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Funding high-throughput data sharing

Catherine A Ball, Gavin Sherlock & Alvis Brazma

The search for Truth is in one way hard and in
another way easy. For it is evident that no one
can master it fully nor miss it wholly. But each
adds a little to our knowledge of Nature, and
from all the facts assembled there arises a
certain grandeur.

—Aristotle

Scientific progress cannot take place in a
vacuum. Indeed, by its very nature, good
science relies on peer review, replication of
experiments and the accumulation of a
body of data. Although the practice of shar-
ing data upon publication is widely accepted
as a fundamental tenet of good sciencel, the
application of high-throughput technolo-
gies to biological experimentation, such as
large-scale DNA sequencing and microar-
rays, has resulted in new challenges to the
implementation of this principle.

Most researchers recognize the impor-
tance of sharing data, but it is so fundamen-
tal that its advantages bear repeating. First
and foremost, fully and freely available data
promote and reinforce open scientific
inquiry, allowing a researcher’s conclusions
to be validated or refuted by his or her
peers. Second, it enables new analyses to be
performed, which may lead to novel con-
clusions. This is especially important in
light of the fact that rarely do researchers
exploit the full potential of high-through-
put data sets upon initial publication.
Third, an accumulated body of public data
can serve as the basis for new research and
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new methods of data analysis, and it pro-
vides large training and test sets for quality
assessment. Fourth, access to public data
can provide an excellent teaching resource.
Fifth, the accumulation of public data pro-
vides all researchers with access to a data set
that is larger than one that could ever be
constructed by a single laboratory. It is clear
that new knowledge and insight can be
obtained from analyzing combined data
sets, which would never be discovered
examining the constituent parts. Lastly,
sharing data can prevent unnecessary
duplication of effort (though obviously
some duplication provides rigor), and the
public will benefit from a more rapid pace
of scientific discovery that will be the result
of decreased duplication and the creative
reuse of published data.

This article outlines the central issues
that face the research community in ensur-
ing expeditious and efficient sharing of
data. We start by discussing the benefits of
data sharing and then describe the key com-
ponents of a bioinformatics-based data-
sharing infrastructure. We finish by
describing the challenges in funding data-
sharing initiatives and provide some poten-
tial funding solutions.

Benefits

A clear example of the benefits of data shar-
ing comes from the explosion of available
sequencing data. GenBank has experienced
explosive and exponential growth over the
last two decades, from just 606 sequences in
1982 to more than 30 million in 2003, com-
prising about 4 x 10!? base pairs (Fig. 1). No
one would argue that the science would be
better off if these data were held in private
local databases—indeed, it is abundantly
clear that the sum of the data is far greater
than its constituent parts. Comprehensive,
comparative genomic sequence analyses are
possible only because all the data are avail-
able in the same format, in a single place.
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Furthermore, the wide availability of
sequence trace reads provided large test sets
for training base-calling software and for
determining sequencing error rates. Once
the sequencing community had tools to
assess the quality of the data they were pro-
ducing, they were able to produce much
higher quality sequence. Additionally, the
entire success of the Human Genome
Project was based on data sharing using
established data standards, tools and
resources. An international collaborative
project to profile gene expression for toxi-
cology, involving more than 30 partners
from industry and nonprofit organizations,
coordinated by the International Life
Sciences Institute?, provides a preview of
what should be expected in the future.

Although the need for data sharing in life
sciences and biomedical research is well
recognized, its actual practice can be chal-
lenging for members of a collaborative
group, not to mention for an international
community of researchers. The key to an
effective method of sharing high-through-
put data is developing and maintaining a
robust, useful and dynamic informatics
infrastructure. In the absence of dedicated
resources, a ‘quick and dirty’ approach to
bioinformatics is usually taken. Although
such an approach may initially appear to be
cost effective, it is usually a drain on
resources in the long term, since it typically
will not allow efficient use of the generated
data, is not robust and requires large main-
tenance costs for little return. When a data
sharing infrastructure has been developed
properly, it can have a profound impact on
scientific discovery, and the community of
users of such a resource can hardly imagine
doing research in its absence.

Examples of data-sharing infrastructures
that are indispensable to scientific research
include GenBank, PubMed and the
Saccharomyces Genome Database. Although
each of these databases has required signifi-
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Figure 1 The data explosion. There are two
reasons why data sharing is becoming more and
more challenging: first, the data is growing in
size; and second, the data is growing in
complexity. The first is easier to quantify, but the
second is in fact the most important factor (see
Box 1).

cant financial investment for both creation
and maintenance, we do not wish to say that
every bioinformatics effort requires a large
supporting infrastructure; indeed, on the
contrary, small, dynamic informatics pro-
grams by their very nature can be more
innovative, creative and responsive. Even
so, when the data reach a certain magni-
tude, and the size of the community want-
ing access to those data reaches a certain
size, investment in a data-sharing infra-
structure is not something that can be
achieved cheaply if it is going to be robust.

Challenges
Once there exists either a critical mass of
data, or the promise of that volume of data
being generated, as well as a large group of
potential users, it must be recognized that a
data-sharing infrastructure is needed.
There are four major components that
make up the costs of a data-sharing infra-
structure: development, data deposition,
data management and data access.
Infrastructure development. Developing
a functioning and widely accepted data-
sharing infrastructure is challenging. In
many ways, the developers of such an infra-
structure face a chicken-and-egg situation.
A common format, or standard, is needed
to define the required data and their organ-
ization, such that users of the data source
can retrieve the data in a single expected
form. However, until such standards are
adopted and widespread, data producers
are unlikely to use any particular format.
Thus, the architects of a data-sharing infra-
structure are often faced with data being
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represented in many different ad hoc and
poorly described formats (see Box 1).
Although it is faster for a nascent resource
to act individually, the involvement of
many individuals and groups in a research
community make the widespread adoption
of a format, standard or community data
repository more likely. As anyone who has
ever tried to work in committee knows,
accommodating input from a large com-
munity can be a slow process. Additionally,
the burgeoning infrastructure for data
sharing is frequently poorly funded.

Obviously, standards and data formats
themselves do not enable data sharing—
a supporting informatics infrastructure
implementing these standards is needed.
Usually the data-sharing infrastructure con-
sists of centralized databases that store and
curate the data, and a set of tools allowing
users to access, retrieve, analyze and visualize
the data. These databases can act either as
public repositories where data are deposited
(e.g., GenBank/European Molecular Biology
Laboratory (EMBL)/ DNA Database of
Japan (DDBJ))or as databases actively gath-
ering or annotating their content (e.g., the
UniProt protein sequence database or the
Saccharomyces Genome Database). The
complexity of the database will depend on
the complexity of the respective domain and
will necessarily have to respond to the
dynamic and innovative nature of biological
research. For instance, a database schema
implementing a MAGE-ML-compatible
model (see Box 1) for microarray data con-
tains about 200 tables.

Data deposition. The placement of data
(and metadata) in a repository has the
potential to be a time-consuming exercise.
Although many years of experience have
simplified depositing nucleic acid sequence
data, describing all the metadata necessary
to interpret a microarray experiment is still
far from simple. A step that would facilitate
this process is the extension of the func-
tionality of laboratory database or labora-
tory information management software
(LIMS) that would provide a pipeline to the
data-sharing infrastructure.

For instance, the Stanford Microarray
Database (SMD) has constructed a direct
data submission pipeline to the public
repository for microarray data Array-
Express at the European Bioinformatics
Institute (EBI). The construction of this
pipeline was not trivial and required the
equivalent of approximately nine months of
a person’s time at SMD. The complexity of
the MAGE-ML, and the fact that the stan-
dards and ArrayExpress were nascent, in

part contributed to the difficulty of estab-
lishing this pipeline. Freely available soft-
ware, developed by the MGED community,
and the experience of the ArrayExpress staff
likely mean that subsequent pipelines will
be far easier to establish.

Data management. This component is
most often overlooked, underestimated and
ignored. Even with the best software and
the best data entry and access interfaces,
human intervention is required, preferably
by someone with a high level of expertise
and understanding of the biological field.
Curators of databases or data repositories
act fundamentally as advocates for the
researchers who are submitting data to or
obtaining data from a data-sharing
resource. Curators can distill information
from other sources, provide user assistance,
build help documentation, provide a level
of quality control over the data entered,
design useful software and user interfaces,
identify compelling new directions or excit-
ing trends in research that the data-sharing
resource should accommodate and identify
tasks that would benefit from greater
automation.

For a first-time submitter, completing an
average-size experiment submission (data
from about 30 arrays) into the ArrayExpress
repository via the online submission tool
may take a day to several weeks (depending
on the submitters response time to the
curators’ questions) and requires hours of
curators’ time (for a returning submitter
these times typically are much smaller).
Disseminating incorrect (or incorrectly
annotated) data can actually be harmful,
and without adequate curation effort, this
can easily happen. In addition to curation,
there is a need for technical database
administration, there are constant needs to
upgrade and maintain the computer hard-
ware and software, to increase the storage
space (e.g., for microarray data, it measures
in Gigabytes per array) and to upgrade and
support the computer networks that house
the data collections.

Data access. Providing access to the data
requires intuitive and useful query inter-
faces and adequate standards for data com-
munication. For instance, a database that
allows only gene-by-gene based web queries
would force a user to click tens of thousands
of times to retrieve all the data for a single
microarray experiment. On the other hand,
a researcher interested in the position of
splice sites within a single gene should not
be forced to download and parse the
sequence of an entire genome. Another con-
founding issue is the need to provide data in
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formats required for common data analysis
techniques. The inability to access data in
desired formats requires customized data
parsing and translation software, which of
course has costs as well. These costs are min-
imized by developing adequate data access
interfaces and adequate standards.

In addition, researchers are often inter-
ested in finding answers that require data
from more than one database. For example,
aresearcher may be studying a human tran-
scription factor and want to know the
three-dimensional structures of all proteins
known to interact with the transcription
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factor or the three-dimensional structures
of orthologs of the interacting proteins.
This requires that the queried database not
only store three-dimensional structures,
but also store homology relationships
between protein with solved structures and
those whose structures have not been

Box 1 Problems posed by biological data

The two main difficulties faced by bioinformaticians developing and
maintaining data-sharing infrastructures are the growing amount of
data and the growing complexity of data. The first problem is
illustrated by the growth of DNA sequence data (Fig. 1). The other
data types, most notably microarray data, are experiencing the same
or even faster growth, but as these are rather new and the public
repositories collecting these data are even newer, no systematic
statistics are available. The second problem—the growing
complexity of the data—is more difficult to quantify, but in fact
adequately capturing and communicating the complexity of high-
throughput biological data provide the most challenging and

critical problems.

We describe below some examples of successful and established
data-sharing infrastructures (for nucleic acid sequence data and
protein structure data) as well as some that are still developing (for
protein-protein interaction data and microarray data) as
illuminating examples of the complexities involved.

Nucleic acid sequence data. These can be represented as a one-
dimensional string of letters that may be accompanied by the
original sequencing traces. In sequence data, there is typically a
high signal-to-noise ratio and often quality scores are associated
with high-throughput sequences. Therefore, it may appear that the
sequence data exchange standard can be very simple. Indeed,
several simple formats, such as FASTA (FAST-AII), have been
developed and used to communicate DNA sequences. However, for
many applications additional metadata need to be communicated—
annotation of the location of genes, exons, introns, promoters,
alternative splicing, single-nucleotide polymorphisms, among other
data, which require considerably more complex standards. Such
standards also need to accommodate gaps in genome sequence, the
frequent lack of knowledge of relative positions of different
sequence fragments and the frequent revisions of genome
assemblies. A standard format to represent the metadata and the
coordinate system is defined by the Ensembl database, and many of
the fully or partly sequenced genomes and their annotation are now
available in this format. Furthermore, there are several successful
data repositories for sequence data. The strict repositories, such as
GenBank/European Molecular Biology Laboratory (EMBL)/DNA
Database of Japan (DDBJ) simply report sequences as reported by
submitting authors, whereas others, such as Ensembl and
GoldenPath, do considerable processing and analysis of raw
sequence data.

Protein structure data. These are reported as atomic coordinates in
three dimensions with their mappings to the protein sequence. The
structures reported are largely independent of biological conditions
under which those data were captured (or dependent in relatively
well defined ways, such as conformation states). Measurement units
(angstroms) and error models are well defined and accepted. Unlike
the sequence data, where the basis of a common format is simply a
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sequence of letters, formats for describing the three-dimensional
structures are much less intuitive. Moreover, the relationships
between the crystallized monomer structures, and those of
biologically active multimer molecules are far from straightforward,
which further complicates the representation. The Protein Data Bank
(PDB) and Macromolecular Structure Database (MSD) are accepted
global repositories for three-dimensional molecular structure data. A
de facto standard is the PDB format, but the research community
has invested great energy into creating, modifying and reconciling
different data formats (e.g., the mmCIF format).

Interaction data. Data describing protein-protein interactions are
highly dependent on biological and experimental conditions under
which those data were captured; therefore, metadata capturing this
information are essential. Although the ‘measurement unit’ is well
defined (that is, ‘interact/not interact’), there are complications that
many interactions are not strictly binary, but potentially depend on
the presence of other proteins, cofactors or protein modifications.
The signal-to-noise ratio in the measurements is considerably lower
than that for sequence or structure data, which again makes it
important to have metadata describing the evidence for each
particular interaction to be captured. A format for communicating
these data has recently been developed? by the Proteomics
Standards Initiative (PSI) working group of the Human Proteome
Organization. There is an emerging collaboration between the EBI’s
IntAct (Open Source Molecular Interaction Database), University of
California, Los Angeles’ DIP (Database of Interacting Proteins),
BIND (Biomolecular Interaction Network Database) and a few other
databases, which has a potential to become the global federated
repository for protein interaction data.

Microarray gene expression data. Not unlike protein-protein
interaction data, these data depend on biological and experimental
conditions. Thus, descriptions of the experimental and biological
conditions, in addition to the data-processing protocols, are
essential to understand the data fully. In most cases, signal-to-noise
ratio is low and measurement units and/or type are often a function
of the technology platform, or the software package used to analyze
the microarray images. In addition, there are few widely accepted
metrics for determining and communicating information about data
quality. Nevertheless, the basic trends in gene expression data
patterns are consistently reproduced by most microarray platforms
and are demonstrably meaningful. Although the MIAME (Minimal
Information About A Microarray Experiment) and MAGE-ML
(Microarray Gene Expression-Markup Language) standards have
been recently developed by the Microarray Gene Expression Data
Society*® in conjunction with community input, many gray areas
remain, and much work still needs to be done in the area of data
quality assessment. Community data repositories have been
established for published data (ArrayExpress, CIBEX and Gene
Expression Omnibus).

1181



l@ © 2004 Nature Publishing Group  http://www.nature.com/naturebiotechnology

COMMENTARY

solved, or at least have access to that infor-
mation. Thus, to be able answer such ques-
tions, databases should ideally be integrated
with each other, in a fashion that is seamless
to the end user, but does not simply require
duplication of all database resources at
every database. Web services seem to pro-
vide a promising way to avoid duplication
of data and efforts in different biological
database projects.

Finally, it should be noted that the devel-
opment of biological data-sharing infra-
structure is usually a continuous process.
New requirements for data deposition and
access are constantly emerging, and more-
over, the databases should be continuously
trying to share data transparently, to reduce
duplication of bioinformatics efforts.

How much to invest in enabling data
sharing?

To assess the optimal funding level for
building and maintaining a data-sharing
infrastructure, we should try to optimize
the cost/benefit ratios. The costs, though
sometimes in the millions of dollars, are
still a fraction of the costs of data genera-
tion and are best measured as a percentage
of the data generation costs, rather than in
absolute figures. To assess the benefits, we
should distinguish between the direct and
indirect benefits. Direct benefits include
how much is saved in terms of avoiding
duplication in data generation, and indirect
benefits include possibilities generated by
entirely new analysis of combined data sets
from different sources and possibly of dif-
ferent data types. One method of estimat-
ing the appropriate level of funding for a
data-sharing infrastructure might be to
estimate how much effort it would save
directly or indirectly, and arbitrarily assign
a fraction of those savings to funding the
data-sharing effort. A simpler approach
would be to assign an arbitrary fraction of
the costs required to create the large-scale
data to funding data-sharing projects. This
option, although suffering from being arbi-
trary, is at least easier to calculate.

To assess the direct benefits, one could
simply sum up the costs of generating the
data de novo for every user accessing a
chunk of data in a public database. In prac-
tice, such a calculation is difficult, as one
would have to produce rather detailed user
logs, a process which itself may be costly.
Nevertheless, some idea can be obtained by
looking at the wusage of public data
resources. For instance, the EBI website
receives more than a million ‘hits’ daily, and
during the first six months of 2004, over 25
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Terabytes of data has been downloaded
from the EBI’s ftp (file transfer protocol)
site. Assuming that every hit saves just 10
cents, every day of EBI’s existence saves the
research community $100,000. Estimating
conservative sequencing costs of $0.01 per
base pair, sequencing the DNA equivalent
to 25 Terabytes would cost on the order of
$500 x 10? = $500 billion. Not all of the
retrieved data would have to be regener-
ated, but assuming that just 0.1% would,
the savings made over a six-month period
would equal half a billion dollars, or one-
sixth of the costs of the Human Genome
Project. Moreover, it should be noted that
the indirect benefits from data sharing are
much higher than the direct ones, and are
growing exponentially with every new data
resource integrated in the common data-
sharing infrastructure.

The funding required to build and main-
tain data-sharing funding infrastructure
has been often targeted (although seldom
delivered) at 20%-25% of the costs of gen-
erating the data. The results at SMD suggest
that this is reasonably close to an adequate
level of funding. We estimate that the labor
and reagents (not including the equipment,
scanners, computers or general lab sup-
plies) to isolate RNA, amplify it (if neces-
sary), make and label cDNA, perform the
hybridization, and to scan and grid the
image add up to approximately $520 per
array. With 48,0000 arrays in the database,
SMD supports approximately $25 million
worth of data and has cost approximately
20% of that value to develop and maintain
since its inception. Although it may be use-
ful to have a rule of thumb about what level
of funding should be dedicated to data-
sharing efforts, it would be even more use-
ful to have ways to define the data-sharing
needs of high-throughput efforts at their
inception and ways to evaluate whether
they are being met or not.

Potential funding models for data
sharing

Attempts to base life sciences data sharing
on commercial models (e.g., subscription
fees) have not enjoyed widespread success.
One of the main reasons why commercial
models have failed is that a subscription-
based model does not allow one to down-
load all the content of the database,
combine it with other types of data and
perform meta-analysis of combined data.
This completely prevents all the indirect
data-sharing benefits. Also, the overheads
in dealing with hundreds of licenses would
be unjustifiably high.

An example of a failed subscription
model is provided by the experience of the
Swiss-Prot database for protein sequences.
Initially built as a publicly funded project,
funding problems caused it to switch
in 1997 to a subscription-based model
(though it remained a free resource for aca-
demia). This prevented some other impor-
tant genomics information resources from
integrating with Swiss-Prot, and although it
allowed the database to survive a funding
crisis, this is regarded as an unsuccessful
‘experiment. Thanks to funding obtained
from National Human Genome Research
Institute (Bethesda, MD, USA), Swiss-Prot
(now UniProt) has switched back to a
model that provides free access for all users.

Among other reasons for limited success
of a commercial approach is the highly
experimental and dynamic nature of bioin-
formatics software projects (it is almost
impossible to have a reasonable specifica-
tion at the beginning of the project, as the
data-generation technologies are develop-
ing all the time), the continuous nature of
the development (virtually all bioinformat-
ics databases continue the development
work as long as they are used and effectively
are R&D projects for their life span), lim-
ited commercial market (apart from a few
large pharmaceutical companies, the main
customers are from academia, which have
to rely on open data, particularly to be able
to publish findings), and the high risks and
limited returns from the investments as a
result of the combination of the above
mentioned factors.

Though initial funding for the develop-
ment of new data resources are often pro-
vided by the research grants, the funding
agencies are much less sure how to fund the
maintenance and further development of
already established resources, and who
should bear the costs associated with the
data deposition. Committing funds to
ongoing and potentially unending data-
sharing projects that are perceived to be in
‘maintenance mode’ has little appeal to
most governmental funding agencies.

It is very important to realize that costs of
describing (annotating) and depositing
high-throughput data are real, and that they
should be budgeted for, in addition to the
costs of generating these data. Funding
agencies should require data-sharing plans
and realistic cost estimates in all grants pro-
ducing considerable amounts of high-
throughput data. For instance, if the data
are to be deposited in a public database,
software allowing this should be either
developed or purchased and staff responsi-
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ble for the depositions should be funded.
Currently, these costs are chronically under-
estimated and under-awarded. Although the
US National Institutes of Health (Bethesda,
MD) currently requires that most proposals
have a data-sharing plan, it does not neces-
sarily follow that the data-sharing infra-
structure mentioned has stable funding or
that its funding is part of the award. It
should also be recognized that access to the
generated data collections should be main-
tained long after the data generation has fin-
ished, and that maintaining access to the
data cannot be accomplished for free.

The need for a data-sharing infrastruc-
ture will likely outlast any one of the vari-
ous research projects that generate the data
that require sharing. Accordingly, relying
on small proportions of individual research
grants to fund such an infrastructure is
inherently unreliable, insecure and prone to
fluctuation. Too many valuable compo-
nents of our current data-sharing infra-
structures survive on funding that is
cobbled together from a variety of unstable
sources: small parts of research grants, soft-
ware development projects, gift monies or

NATURE BIOTECHNOLOGY

institutional funding. The construction and
maintenance of a successful and valuable
data-sharing infrastructure needs a differ-
ent model to preserve long-term access to
high-throughput data. Ideally, dynamic and
evolving data-sharing infrastructure proj-
ects behave and produce results in a man-
ner very much like research projects and
should be funded as such in their own right.
More importantly, successful endeavors
should be encouraged (and funded) to pro-
vide wider access to their data-sharing
infrastructure (ideally with flexible access,
e.g., via web services), to prevent the prolif-
eration and re-creation of similar projects
at every research institution.

By reducing the resources spent to rein-
vent the wheel, the research community will
surely benefit from stable, reliable funding
for the widely used and essential data-shar-
ing projects, and will also potentially reap
the rewards of increased funding for inno-
vative and high-risk projects. For those
projects that provide essential infrastruc-
ture and services to a large community of
researchers, this idea of stable funding
could be taken one step further. Instead of a
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fixed-term funding period, such as three
years, we believe that such resources merit
rolling periods of funding. Under this
model, such a resource could be granted
three years funding on an annual basis,
until such time as the project was deemed
to be unfundable or completed. This would
provide two years for essential data to be
propagated elsewhere or for alternative
funding sources to be identified. Under this
model, researchers who rely on essential
projects that serve a fundamental scientific
need (e.g., UniProt or the Saccharomyces
Genome Database) could have confidence
in a resource’s continued availability and
would not be faced with the prospect of its
loss without notice.
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