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1. MODULE-LIKE CONSTRUCTIONS

In a similar way, basically any nice construction involving modules extends to quasico-
herent sheaves.

As an important example, we consider tensor products.

1.A. EXERCISE. If F and G are quasicoherent sheaves, show that 7 ® G is a quasi-
coherent sheaf described by the following information: If Spec A is an affine open, and
I'(SpecA,F) =M and I'(SpecA,G) = N, then I'(Spec A, F ® G) = M ® N, and the restric-
tion map I'(Spec A, F®G) — T'(Spec A, F®G) is precisely the localization map M@ N —
(M®aN)¢ = M¢®a, Ny. (We are using the algebraic fact that (M ®grN)¢ = M¢®g, Nt. You
can prove this by universal property if you want, or by using the explicit construction.)

Note that thanks to the machinery behind the distinguished affine base, sheafification
is taken care of. This is a feature we will use often: constructions involving quasicoherent
sheaves that involve sheafification for general sheaves don’t require sheafification when
considered on the distinguished affine base. Along with the fact that injectivity, surjec-
tivity, kernels and so on may be computed on affine opens, this is the reason that it is
particularly convenient to think about quasicoherent sheaves in terms of affine open sets.

1.B. EASY EXERCISE. Show that the stalk of the tensor product of quasicoherent sheaves
at a point is the tensor product of the stalks.
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Given a section s of F and a section t of G, we have a section s ® t of F ® G. If either
F or G is an invertible sheaf, this section is denoted st.

1.1. Tensor algebra constructions.

For the next exercises, recall the following. If M is an A-module, then the tensor algebra
T*(M) is a non-commutative algebra, graded by Z=°, defined as follows. T°(M) = A,
THM) = M ®a --- ®4 M (where n terms appear in the product), and multiplication is
what you expect. The symmetric algebra Sym* M is a symmetric algebra, graded by Z=°,
defined as the quotient of T*(M) by the (two-sided) ideal generated by all elements of
the form x ® y —y ® x for all x,y € M. Thus Sym™ M is the quotient of M ® --- @ M
by the relations of the form m; ® --- ® my, — mj ® --- ® m], where (m},...,m/)) is a
rearrangement of (my, ..., my,). The exterior algebra A\*M is defined to be the quotient of
T*M by the (two-sided) ideal generated by all elements of the form x ® y +y ® x for
all x,y € M. Thus A™M is the quotient of M ® --- ® M by the relations of the form
m® - @my— (=1 m) ® - -+ @ Mg(n) where o is a permutation of {1,...,n}. It
is a “skew-commutative” A-algebra. It is most correct to write T;(M), Sym) (M), and
/N4 (M), but the “base ring” A is usually omitted for convenience. (Better: both Sym
and A\ are defined by universal properties. For example, Symy (M) is universal among
modules such that any map of A-modules M®™ — N that is symmetric in the n entries
factors uniquely through Sym} (M).)

1.C. EXERCISE. Suppose F is a quasicoherent sheaf. Define the quasicoherent sheaves
Sym"™ F and A"F. (One possibility: describe them on each affine open set.) If F is locally
free of rank m, show that T"F, Sym™ ¥, and A™F are locally free, and find their ranks.

You can also define the sheaf of non-commutative algebras T*F, the sheaf of commuta-
tive algebras Sym” F, and the sheaf of skew-commutative algebras A*F.

1.D. EXERCISE (POSSIBLE HELP FOR LATER PROBLEMS). Suppose(0 — F' = F — F" =0
is a short exact sequence of locally free sheaves on X. Suppose U = Spec A is an affine

open set where 7', F" are free, say F'lspecA = Ae F "lspec A = AP. Show that F is also
free, and that 0 — 7' — F — F” — 0 can be interpreted as coming from the tautological
exact sequence 0 — A% — A% — AP — 0. Show that given such an open cover, the
transition matrices of 7 may be interpreted as block upper-diagonal matrices, where thet
top a x a block are transition matrices for 7', and the bottom b x b blocks are transition
matrices for F”.

1.E. IMPORTANT EXERCISE. Suppose 0 — F' — F — F” — 0 is an exact sequence of
locally free sheaves. Show that for any r, there is a filtration of Sym" F

Sym"F=F°DOF DO...DF O>FT =0

with subquotients
FP/FPT = (SymP F') @ (Sym™ P F").
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(Possible hint for this, and Exercise 1.G: It suffices to consider a small enough affine open

set Spec A, where F’, F, F" are free, and to show that your construction behaves well
with respect to localization at an element f € A. In such an open set, the sequence is
0 — AP — APT9 — A9 — 0 by the Exercise 1.D. Let ey, ..., e, be the standard basis of A™,
and fy, ..., fq be the the standard basis of A9. Letey, ..., e{j be denote the images of e;,
s, epIin AP Letff, ..., fy be any lifts of fy, ..., f4 to AP*4. Note that f{ is well-defined
modulo ej, ..., . Note that

s ~ s i s—i N
Sym f|SpecA — @izo Sym F |SpecA ®OSPQCA Sym F ’Spec A-

Show that FP := Di, Sym' F’ |Spec A @O pec SymStF” spec A gives a well-defined (locally
free) subsheaf that is independent of the choices made, e.g. of the basis e;, ..., e, (this is
in GL,(A)), 1, ..., fq (thisisin GL4(A)), and the lifts f7, ..., f;.)

1.F. EXERCISE.  Suppose F is locally free of rank n. Then A™F is called the deter-
minant (line) bundle or (perhaps better) determinant locally free sheaf. Show that
N'F x A\MTF — AVF is a perfect pairing for all r.

1.G. EXERCISE. Suppose 0 — F' — F — F"” — 0 is an exact sequence of locally free
sheaves. Show that for any v, there is a filtration of A" F:

NF=F2F 2. --DF>F* =0
with subquotients
FD/FD—H ~ (/\pf-/) ® (/\r—pf-//)

for each p. In particular, det F = (det F') ® (det F”). In fact we only need that F” is
locally free.

1.H. EXERCISE (DETERMINANT LINE BUNDLES BEHAVE WELL IN EXACT SEQUENCES).
Suppose 0 — F; — --- — F, — 0 is an exact sequence of finite rank locally free sheaves
on X. Show that “the alternating product of determinant bundles is trivial”:

det(F;) @ det(F2)Y @ det(F3) @ det(Fa)V @ - - - = Ox.

1.2. Torsion-free sheaves (a stalk-local condition). Recall that an A-module M is torsion-
free if rm = 0 implies r = 0 or m = 0. An Ox-module F is said to be torsion-free if F, is
a torsion-free Ox ,-module for all p.

1.I. EXERCISE. Show that if M is a torsion-free A-module, then so is any localization of
M. Hence show that M is a torsion free sheaf on Spec A.

1.J. UNIMPORTANT EXERCISE (TORSION-FREENESS IS NOT AFFINE LOCAL FOR STUPID
REASONS). Find an example on a two-point space showing that M := A might not

be torsion-free on Spec A even though Ogpec o = M is torsion-free.
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2. FINITENESS CONDITIONS ON QUASICOHERENT SHEAVES: FINITE TYPE
QUASICOHERENT SHEAVES, AND COHERENT SHEAVES

There are some natural finiteness conditions on an A-module M. I will tell you three.
In the case when A is a Noetherian ring, which is the case that almost all of you will ever
care about, they are all the same.

The first is the most naive: a module could be finitely generated. In other words, there
is a surjection A? — M — 0.

The second is reasonable too. It could be finitely presented — it could have a finite
number of generators with a finite number of relations: there exists a finite presentation

A9 5 AP - M = 0.

The third notion is frankly a bit surprising, and I'll justify it soon. We say that an A-
module M is coherent if (i) it is finitely generated, and (ii) whenenver we have a map
AP — M (not necessarily surjective!), the kernel is finitely generated.

Clearly coherent implies finitely presented, which in turn implies finitely generated.

2.1. Proposition. — If A is Noetherian, then these three definitions are the same.

Before proving this, we take this as an excuse to develop some algebraic background.

2.2. Noetherian conditions for modules. If A is any ring, not necessarily Noetherian, we say
an A-module is Noetherian if it satisfies the ascending chain condition for submodules.
Thus for example A is a Noetherian ring if and only if it is a Noetherian A-module.

2.A. EXERCISE. Show that if M is a Noetherian A-module, then any submodule of M is
a finitely generated A-module.

2.B. EXERCISE. If0 — M’ — M — M” — 0 is exact, show that M’ and M” are
Noetherian if and only if M is Noetherian. (Hint: Given an ascending chain in M, we
get two simultaneous ascending chains in M’ and M". Possible further hint: prove that if
M/ ——> M —2> M” isexact,and N,N’ ¢ M, and NNM’ = N'nM’ and d(N) = d(N’),
then N = N".)

2.C. EXERCISE. Show that if A is a Noetherian ring, then A™ is a Noetherian A-module.

2.D. EXERCISE. Show that if A is a Noetherian ring and M is a finitely generated A-
module, then M is a Noetherian module. Hence by Exercise 2.A, any submodule of a
finitely generated module over a Noetherian ring is finitely generated.
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Proof of Proposition 2.1. As we observed earlier, coherent implies finitely presented im-

plies finitely generated. So suppose M is finitely generated. Take any AP —— M . Then
ker o is a submodule of a finitely generated module over A, and is thus finitely generated
by Exercise 2.D. Thus M is coherent. g

Hence most normal people can think of these three notions as the same thing.

2.3. Proposition. — The coherent A-modules form an abelian subcategory of the category of
A-modules.

The proof in general is given in §3 in a series of short exercises.

Proof if A is Noetherian. Recall from our discussion a few classes ago that we must check
three things:

(i) The O-sheaf is coherent.
(ii) The category of coherent modules is closed under finite sums.
(iii) The category of coherent modules is closed under kernels and cokernels

The first two are clear. For (iii), suppose that f : M — N is a map of finitely generated
modules. Then coker f is finitely generated (it is the image of N), and ker f is too (it is a
submodule of a finitely generated module over a Noetherian ring, Exercise 2.D). O

2.E. EASY EXERCISE (ONLY IMPORTANT FOR NON-NOETHERIAN PEOPLE). Show A is
coherent as an A-module if and only if the notion of finitely presented agrees with the
notion of coherent.

2.F. EXERCISE. If f € A, show that if M is a finitely generated (resp. finitely presented,
coherent) A-module, then M is a finitely generated (resp. finitely presented, coherent)
A¢module. (The “coherent” case is the tricky one.)

2.G. EXERCISE. If (fy,...,f) = A, and My, is finitely generated (resp. coherent) Ay,-
module for all i, then M is a finitely generated (resp. coherent) A-module.

Definition. A quasicoherent sheaf F is finite type (resp. coherent) if for every affine
open Spec A, I'(Spec A, F) is a finitely generated (resp. coherent) A-module.

Thanks to the affine communication lemma, and the two previous exercises 2.F and 2.G,
it suffices to check this on the open sets in a single affine cover.

I want to say a few words on the notion of coherence. I see Proposition 2.3 as a good
motivation for this definition: it gives a small (in a non-technical sense) abelian category
in which we can think about vector bundles.
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There are two sorts of people who should care about the details of this definition (as
opposed to working in a Noetherian world and always thinking that coherent equals
finite type). Complex geometers should care. They consider complex-analytic spaces
with the classical topology. One can define the notion of coherent Ox-module in a way
analogous to this. Then Oka’s theorem states that the structure sheaf is coherent, and
this is very hard.

The second sort of people who should care are the sort of arithmetic people who some-
times are forced to consider non-Noetherian rings. For example, the ring of adeles is non-
Noetherian.

Warning: it is common in the later literature to incorrectly define coherent as finitely
generated. Please only use the correct definition, as the wrong definition only causes
confusion. I will try to be scrupulous about this. Besides doing this for the reason of
honesty, it will also help you see what hypotheses are actually necessary to prove things.
And that always helps you remember what the proofs are — and hence why things are
true.

3. COHERENT MODULES OVER NON-NOETHERIAN RINGS *x

This section is intended for people who might work with non-Noetherian rings, or who
otherwise might want to understand coherent sheaves in a more general setting. Read this
only if you really want to!

Suppose A is aring. Recall that an A-module M is finitely generated if there is a surjection
A™ — M — 0. It is finitely presented if there is a presentation A™ — A™ - M — 0. And
M is coherent if (i) M is finitely generated, and (ii) every map A™ — M has a finitely
generated kernel. The reason we like this third definition is that coherent modules form
an abelian category.

Here are some quite accessible exercises working out why these notions behave well.
Some repeat earlier discussion in order to keep this section self-contained.

3.A. EXERCISE. Show that coherent implies finitely presented implies finitely generated.
(This was discussed in the previous section.)

3.B. EXERCISE. Show that 0 is coherent.

Suppose for problems 3.C-3.1 that
(1) 0—-M—->N—->P—>0

is an exact sequence of A-modules. In thise series of problems, we will show that if two
of (1) are coherent, the third is as well, whiich will prove very useful.
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Hint x. Here is a hint which applies to several of the problems: try to write

O—>Ap—>Ap+q—>AQ—>O

T

0 M N P 0

and possibly use the Snake Lemma.

3.C. EXERCISE. Show that N finitely generated implies P finitely generated. (You will
only need right-exactness of (1).)

3.D. EXERCISE. Show that M, P finitely generated implies N finitely generated. (Possible
hint: %.) (You will only need right-exactness of (1).)

3.E. EXERCISE. Show that N, P finitely generated need not imply M finitely generated.
(Hint: if I is an ideal, wehave 0 - 1 - A — A/I — 0.)

3.F. EXERCISE. Show that N coherent, M finitely generated implies M coherent. (You
will only need left-exactness of (1).)

3.G. EXERCISE. Show that N, P coherent implies M coherent. Hint for (i):

(You will only need left-exactness of (1).)

3.H. EXERCISE. Show that M finitely generated and N coherent implies P coherent. (Hint
for (ii): *.)

3.I. EXERCISE. Show that M, P coherent implies N coherent. (Hint: x.)
3.J. EXERCISE. Show that a finite direct sum of coherent modules is coherent.

3.K. EXERCISE. Suppose M is finitely generated, N coherent. Then if ¢ : M — N is any
map, then show that Im ¢ is coherent.



3.L. EXERCISE.  Show that the kernel and cokernel of maps of coherent modules are
coherent.

At this point, we have verified that coherent A-modules form an abelian subcategory
of the category of A-modules. (Things you have to check: 0 should be in this set; it should
be closed under finite sums; and it should be closed under taking kernels and cokernels.)

3.M. EXERCISE. Suppose M and N are coherent submodules of the coherent module P.
Show that M + N and M N N are coherent. (Hint: consider the right map M @& N — P.)

3.N. EXERCISE. ~ Show that if A is coherent (as an A-module) then finitely presented
modules are coherent. (Of course, if finitely presented modules are coherent, then A is
coherent, as A is finitely presented!)

3.0. EXERCISE. If M is finitely presented and N is coherent, show that Hom(M, N) is
coherent. (Hint: Hom is left-exact in its first entry.)

3.P. EXERCISE. If M is finitely presented, and N is coherent, show that M @ N is coherent.

3.Q. EXERCISE. If f € A, show that if M is a finitely generated (resp. finitely presented,
coherent) A-module, then M is a finitely generated (resp. finitely presented, coherent)
A¢-module. (Hint: localization is exact.) (This exercise appeared earlier as Exercise 2.F.)

3.R. EXERCISE. Suppose (fi,...,fn) = A. Show that if My, is finitely generated for all i,
then M is too. (Hint: Say My, is generated by my; € M as an A -module. Show that the
my; generate M. To check surjectivity ©;;A — M, it suffices to check “on D(f;)” for all i.)

3.S. EXERCISE. Suppose (fi,...,fn) = A. Show that if My, is coherent for all i, then M is
too. (Hint: if ¢ : A2 — M, then (ker ¢)¢, = ker(dy, ), which is finitely generated for all 1.
Then apply the previous exercise.)

3.T. EXERCISE. Show that the ring A := k[x;,x;,...] is not coherent over itself. (Hint:
consider A — A with x4,%;,... — 0.) Thus we have an example of a finitely presented
module that is not coherent; a surjection of finitely presented modules whose kernel is
not even finitely generated; hence an example showing that finitely presented modules
don’t form an abelian category.

4. PLEASANT PROPERTIES OF FINITE TYPE AND COHERENT SHEAVES

4.A. EXERCISE. Suppose F is a coherent sheaf on X, and § is a quasicoherent sheaf on
X. Show that Hom(F,G). (Hint: Describe it on affine open sets, and show that it be-
haves well with respect to localization with respect to f. To show that Homa (M, N)¢ =
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Homa, (My, N¢), take a presentation A9 — AP — M — 0, and apply Hom(:,N) and lo-
calize. You will use the fact that p and q are finite.) If further G is coherent, show that
Hom(F, G) is also coherent. Show that Hom is a left-exact functor in both variables.

Recall that Hom(F, Ox) is called the dual of F, and is denoted FV.

4.B. USEFUL EXERCISE: GEOMETRIC NAKAYAMA. Suppose X is a scheme, and F is a
finite type quasicoherent sheaf. Show that if x € U C X is a neighborhood of x in X
and ay,...,a, € F(U) so that the images @y, ..., a, € F, generate 7 ® k(x), then there
is a neighborhood x C V C U of x so that aily, ..., anlv generate Fly. In particular, if
Fy @ k(x) = 0, then there exists V such that 7|y = 0.

4.C. LESS IMPORTANT EXERCISE. Suppose F and G are finite type sheaves such that
F ® G = Ox. Then F and G are both invertible (Hint: Nakayama.) This is the reason
for the adjective “invertible”: these sheaves are the invertible elements of the “monoid of
finite type sheaves”.

4.1. The support of a finite type sheaf is closed. = Recall the definition of support of a
section of a sheaf, and of a sheaf.

Suppose F is a sheaf of abelian groups (resp. Ox-module) on a topological space X
(resp. ringed space (X, Ox)). Define the support of a section s of F to be

Supps ={p € X:s, #0in F,}.
I think of this as saying where s “lives”. Define the support of F as
Supp F =1{p € X: F,, #0}.

It is the union of “all the supports of sections on various open sets”. I think of this as
saying where F “lives”. Caution. This is where the germ(s) are nonzero, not where the
value(s) are nonzero.

Support is a stalk-local notion, and hence behaves well with respect to restriction to
open sets, or to stalks.

4.D. EXERCISE.  The support of a finite type quasicoherent sheaf on a scheme X is a
closed subset. (Hint: Reduce to the case X affine. Choose a finite set of generators of the
corresponding module.) Show that the support of a quasicoherent sheaf need not be
closed. (Hint: If A = C[t], then C[t]/(t — a) is an A-module supported at a. Consider
®accClt]/(t—a). Warning: this example won’t work if & is replaced by | [, so be careful!)

4.2. Rank of a finite type sheaf at a point.

The rank F of a finite type sheaf at a point p is dimy F,,/mF, where m is the maximal
ideal corresponding to p. More explicitly, on any affine set Spec A where p = [p] and
F(SpecA) = M, then the rank is dimgra,p) Mp/pM,. The rank is finite because of the
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finite type hypothesis. By Nakayama’s lemma (again using the finite type condition), this
is the minimal number of generators of M, as an A,-module.

If F is quasicoherent (not necessarily finite type), then F,,/mF, can be interpreted as
the fiber of the sheaf at the point. A section of F over an open set containing p can be said
to take on a value at that point, which is an element of F,,/mF,,.

4.E. EXERCISE. Show that at any point, rank(F @ G) = rank(F) + rank(G) and rank(F ®
G) = rank Frank G at any point. (Hint: Show that direct sums and tensor products com-
mute with ring quotients and localizations, i.e. (M @& N) ®g (R/I) = M/IM @ N/IN,
(M ®r N) ®@r (R/I) = (M ®g R/I) ®g/1 (N @r R/I) = M/IM ®g/1 N/IM, etc.)

4.F. EXERCISE.  Show that rank(F) is an upper semicontinuous function on X. (Hint:
Generators at P are generators nearby:.)

Note that this definition of rank is consistent with the notion of rank of a locally free
sheaf. In the locally free case, the rank is a (locally) constant function of the point. The
converse is sometimes true, as is shown in Exercise 4.G below.

4.G. IMPORTANT HARD EXERCISE. (a) If X is reduced, F is coherent, and the rank is
constant, show that F is locally free. (Hint: choose a point p € X, and choose generators
of the stalk 7,,. Let U be an open set where the generators are sections, so we have a
map ¢ : OF™ — Flu. The cokernel and kernel of ¢ are supported on closed sets by Exer-
cise 4.D. Show that these closed subsets don’t include p. Make sure you use the reduced
hypothesis!) Thus (as rank is uppersemicontinuous, Exercise 4.F) coherent sheaves are
locally free on a dense open set. Hint: Reduce to the case where X is affine, say Spec A, so
the closed points are dense. Then show it in a neighborhood of a closed point [m]. Choose
my, ..., M, generators of M/mM, and lift them to elements of M. Then they generate M,
by Nakayama’s Lemma. Let ¢ : A™ — M with (ry,...,1,) — >_1im;. Let K be the
cokernel, which is finitely generated. Then K., = 0 (because ®A., is right-exact), so there
is an f € A such that K¢ = 0 (take the product of the annihilators of a finite generating set
of K). Replace A by As. We now have that coker ¢ = 0, and we want to prove ker ¢ = 0.
Otherwise, say (r1,...,Ty) is in the kernel, with ry # 0. As 1y # 0, there is some p where
T1 ¢ p — here we use the reduced hypothesis. Then r; is invertible in A, so M, has fewer
than n generators, contradicting the constancy of rank.

(b) Show that part (a) can be false without the condition of X being reduced. (Hint:
Speck[x]/x?, M = k.)

You can use the notion of rank to help visualize finite type sheaves, or even quasico-
herent sheaves. I drew some pictures in class, but I haven’t figured out yet how to latex
them up.

E-mail address: vakil@math.stanford.edu
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