector Machines (SVM) [ix] method has became popular as an 

alternative method. At least as powerful and versatile as ANNs, SVM approach is being adjusted for 

various application, from genomics to face recognition, including drug design [x]. Recently, we tested 

SVM as a classification tool in several drug-discovery programs and found it typically outperforming 

other approaches, in particular, ANNs [xi]. Here, we used SVM algorithm for selection of compounds 

for primary and secondary screening against TKs. 

The main parameters of the SVM-based classification model are similar to that used in NN-

modeling (see above). Thus, as a training set, we used 1423 known TK ligands from different classes 

(positive training set, TK(+)), and a set of over 8592 compounds, representing over 200 various non-

kinase active ligands (negative training set, TK(-)). All molecules were additionally filtered for 

molecular weight range (200–600) and atom type content (only C, N, O, H, S, P, F, Cl, Br, and I were 

permitted). 

For the entire database of TK-active and TK-inactive structures, we have calculated sixty five 

molecular descriptors encoding such molecular properties as lipophilicity, charge distribution, 

topological features, steric and surface parameters, using ChemoSoft™. Low-variability and highly 
 
 



 

correlated (R > 0.9) descriptors were removed reducing the set to 39. A sensitivity analysis [xii] was 

applied to further reduce the number of the redundant descriptors. The resulted 8 molecular descriptors 

(logP, no. of H-bond acceptors, no. of H-bond donors, no. of rotatable bonds, molecular refractivity, 

density, Zagreb index, relative positive surface area), were used for generation of the SVM classification 

model [xiii]. Before modeling each descriptor was scaled to [0;1] range (by training set; scaled values for 

other subsets were derived using train set scaling factors). SVM classifiers were based on linear or 

nonlinear (Radial Basis Functions, RBF) kernel. In our experiments, the nonlinear RBF kernel provided 

the best classification ability. The goodness of the model has been evaluated using an internal validation 

procedure. The whole set of all 10015 compounds was divided into three parts: training set (for building 

the SVM model), validation set (for checking model quality while generating SVM models; this set was 

used to check SVM models instead of leave-one-out crossvalidation, as the latter is too slow for large 

data sets), and the test set (for checking prediction quality of the best models). The resulting figure 7 

illustrates the distributions of calculated SVM scores for compounds in TK(+) and TK(-) test sets, 

correspondingly. In order to assess the classification quality of the trained SVM model, we calculated 

percent of correctly classified compounds in each set at different threshold scores. With the threshold 

score 0.4, the model correctly classified up to 70% of TK(+) and 80% of TK(-) compounds). Further, we 

have also validated our model by calculating the SVM scores for the set of several known abl-kinase 

inhibitors, present neither in the training nor in the cross-validation set. It is seen, that our model 

correctly assigned all these active agents to the category of potential tyrosine kinase actives, as the 

predicted scores were in the range of 0.4-0.9. 

 
Fig. 7. SVM score distribution of the test set compounds. An average predictive accuracy was 75% 

 

 After the models were developed and successfully validated we have further classified the 

structures from our virtual library through this common in silico filter. Thus, based on the outputs 

outputted from these models we have calculated a consensus score for each compound tested. As a 

result, a large set of high-score structures (5,000 compounds) was collected and further evaluated using 

specific computational models (Step 3, see below). 

 

 
 



 

Specific in silico filters 

 The set of the compounds selected were further expanded and tested using specific 

computational approaches including bioisosteric morphing, molecular docking, Sammon mapping, etc. 

The concept of bioisosterism is central in drug design and development [xiv]. The term refers to the 

compounds or substructures that share similar shapes, volumes, electronic distributions and 

physicochemical properties and have similar biological activity [xv]. Bioisosteric approach is useful for 

morphing the marginal chemotypes. Thus, bioisosteric transformations within TK-group are illustrated 

in Fig. 8, in which a 4-anilinoquinazoline scaffold representing a core fragment of many potent 

inhibitors of the receptor tyrosine kinases, is used as an input structure. 

It should be particularly noted that following the original concept of diversity-oriented compound 

library design we have effectively applied three computational methods (see above) which were based 

solely on physicochemical descriptors, and so they provide various structures of high diversity. In turn, 

bioisosteric morphing generally operates within the defined and relatively narrow scope of the 

core/template structure of active compound. Thus, the final set included two main groups: structures 

which were obtained at the output of front-line filters (5,000 compounds) as well as structures generated 

by bioisosteric transformations within TK-active compounds. These groups were combined and gave 

10,000 unique structures which were further evaluated. 

 

 
Fig. 8. Two-step procedure for generation and search of bioisosterically transformed analogs of a 4-anilinoquinazoline 

scaffold (the transformed fragments are highlighted in bold). The bioisosteric morphing of active compounds was carried out 

with the use of the Bioisoster module of the ChemoSoftTM software. 

 

Abl kinase-targeted library 

 In recent work, we have developed a hands-on methodology for selection of initial library for 

screening against abl kinase, a therapeutically significant enzyme from TK family, and optimization of 

active compounds [xvi]. For example, Abl kinase was found to be the key regulator of chronic myeloid 

 
 



 

leukemia (CML) grow and progression. Gleevec, highly potent bcr-abl TK inhibitor, seems to be the 

most successful effort to date for treatment of CML. It is believed that binding of Gleevec prevents 

phosphorylation of Tyr393 residue in the active site, thus inactivating the enzyme with IC50 of 38 nM. It 

is further noted that Gleevec is a potent inhibitor of two additional kinases, namely c-kit and PDGFR 

(both in α and β isoforms). The structure of Gleevec and several reported bcr/abl kinase inhibitors are 

shown in Figure 9. 

  
Fig. 9. Structures of representative abl kinase inhibitors 

 

As we communicated in [xvii], a unique in silico classification model which was based on the 

differential properties of known TK inhibitors and therapeutic molecules active against other targets was 

developed and successfully applied for abl kinase-targeted library design. This model was primarily 

based on SVM classifier described above and on a computational strategy for bioisosteric morphing. We 

also used the later approach to design a second-generation series against the Abl tyrosine kinase. This 

series featured lower overall toxicity and improved IP potential compared to the initial hits outputted 

from our biological screening. Some of the primary hits with a low IP potential (Fig. 10) or that contain 

an undesired N-aroylhydrazone group (Fig. 11a,b) are shown. In all cases, novel bioisosteric analogs 

were generated around the initial scaffolds. As a result, the overall confirmed hit rate of the secondary 

focused libraries was 5-10%, substantially higher than the primary hit rate (0.5%). 

 
Fig. 10. Bioisosteric transformations of the primary pyrazolopyrimidine scaffold and novel active chemotypes. The queried 

substructure within the initial hit is shown in bold 

 
 



 

 

 

                                      (a)                                                                                   (b) 
Fig. 11. Bioisosteric transformations of the primary 3-(N-aroylhydrazone)indol-2-one scaffold and novel active chemotypes. 

The queried substructure within the initial hit is shown in bold 

 

Following the methodology applied, an initial round of our virtual screening against abl kinase 

was accomplished for a set of 100,000 compounds selected from our collection at Chemical Diversity 

Labs. Based on the structure of known abl inhibitors (see Fig. 9) and using a data mining algorithm 

which discriminates compounds according to their kinase inhibitory potential (SVM-classifier), we 

yielded 12,000 high-score compounds. They were further scored against the kinase using target-based 

approaches (see below) giving us a set of 550 ‘hit’ compounds for biological testing. In addition, a 

subset of 10,000 compounds was randomly selected from the same initial database of 100,000. As 

shown in figures 9 and 10, biological trials have revealed several highly potent hits which were 

reasonably regarded as potential lead-compounds. 

 

Molecular docking and pharmacophore-constrained screening 

High-resolution structural information is available for numerous kinase targets. These data are 

invaluable for discovery of ligands with both diverse chemotypes and binding modes. Protein kinase 

inhibitors typically bind at the highly conserved nucleotide-binding pocket of the catalytic domain. 

Specific protein kinase inhibitors take advantage of limited sequence variation surrounding the ATP-

binding site, as well as conformational differences between inactive and active forms of kinases. We 

have used a guided pharmacophore-constrained structure-based screening strategy for our focused-

 
 



 

library design. Thus, the crystal structure of the abl kinase/PD-173955 complex was used for docking 

study and pharmacophore modeling (Fig. 12a). Crystallographic waters were removed and bound ligand 

was used to define the active site. We also assumed that no significant induced fit effects occur upon the 

binding and the receptor is rigid to a good approximation. Initially, we generated an active site map for 

abl tyrosine kinase. We subsequently produced the respective 3D pharmacophore space available to 

conduct virtual screening and to prioritize compounds (Fig. 12b,c). Using sets of overlapping spheres 

derived from the protein-ligand complex crystallographic data, the active site of a receptor can be 

modeled. Sphere centers were used to define atom positions of a potential ligand as well as excluded 

volumes. Our XCGen program generated 3D molecular conformations using standard stereochemical 

rules and molecular mechanics refinements. Generated conformers were used as starting points for 

iterative modification of molecular geometry to obtain better fit for a previously generated 3D 

pharmacophore. Results of this analysis were prioritized and 550 compounds with the best fit were 

selected for further biological screening. Notably, the program did not find a pharmacophore fit solution 

for more than 10,000 compounds. Very likely, these compounds are unable to bind to the active site of 

abl enzyme. 

   

                          (a)                                             (b)                                                       (c) 
Fig. 12. (a) PD-173955 in the active site of abl kinase (this data was used for docking evaluation); pharmacophore models 

constructed based on two known abl kinase inhibitors: (b) Glivec and (c) ST571 

 

In addition, we have also used other computational techniques for abl kinase-focused library 

design. These include Sammon mapping and NN modeling. These methods are very effective for the 

more detailed analysis of the initially reduced set of compounds obtained after the second step of our 

virtual screening. 

Representative compounds from our abl kinase-targeted sublibrary are shown in Fig. 13. 
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Fig. 13. Representative structures from abl kinase-targeted sublibrary 

VEGF-targeted library 

Vascular endothelial growth factors (VEGFs) and a respective family of tyrosine kinases 

receptors (VEGFRs) are key proteins modulating angiogenesis, the formation of new vasculature from 

an existing vascular network. There has been a considerable in vivo evidence, including clinical 

observations, that abnormal angiogenesis is implicated in a number of malignancies, which include 

rheumatoid arthritis, inflammation, cancer, psoriasis, degenerative eye conditions and others. Anti-

angiogenic therapies based on inhibition of VEGF/VEGFR signaling were reported to be powerful 

clinical strategies in oncology and ophthalmology [xviii]. Current efforts have yielded promising clinical 

data for several anti-angiogenic therapeutics. In total, there are 4 launched drugs and more than 30 

agents in development that were reported to antagonize this pathway. Fierce competition further 

highlights the level of interest in pharmaceutical industry to development of VEGF/VEGFR-targeting 

drugs. There are two main groups of such drugs, namely drugs based on biological macromolecules and 

small-molecule inhibitors [xix]. Despite the promising clinical data obtained for therapies based on 

biologics, high manufacturing cost and in some instances, rapid metabolic degradation limit their 

clinical potential. In addition, complex structure of biological macromolecules poses challenges to their 

optimization. To overcome these difficulties, extensive studies of small-molecule VEGFR inhibitors 

have been performed in the past decade; their structures are disclosed within figure 14. As a result, two 

drugs were launched and a series of advanced clinical candidates are under development (Table 1). 

Binding of VEGFs to their receptors followed by formation of VEGFR homo- and heterodimers induces 

tyrosine kinase activity of VEGFR. This leads to autophosphorylation of an intracellular tyrosine 

residues and initiates signaling. All small-molecule agents reported to-date target VEGF signaling by 

inhibiting VEGFR receptor tyrosine kinase (RTKs) activity. opposed to biological therapies homed at 

the extracellular region of the receptors, all advanced synthetic molecules target intracellular ATP-

binding pocket of the VEGFRs [xx]. Due to the structural conservation of the ATP-binding pockets in 

protein kinases, these agents display high affinity for the additional members of kinome including 

PDGFR, Raf-kinase, ErbB family of receptors and other targets [xxi]. This “dual” inhibitor profile offers 

an intriguing possibility for disruption of several independent biological pathways vital for tumor 

 
 



 

proliferation and metastasis in the clinical setting [xxii]. Although in general, small molecules lack 

potency and specificity associated with biologics, ultimately, they may prove to be the modality of 

choice in achieving good balance between therapeutic window, tumor resistance, PK profile and 

manufacturing costs. To further illustrate the point, several reports commented on insufficient efficacy 

displayed by a mono-therapies that block single angiogenic pathway [xxiii]. 
Table 1. Marketed and late clinical development small-molecule inhibitors of VEGF signaling.* 

Drug name Originator 

Highest 

development 

phase 

Diseases Cellular target 

Sorafenib Bayer Launched-2005 

Brain, breast, colorectal, lung, 

endocrine, ovarian, liver, female 

reproductive system cancers 

Flt3, C-KIT, PDGFR, Raf 

kinase, VEGFR-2/3 

Sunitinib Pfizer, Sugen 
Launched - 

2006 

Breast, colorectal, endocrine, gastric, 

liver, non-small cell lung, prostate and 

renal cancers, myeloid leukemia 

c-FMS, Flt3, C-KIT, PDGF, 

VEGFR-1/2/3 

Vatalanib Novartis Phase III 

Breast, colorectal, pancreatic, lung, 

prostate cancers, glioblastoma, Kaposi's 

sarcoma, multiple myeloma, myeloid 

leukemia, solid tumors 

C-KIT, PDGF, VEGFR-

1/2/3 

Vandetanib AstraZeneca Phase III 
Brain, breast, endocrine cancers, 

NSCLC, solid tumors 

EGFR, FGFR, RET, 

VEGFR-1/2/3 

AZD-2171 AstraZeneca Phase II/III Colorectal cancer and NSCLC VEGFR-1/2/3 

SU-6668 Sugen Phase II Breast and liver cancers, solid tumors FGFR, PDGFR, VEGFR-2 

CP-547632 OSI, Pfizer Phase II NSCLC and ovarian cancer EGFR, PDGFR, VEGFR-2 

Pazopanib 
GlaxoSmithKli

ne 
Phase II 

Psoriasis, multiple myeloma, ovarian 

and renal cancers, sarcoma 
VEGFR-2 

AMG-706 Amgen Phase II Gastrointestinal cancer and NSCLC PDGFR, VEGFR-1/2/3 

AEE-788 Novartis Phase I/II Glioblastoma EGFR, HER2, VEGFR-2 

E-7080 Eisai Phase I Solid tumors VEGFR-2 

CHIR-258 Chiron Phase I 
Multiple myeloma, myeloid leukemia 

and solid tumors 

FGFR3, PDGFR, VEGFR-

1/2 

OSI-930 OSI Phase I Tumors C-KIT, PDGFR, VEGFR-2 

BAY-

579352 
Bayer Phase I Tumors PDGFR, VEGFR-2 

ABT-869 Abbott Phase I Tumors 
CSF1R, ERK, Flt3, 

PDGFR, VEGFR-2 

BMS-

582664 

Bristol-Myers 

Squibb 
Phase I Digestive/gastrointestinal cancer FGFR1, VEGFR-2 

KRN-951 Kirin Brewery Phase I Tumors and AMD VEGFR-2 

*data as of June 2006. 
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Fig. 14. Potent small-molecule inhibitors of VEGFRs currently evaluated in advanced biological trials 

 

Using the methodology described above for abl kinase we have designed a unique VEGFR-

targeted sublibrary based on the data collected. This data includes the structures of the whole class of 

TK inhibitors and especially VEGFR-active agents obtained from Prous Science Integrity database. 

Thus, we have successfully applied in silico approaches assigned to Step 2 and Step 3 (see Fig. 3) to 

produce this focused sublibrary (see Fig. 15 for representative examples). 
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Fig. 15. Representative structures from VEGFR-targeted sublibrary 

 

 
 



 

Finally, we have used the same in silico strategy to develop additional TK-focused libraries 

including Src, YES, ErbB, Met and IGF1R kinase-targeted sets. The representative examples of high-

score structures entered in these libraries are shown within the figure below. As a result, we have 

selected a set of 15K structures which can be reasonably regarded as potential Tyrosine Kinase 

inhibitors (see Fig. 16). 
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Fig. 16. Representative structures from the common TK-targeted library 

 

In summary, we have developed and effectively applied a multi-step computational approach to 

design of our TK-targeted library. In particular, we have successfully validated this strategy towards abl 

kinase and VEGFRs. The related biological trials have revealed several highly potent inhibitors, and we 

can confidently conclude that described in silico pathway represents an effective method for TK-

targeted libraries design. Moreover, we provide rapid and efficient tools for follow-up chemistry on 

discovered hits, including single isomer chemistry, stereoselective synthesis and racemic mixture 

separation. The developed libraries are updated quarterly based on a “cache” principle. Older 

scaffolds/compounds are replaced by templates resulting from our in-house development (unique 

chemistry, literature data, computational approaches) while the overall size of the library remains the 

same (ca. 10-15K compounds). As a result, the libraries are renewed each year, proprietary compounds 

comprising 50-75% of the entire set. Clients are invited to participate in the template selection process 

prior to launch of our synthetic effort. 
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