PROBLEM-SOLVING MASTERCLASS WEEK 4

- **1.** Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1. (Bob Hough, 2005A3)
- **2.** A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1,-1) that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck $\mathfrak n$ -paths with no return of even length and the Dyck $(\mathfrak n-1)$ -paths. (Olena Bormashenko, 2003A5)

3. Let n be a positive odd integer and let θ be a real number such that θ/π is irrational. Set $a_k = \tan(\theta + k\pi/n)$, k = 1, 2, ..., n. Prove that

$$\frac{\alpha_1+\alpha_2+\cdots+\alpha_n}{\alpha_1\alpha_2\cdots\alpha_n}$$

is an integer, and determine its value. (Bob Hough, 2006A5)

- **4.** An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability 1/2. We say that two squares, p and q, are in the same connected monochromatic component if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than mn/8. (Jackson Gorham, 2004A5)
- **5.** Show that for any positive integer n, there is an integer N such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form

$$x_1 x_2 \cdots x_n = \sum_{i=1}^{N} c_i (a_{i1} x_1 + a_{i2} x_2 + \cdots + a_{in} x_n)^n$$

where the c_i are rational numbers and each a_{ij} is one of the numbers -1,0,1. (Ryan Williams, 2004A4)