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1. Proper morphisms 1

1. PROPER MORPHISMS

I'll now tell you about a new property of morphisms, the notion of properness. You can
think about this in several ways.

Recall that a map of topological spaces (also known as a continuous map!) is said to
be proper if the preimage of compact sets is compact. Properness of morphisms is an
analogous property. For example, proper varieties over C will be the same as compact
in the “usual” topology. Alternatively, we will see that projective A-schemes are proper
over A — this is the hardest thing we will prove — so you can see this as nice property
satisfied by projective schemes, and quite convenient to work with.

A (continuous) map of topological spaces f : X — Y is closed if for each closed subset
S C X, f(S) is also closed. A morphism of schemes is closed if the underlying continuous
map is closed. We say that a morphism of schemes f : X — Y is universally closed if for
every morphism g : Z — Y, the induced morphism Z xy X — Z is closed. In other words,
a morphism is universally closed if it remains closed under any base change. (A note on
terminology: if P is some property of schemes, then a morphism of schemes is said to be
“universally P” if it remains P under any base change.)

A morphism f : X — Y is proper if it is separated, finite type, and universally closed. A
scheme X is often said to be proper if some implicit structure morphism is proper. For
example, a k-scheme X is often described as proper if X — Speck is proper. (A k-scheme
is often said to be complete if it is proper. We will not use this terminology.)

Let’s try this idea out in practice. We expect that AL — Spec C is not proper, because
the complex manifold corresponding to Al is not compact. However, note that this map
is separated (it is a map of affine schemes), finite type, and closed. So the “universally” is
what matters here.
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1.A. EXERCISE. Show that Al — Spec C is not proper, by finding a base change that turns
this into a non-closed map. (Hint: Consider Al x Pl — P{.)

1.1. As a first example: closed immersions are proper. They are clearly separated, as
affine morphisms are separated. They are finite type. After base change, they remain
closed immersions, and closed immersions are always closed.

1.2. Proposition. —

(@) The notion of “proper morphism” is stable under base change.

(b) The notion of “proper morphism” is local on the target (i.e. f : X — Y is proper if and only
if for any affine open cover U; — Y, f1(U;) — Uy is proper). Note that the “only if”
direction follows from (a) — consider base change by U; — Y.

(c) The notion of “proper morphism” is closed under composition.

(d) The product of two proper morphisms is proper (ie. if f : X — Yand g : X' — Y are
proper, where all morphisms are morphisms of Z-schemes) then f x g : X xz X' =Y xzY’
is proper.

(e) Suppose

(1) X

Y
N
Z
is a commutative diagram, and g is proper, and h is separated. Then f is proper.

A sample application of (e): A morphism (over Speck) from a proper k-scheme to a
separated k-scheme is always proper.

Proof. (a) We have already shown that the notions of separatedness and finite type are
local on the target. The notion of closedness is local on the target, and hence so is the
notion of universal closedness.

(b) The notions of separatedness, finite type, and universal closedness are all preserved
by fibered product. (Notice that this is why universal closedness is better than closedness
— it is automatically preserved by base change!)

(c) The notions of separatedness, finite type, and universal closedness are all preserved
by composition.

(d) By (a) and (c), this follows from an earlier exercise showing that a property of mor-
phisms preserved by composition and base change is also preserved by products.

(e) Closed immersions are proper, so we invoke the Cancellation Theorem for proper-
ties of morphisms. O

We now come to the most important example of proper morphisms.
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1.3. Theorem. — Projective A-schemes are proper over A.

It is not easy to come up with an example of an A-scheme that is proper but not pro-
jective! We will see a simple example of a proper but not projective surface, . Once we
discuss blow-ups, I'll give Hironaka’s example of a proper but not projective nonsingular
(“smooth”) threefold over C.

Proof. The structure morphism of a projective A-scheme X — Spec A factors as a closed
immersion followed by P}. Closed immersions are proper, and compositions of proper
morphisms are proper, so it suffices to show that Py — Spec A is proper. We have already
seen that this morphism is finite type (an earlier easy exercise) and separated (shown
last week by hand), so it suffices to show that P} — Spec A is universally closed. As
Py =P} xz Spec A, it suffices to show that P§ :=P}; xz X — X s closed for any scheme X.
But the property of being closed is local on the target on X, so by covering X with affine
open subsets, it suffices to show that Py — Spec A is closed. This is important enough to
merit being stated as a Theorem.

1.4. Theorem. — m : P — Spec A is a closed morphism.

This is sometimes called the fundamental theorem of elimination theory. Here are some
examples to show you that this is a bit subtle.

First, let A = k[a,b,c,...,i], and consider the closed subscheme of P35 (taken with
coordinates x, y, z) corresponding to ax +by +cz =0, dx+ey+fz =0, gx +hy +iz =0.
Then we are looking for the locus in Spec A where these equations have a non-trivial
solution. This indeed corresponds to a Zariski-closed set — where

a b c
det |d e f|] =0.
g h 1
As a second example, let A = k[ap, ai, ..., am, bo, by, ..., by]. Now consider the closed

subscheme of P}, (taken with coordinates x and y) corresponding to apx™ + a;x™ 'y +
c+ amy™=0and box™ + b x™ 'y + - - - + by™ = 0. Then we are looking at the locus in
Spec A where these two polynomials have a common root — this is known as the resultant.

More generally, this question boils down to the following question. Given a number of
homogeneous equations in n+1 variables with indeterminate coefficients, Proposition 1.4
implies that one can write down equations in the coefficients that will precisely determine
when the equations have a nontrivial solution.

Proof of Theorem 1.4. Suppose Z — P% is a closed subset. We wish to show that nt(Z) is
closed.

Suppose y ¢ m(Z) is a closed point of Spec A. We'll check that there is a distinguished
open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet nt(Z). (If we could
show this for all points of 7t(Z), we would be done. But I prefer to concentrate on closed
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points for now.) Suppose y corresponds to the maximal ideal m of A. We seek f € A —m
such that 7r*f vanishes on Z.

z wly PX
7
D(f)
r a N Spec A
. hd J
FIGURE 1

Let Uy, ..., U, be the usual affine open cover of P%. The closed subsets 7'y and Z do
not intersect (see Figure 1). On the affine open set U;, we have two closed subsets Z N U;
and 7t~ 'y N U; that do not intersect, which means that the ideals corresponding to the two

closed sets generate the unit ideal, so in the ring of functions A[xq/i, X1/, - ., Xnsil. on Us,
we can write

T=ai+ Z Mi;03j
where my € m, and a; vanishes on Z. Note that a;, g5 € Alxo/i, - - -, Xn/il, SO by multiply-

ing by a sufficiently high power xI' of x;, we have an equality

xN =a+ Z my;05;
on U;, where both sides are expressions in S, = Alxy,...,x,]. We may take N large
enough so that it works for all i. Thus for N’ sufficiently large, we can write any monomial

in x1, ..., X, of degree N’ as something vanishing on Z plus a linear combination of
elements of m times other polynomials. Hence

SN/ = I(Z)N/ —{—mSN/

where I(Z), is the graded ideal of functions vanishing on Z. We now need Nakayama’s
lemma. If you haven’t seen this result before, we will prove it next week. We will use the
following form of it: if M is a finitely generated module over A such that M = mM for
some maximal ideal m, then there is some f ¢ m such that fM = 0. Applying this in the
case where M = Sn//1(Z)n-, we see that there exists f € A — m such that

fSne C I(Z)N/

Thus we have found our desired f.

We now tackle Theorem 1.4 in general. Suppose y = [p] not in the image of Z. Applying
the above argument in Spec A, we find Sny ® A, = I(Z)n' ® Ay + mSnr ® A, from which
g(SN//I(Z)N/) ® Ap = 0 for some g c Ap — pAp, from which (Sn//I(Z)n/) ® Ap = 0. As
Sn is a finitely generated A-module, there is some f € A —p with fSy C [(Z) (if the
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module-generators of Sy, and fy, ..., f4 are annihilate the generators respectively, then
take f = [ [ fi), so once again we have found D(f) containing p, with (the pullback of) f
vanishing on Z. O

Notice that projectivity was essential to the proof: we used graded rings in an essential
way.

This also concludes the proof of Theorem 1.3.

1.5. Corollary. — Finite morphisms are proper.

Proof. Suppose f : X — Y is a finite morphism. As properness is local on the base, to check
properness of f, we may assume Y is affine. But finite morphisms to Spec A are projective
, and projective morphisms are proper. O

In particular, as promised in our initial discussion of finiteness:
1.6. Corollary. — Finite morphisms are closed.

1.7. Unproved facts that may help you correctly think about finiteness.

We conclude with some interesting facts that we will prove later. They may shed some
light on the notion of finiteness.

A morphism is finite if and only if it is proper and affine, if and only if it is proper and
quasifinite. We have verify the “only if” parts of this statement; the “if” parts are harder.

As an application: quasifinite morphisms from proper schemes to separated schemes
are finite. Here is why: suppose f : X — Y is a quasifinite morphism over Z, where X is
proper over Z. Then by the Cancellation Theorem for properties of morphisms, X — Y is
proper. Hence as f is quasifinite and proper, f is finite.
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