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Summary

Somatosensory neurons in teleosts and amphibians are sen-

sitive to thermal, mechanical, or nociceptive stimuli [1, 2].
The two main types of such cells in zebrafish—Rohon-Beard

and trigeminal neurons—have served as models for neural
development [3–6], but little is known about how they

encode tactile stimuli. The hindbrain networks that
transduce somatosensory stimuli into a motor output en-

code information by using very few spikes in a small number
of cells [7], but it is unclear whether activity in the primary re-

ceptor neurons is similarly efficient. To address this ques-
tion, we manipulated the activity of zebrafish neurons with

the light-activated cation channel, Channelrhodopsin-2
(ChR2) [8, 9]. We found that photoactivation of ChR2 in ge-

netically defined populations of somatosensory neurons
triggered escape behaviors in 24-hr-old zebrafish. Electro-

physiological recordings from ChR2-positive trigeminal
neurons in intact fish revealed that these cells have ex-

tremely low rates of spontaneous activity and can be
induced to fire by brief pulses of blue light. Using this tech-

nique, we find that even a single action potential in a single
sensory neuron was at times sufficient to evoke an escape

behavior. These results establish ChR2 as a powerful tool
for the manipulation of neural activity in zebrafish and reveal

a degree of efficiency in coding that has not been found in
primary sensory neurons.

Results

Photoactivation of ChR2 in Touch-Sensitive Neurons

Triggers Escape Behaviors
We expressed Channelrhodopsin-2 (ChR2) fused to enhanced
yellow fluorescent protein (EYFP) in a subset of Rohon-Beard
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and trigeminal neurons by using an enhancer element from the
isl1 gene [10]. Because the fluorescence signal was relatively
weak, a UAS::EGFP construct was used to enhance visualiza-
tion of expressing cells (Figures 1A and 1B). The majority of
neurons appeared to develop normally and by 24 hr postferti-
lization showed robust elaboration of sensory axons through-
out the skin (Figure 1B).

Between 24 and 40 hr postfertilization (hpf), embryos were
assayed for ChR2 responsiveness under a standard dissecting
microscope with whole-field light pulses delivered by shutter-
ing of the fluorescence-illumination source. A majority of
ChR2-expressing fish exhibited robust behavioral responses
to blue light (79% 6 4%, mean 6 standard error of the mean
[SEM]; n = 3 clutches of 29–79 fish) that appeared to mimic nat-
ural escape responses driven by tactile and other stimuli
(Figure 1D; Movie S1 available online). Behavioral responses
occurred with a latency of less than 30 ms, which is similar
to that occurring after tactile stimulation [11, 12] (Movie S2),
and showed kinematics similar to touch-evoked escapes
(Figure 1C). Remarkably, the direction of tail movement was
usually observed to be constant for a given animal across sev-
eral repetitions, suggesting that small imbalances in the lateral
distribution of ChR2-positive cells were sufficient to weight the
response in a particular direction. The response to blue light
began to disappear by 48 hpf and was never detected later
than 72 hpf, correlating with an overall decline in ChR2 levels
generated by the transient expression system.

Three experimental lines of evidence indicate that the ob-
served behaviors were driven directly by ChR2-expressing
sensory neurons. First, embryos expressing only EGFP in the
same neurons failed to show behavioral responses to blue-
light illumination (Figure 1D; 1% 6 1%, mean 6 SEM; n = 2
clutches of 20–46 fish). Second, the success of eliciting escape
behaviors was highly dependent on the wavelength of the illu-
minating light, with 550 nm light being far less efficient at evok-
ing escapes than 488 nm light (near the peak of the ChR2
excitation spectrum) and 630 nm light being completely inef-
fective (data not shown). Third, coinjection of a neurogenin-1
antisense morpholino oligonucleotide, which has been shown
to eliminate Rohon-Beard and trigeminal neurons [13, 14],
drastically reduced the number of ChR2-expressing cells
and abolished the behavioral response to light (Ngn-1 knock-
down: 2.7% 6 1.3% of embryos responded; ChR2-only con-
trol: 32% 6 10%. Values are mean 6 SEM; n = 3 clutches of
35–84 fish per each condition).

Electrophysiological Characterization of ChR2-Evoked
Activity in Trigeminal Neurons

We next determined whether ChR2 has the same electrophys-
iological properties in fish as in mammalian cells. These
experiments also provided the first characterization of the
basal-firing activity of trigeminal neurons in larval zebrafish.
Extracellular recordings were made from ChR2-expressing tri-
geminal neurons in intact, paralyzed embryos (Figure 2A). The
basal level of spontaneous activity in these neurons was found
to be virtually zero—only a single, spontaneous firing event
was observed over several hours of recording time in twelve
cells (Figure 2C and data not shown). Probability and timing
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of light-evoked responses were strongly dependent on both
pulse duration and frequency. Pulses of long duration typically
evoked trains of action potentials (Figure 2C), with an eventual
attenuation starting 50–100 ms after onset of constant illumi-
nation. The average spike latency of 20 6 3 ms (mean 6
SEM; n = 9 cells) was longer than that reported in various mam-
malian cell preparations [9, 15–17], but in some cells, spikes
occurred rapidly after pulse onset (Figure 2B). At high stimula-
tion frequencies, spike latency increased over successive rep-
etitions (Figure 2D) whereas spike probability decreased (Fig-
ures 2D and 2E). The relationship between spike failure and
frequency varied substantially from cell to cell (Figure 2E),
but in some cells, reliable responses were observed at up to
10 Hz. Similarly, the dependence of spiking probability on
pulse duration at 0.2 Hz was also variable between cells
(Figure 2F).

Single Spikes in Single Trigeminal Neurons Can Drive
Escape Behaviors

We observed several animals with very low numbers of ChR2-
expressing cells that still showed light-evoked escape

Figure 1. Photoactivation of ChR2 in Zebrafish Somatosensory Neurons

Triggers Escape Behaviors

(A) Lateral view of a 24 hpf embryo expressing ChR2-YFP and EGFP in

touch-sensitive Rohon-Beard and trigeminal neurons. Anterior is at left,

and dorsal is at top. The scale bar represents 100 mm.

(B) Maximum-intensity Z projections of two-photon stacks showing

ChR2-YFP and EGFP expression in trigeminal (top panel) and Rohon-Beard

(bottom panel) neurons at 24 hpf. The scale bar represents 10 mm.

(C) Time-series projection of a ChR2-YFP-expressing embryo performing

an escape in response to illumination at 488 nm. Images were acquired at

500 fps. The scale bar represents 100 mm.

(D) Percentage of experimental (Isl1::Gal4-VP16::UAS-E1b::ChR2-YFP,

UAS::GFP) and control (Isl1::Gal4-VP16, UAS::GFP) embryos showing

light-evoked escape behaviors. Data are mean 6 SEM across three

(ChR2) and two (control) clutches of 50–100 injected embryos. Experimen-

tal: 79% 6 4%, n = 149 embryos; control: 1% 6 1%, n = 66 embryos.
behaviors, suggesting that the hindbrain networks down-
stream of these neurons require very little input to drive a be-
havioral response. We tested the limit of this requirement by
restricting the stimulation to individual neurons. To that end,
the field aperture of the fluorescence-illumination port of an
upright Olympus BX50WI was closed down to illuminate small
regions containing only a single Rohon-Beard or trigeminal
neuron (Figure 3A), and local muscle contractions were mon-
itored visually (Movie S3). In 33% of these cells, 100 ms light
pulses triggered muscle contractions (n = 33 cells in five fish),
which were verified to be a reliable indication of escape be-
havior with a second low-magnification objective custom
mounted in inverse configuration (Movie S4). To rule out the
possibility that scattered light or neighboring cells sending
processes into the vicinity of the target cell were involved in
the behavior, we moved behaviorally responsive regions
into and out of the illumination spot along the anterior-poste-
rior axis of the embryo in 20–40 mm steps (Figure 3B). Re-
sponses were only observed with the target-cell soma in
the illumination spot (Figures 3B and 3C), which demon-
strates that single touch-sensitive neurons can drive a full
escape behavior.

We also examined the influence of pulse duration—and,
indirectly, spike number—on the ability of these cells to elicit
a behavior. The dependence of escape probability on pulse
length varied greatly between cells, but some neurons (n = 7;
64% of cells that drove a behavior in isolation) were found to
drive behaviors with 2–10 ms pulses (Figure 3D). Light pulses
of such short duration could be remarkably reliable in trigger-
ing an action potential (Figure 3F), but they never elicited more
than one spike (n = 9 cells, w500 pulses, Figure 3E). This dem-
onstrates that even a single spike in one cell can drive a pro-
nounced escape behavior. This was confirmed in a single
cell recorded from a fish that was not paralyzed (Figure S1).
These results suggest that zebrafish somatosensory neurons
use an extremely high signal-to-noise ratio, derived in part
from an extremely low level of spontaneous firing, to efficiently
couple small tactile inputs to a robust escape response.

To determine whether actual mechanical stimuli can be en-
coded with single action potentials, we also monitored trigem-
inal neuron activity in response to pulses of water directed at
the head (Figure S2). In four out of five cells, stimulus intensi-
ties were found that reliably elicited either zero or one spike
when applied at 0.2 Hz (Figures S2A and S2B). Increasing
the stimulus intensity resulted in larger numbers of spikes
(Figure S2A). The behavioral response we observed to single,
ChR2-evoked spikes thus falls within the normal range of cod-
ing properties in this system. Interestingly, we also observed
a higher incidence of response failures at higher stimulus fre-
quencies (Figure 2C), just as with ChR2 stimulation, suggest-
ing that these shortcomings of our photoactivation strategy
may be imposed by the intrinsic properties of the cells.

Discussion

Studying Zebrafish Behavior and Neurophysiology

with ChR2
ChR2-based photoactivation strategies have been imple-
mented in a variety of model systems, including Drosophila
[18, 19], C. elegans [15, 20], and mammals [9, 15–17]. The
only photoactivation method that had previously been used
in the zebrafish—involving a receptor-tethered glutamate
mimic [21]—is a promising strategy but gave behavioral results
that were not predicted from its expression pattern. Our data
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demonstrate the feasibility of using ChR2 in the zebrafish ner-
vous system. Conveniently, and unlike invertebrate model sys-
tems [15, 18–20], endogenous stores of the all-trans retinal
required for ChR2 activity [8, 9] are sufficient for photoactiva-
tion of zebrafish sensory neurons. Importantly, the information
presented in this study could not have been obtained with the
same degree of confidence without a photoactivation strategy,
because traditional methods of electrically stimulating a single,
defined cell require immobilization of the animal, making it
difficult to correlate cell firing with behavior.

Several potential complications of using ChR2 in zebrafish
are apparent in this work. One of these is the attenuation of
ChR2-driven spiking at high frequencies. Although ChR2-
evoked spikes occurred reliably at up to 10 Hz in some trigem-
inal neurons, this is roughly one-half to one-third of the stimu-
lus frequencies that are known to work in mammalian cells [9,
16, 22]. Given that moderately high-frequency (4 Hz) mechan-
ical stimulation also resulted in attenuation of the response, it
seems likely that ChR2 activity is limited by the intrinsic prop-
erties of the trigeminal neurons, rather than the channel itself.
Further investigation of ChR2 activity in other cell types should
clarify this issue.

ChR2-evoked behaviors showed a sharp decline by 48 hr
of development. Because Islet-1 enhancer-driven transient

Figure 2. Extracellular Recording of ChR2-

Evoked Spiking Activity in Trigeminal Neurons

(A) Loose-patch recordings were made by target-

ing GFP-positive cells (asterisk) with a glass mi-

croelectrode (dashed lines) and forming a loose

seal of w50–100 MU. The scale bar represents

20 mm.

(B) Current traces from ChR2-expressing neu-

rons showed light-evoked spikes occurring after

stimulus onset (arrow).

(C) Prolonged stimuli of 50 ms trigger repetitive

firing. Sixteen stimuli of 50 ms (blue bar) were

delivered to the target cell at 0.2 Hz.

(D) Failures occur more often with high-fre-

quency stimulation and after many stimulus rep-

etitions. Light pulses of 50 ms (blue bar) were de-

livered at 1 Hz for 100 s; every tenth trial in the

series is shown.

(E) The dependence of failure rate on stimulation

frequency varies between cells. Two neurons in

two fish were exposed to 203 50 ms pulses at

varying frequencies, and the probability of show-

ing one or more spikes per stimulus was plotted

as a function of frequency.

(F) Response probability increases with pulse

duration (n = 9). Data are mean 6 SEM.

expression fades over developmental
time, overall ChR2 expression levels
might contribute to this phenomenon.
Furthermore, Rohon-Beard neurons
begin to disappear at around 48–72 hpf
as they are replaced by the dorsal root
ganglia [23]. However, because trigemi-
nal cells do not show such downregula-
tion during development, this cannot
fully explain the loss of ChR2 respon-
siveness. Comparisons with other cell
types, as well as electrophysiological
recordings at later developmental
stages and experiments using stably

transgenic fish, are necessary to answer these open ques-
tions.

Driving Escape Behaviors with Low Levels of Activity
in Somatosensory Neurons

Surprisingly, spiking patterns in trigeminal neurons can be as
minimal as those in the hindbrain neurons that they innervate.
In particular, Mauthner cells can drive escape behaviors by us-
ing single action potentials [7], a property thought to be impor-
tant for rapidly triggering escapes in response to aversive tac-
tile [24] and auditory [25] stimuli. Since the Mauthner cell is one
of the downstream targets of the trigeminal neurons [26], our
results suggest that single spikes in trigeminal sensory neu-
rons might be translated into single spikes in Mauthner neu-
rons. Functional imaging or electrophysiology in the hindbrain
escape network will be necessary to determine whether this is
the case and to further characterize the transfer of information
from the trigeminal neurons to other downstream targets.

Recently, two groups have independently demonstrated
that sparse stimulation of single or very small populations of
neurons in the somatosensory barrel cortex of rodents can
be used to drive learning and behavior [27, 28]. In no case,
however, has it been conclusively shown that single spikes
in primary sensory neurons can elicit behavior. Work in
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humans suggested that single spikes in somatosensory neu-
rons might be perceptible [29], but the recording methods
used in those studies allowed for ambiguity because they
only monitored activity in a small subset of cells. Similarly,
studies by Clarke et al. [2] raised the possibility that single
spikes in Xenopus Rohon-Beard neurons might be sufficient
to drive motor networks, but the ‘‘fictive swimming’’ prepara-
tion used in these experiments did not allow correlation of Ro-
hon-Beard spiking activity with an actual behavior. Extremely
weak stimuli can also be perceived by the human visual sys-
tem [30] and the insect chemosensory system [31], but in
both cases multispike events are likely to occur at the earliest
levels of processing. Our data directly demonstrate the effi-
cient coupling between single-spike activity in single sensory
neurons and behavioral output.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, two

figures, and four movies and can be found with this article online at http://

www.current-biology.com/cgi/content/full/18/15/1133/DC1/.
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