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Abstract

DNA microarray technology has resulted in the generation of large complex data sets, such
that the bottleneck in biological investigation has shifted from data generation, to data analysis.
This review discusses some of the algorithms and tools for the analysis and organisation of
microarray expression data, including clustering methods, partitioning methods, and methods
for correlating expression data to other biological data.

INTRODUCTION

Microarray studies may generate millions
of data points and such volumes of data
are too large to analyse by simple sorting
in spreadsheets, or plotting as graphs. For
sense to be made of the data, systematic
methods for its organisation are thus
required, with a means of measuring
quantitatively if two expression profiles
are similar to each other. In this regard it
is useful to consider the values that make
up the expression profile for a single
gene/clone as a series of coordinates,
which define a gene expression vector, with
as many dimensions as there are data
points within the expression profile.
Using standard mathematical metrics of
distance the similarity (or dissimilarity)
between different vectors can be then
measured. Both the Pearson correlation,
which measures the similarity between
the directions in which two vectors point,
and the Euclidean distance, which
measures the distance between two points
in space, have been used.

NORMALISATION OF
MICROARRAY DATA

This section on normalisation is mainly
pertinent to two-channel microarray data,
though many of the principles are
applicable to large-scale expression data in
general. There are many sources of
systematic variation in microarray
experiments that affect the measured gene

expression levels. Normalisation is the
term used to describe the process of
removing such variation. These sources of
systematic variation will affect different
microarray experiments to different
extents. Thus to compare data from
different microarrays, we need to try to
remove the systematic variation, to bring
the data into register between the two
arrays.

Such sources of systematic variation
include:

e differences in labelling efficiency
between the two dyes;

e differences in the power of the two
lasers;

e differing amounts of RINA labelled
between the two channels;

e spatial biases in ratios across the surface
of the microarray.

For example, consider the following
trivial example. An RINA sample is taken,
and exactly equal amounts are labelled
with Cy3 and Cy5 dyes, but the Cy5 dye
labels the sample twice as efficiently as the
Cy3 dye. If everything else is equal,
analysis of the scanned image will yield a
ratio of 2 for every spot, instead of a
correct ratio of 1, owing to the greater
efficiency of labelling with the red dye.
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Normalisation makes
assumptions about the
data

Normalisation is
required to compare
data

Clearly we want to correct this. Consider
further that the experiment is repeated,
but now there is only a 1.5 fold increase
in labelling efficiency in the red channel.
To compare these two experiments, they
both need normalisation, to remove the
systematic effect of different labelling
efficiency of the two dyes.

Most methods of normalisation make
the assumption that the average
(geometric mean) ratio is 1, or the average
(arithmetic mean) log ratio is 0. This in
effect says that the average gene does not
change its expression under the condition
being studied. This may or may not be
true, but if you have good reason to
believe that the average ratio is not going
to be 1, then these commonly used
methods are not applicable, and data
normalisation will be more difficult. For
instance an experiment where RINA
polymerase is turned off would yield the
expectation that almost all transcription
will decrease, and the average ratio will be
far below 1. The methods below will not
be particularly suitable for that kind of
experiment.

In addition to shifting the distribution
of the log ratios, by making either the
mean or median log ratio equal to 0, some
methods also scale the distribution of the
ratios to give a uniform standard
deviation. However, consideration of the
following:

A yeast culture growing at 25 °C is
split in 2, and one half is shifted to

26 °C, and the other half is shifted to
37 °C. The usual expectation would be
that the changes in gene expression in
the half shifted to 37 °C would be
greater than those in the half shifted to
26 °C. Thus the ratios, when each
sample is compared to the unshifted
culture, would have a greater spread,
and a higher standard deviation in the

half shifted to 37 °C

suggests that scaling of the distribution
will not accurately represent the degree of
change that has actually occurred in the
experiment.

Some commonly used
normalisation methods
House-keeping genes

This method simply preselects some so-
called housekeeping genes, and assumes
that these genes do not change under the
tested condition. A normalisation factor,
which is calculated to make this set of
genes have a mean ratio of 1, is then
applied to all the data. This method is
probably unreliable, as it has been
observed in yeast for instance, that all
genes show some change under some
conditions.

Global mean or median normalisation
This method calculates a normalisation
factor based on all the data (sometimes
filtering out those spots that are not
considered well measured, see Yang ef al!
and Tseng ef al?), which when applied
will make the mean log ratio of all the
data equal to zero. Alternatively it may be
applied to make the median log ratio
zero, to avoid the effects of outliers.
Alternatively stated, a histogram of log
ratios yields a distribution that looks
somewhat normal. This method simply
shifts that distribution along the x-axis, so
that it is centred on zero.

Intensity-dependent normalisation

This method,” using dye swap
experiments, has demonstrated that
instead of having a single normalisation
factor, applied equally to all the data, that
having an equation, whereby a
normalisation dependent on the spot
intensity is used, results in better
normalisation of the data.

Spatial bias

It has been noted that often there is a
spatial bias of ratios on a chip, such that a
microarray image may have regions
where the ratios are high, and another
where they are low. Assuming that chip
position is independent of the function of’
the gene that an element represents, this
would be unexpected, and probably a
consequence of some systematic variation.
Thus instead of normalising all spots on an
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Clustering is a simple
way to organise the
data

Missing data impacts
the ability to analyse it

array simultaneously, they could be split
into subgroups, for instance by sector, and
each subgroup be normalised
independently.

It should be noted that the issues of
normalisation of microarray data strongly
suggest that, where possible, experimental
design, and microarray design, be used to
maximise the ability to analyse the data,
and identify source of systematic
variation. For instance, reverse-labelled
duplicate experiments will help address
normalisation issues, while reproduction
of some spots on difterent places of the
microarray may help address spatial biases.

MISSING DATA

There are usually missing values in a
microarray data matrix, which may arise
for many reasons — some genes were not
represented on all chips used, some spots
were unusable on some arrays due to
technical problems and experimental
artefacts, or some spots have a signal that
is below a threshold, resulting in the spot
being flagged as unreliable. Intuitively,
missing data will affect our ability to
analyse the data. Some analysis methods
(eg SVD, see below) cannot tolerate
missing data. Use of such methods
requires either that genes with missing
data must be discarded (hardly an
appealing option), or an estimate of the
missing data must be made. Other
methods, such as hierarchical clustering,
tolerate missing data by treating the data
as having fewer dimensions for those
genes with missing values, which may
affect the ability to analyse the data
accurately. To address this problem,
Troyanskaya ef al.* propose estimating the
missing data, and tested two algorithms
for doing so. The most robust of these is a
simple k-nearest neighbours technique. In
this method each gene expression vector
that is missing data is compared with all
other gene expression vectors that are not
missing the data. The missing data are
then estimated using a weighted average
of the appropriate data points in the k-
most similar genes. They found* that the
algorithm was somewhat insensitive to k,

such that a range of k could be used
(between 10 and 20 neighbours), without
much effect on the outcome, and the
technique was acceptable at estimating
values for up to 15 per cent of the data for
a gene expression vector. While estimates
of missing data should be represented as
such, and should be removed after the
analysis is complete, it is clear that when
analysing data, the sensitivity is increased
when making a reasonable estimate of
missing data, rather than simply leaving
missing values blank.

CLUSTERING

Clustering is a simple but proven method
for analysing gene expression data. With
this method, the gene expression vectors
that make up the microarray data matrix
are reordered, to place similar vectors
closer to each other within the matrix.
Clustering can also be done in the
second dimension of the matrix, that of
samples/experiments, such that the
experiment vectors may be reordered, eg
Alon ef al” and Perou ef al® Where the
arrays correspond to different cell types,
this two-dimensional clustering serves as
a method for distinguishing cell types
from one another. Clustering in both the
gene and experiment dimensions may be
carried out sequentially on the same
matrix. Several clustering techniques
exist — here only two of them are
highlighted.

Eisen ef al.” and Wen et al.® have both
used a bottom up (agglomerative)
clustering technique. In this approach, all
gene expression vectors are compared
with each other, such that a matrix of
correlations is generated. The largest
correlation in the matrix defines the two
most similar vectors, and these are then
joined to form a node, which has a
compound vector associated with it,
which is calculated as the average of the
vectors that contribute to it. This
compound vector is then compared to all
existing unjoined gene expression and
compound vectors, and the process is
then repeated. Thus single expression
profiles are successively joined to form
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False colour displays
make interpretation of
gene expression data
easier

nodes, which in turn are then joined
further. The process continues until all
individual profiles and nodes have been
joined to form a single hierarchical tree.
The utility of this approach is that it is
simple, and the end result can be easily
visualised, from which coordinately
regulated patterns can be relatively easily
discerned by eye (Figure 1a). When
joining two nodes together, the nodes can
be rotated in one of two possible ways,
leading to four possible ways of
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Figure la: An example hierarchical cluster.

combining them (Figure 1b). In a cluster
tree of n leaves there are 2"~! linear
orderings consistent with the structure of
the tree. To find the optimal solution (or
solutions) is an NP-hard problem, as the
runtime needed to consider all possible
solutions grows exponentially with the
number of leaves in the tree. A simple
algorithm, implemented in XCluster,’
simply rotates nodes around their roots
when they are being joined, to place the
most similar outer leaves of the nodes
adjacent to each other. A more directed
algorithm'” formalises testing the quality
of the leaf ordering, and reorders it to
achieve a more parsimonious solution.
The runtime of the algorithm is,
however, of the order #°, and also
requires an amount of memory
proportional to #°. In contrast, the simple
node switching in XCluster requires a
constant, small amount of memory, and
its impact on the runtime is proportional
to n, where n is the number of genes.

The above discussion refers to average
linkage clustering, whereby compound
nodes are formed, and used for further
vector comparisons. There are two
additional methods of agglomerative
hierarchical clustering, namely single
linkage clustering and complete linkage
clustering, both of which are supported
by Mike Eisen’s Cluster Software.! In
single linkage clustering, instead of
calculating the distance between two
nodes as the distance between compound
vectors representing those nodes, the
distance is the minimum of all pairwise
distances between all members of the two
nodes. In complete linkage clustering the
distance between two nodes is the
maximum of all pairwise distances
between all members of the two nodes.
Single linkage clustering tends to produce
long chains that form loose, straggly
clusters, whereas complete linkage
clustering tends to produce very tight
clusters of similar profiles.

A divisive clustering method has also
been applied to gene expression data,”
whose approach is top down, rather than
bottom up, in that it successively splits the
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data into smaller and smaller clusters. Two
random seed vectors are generated, and
each gene expression vector is assigned to
one of them, using a probability function.
Iterative recalculation of the seed vectors
is performed until they form the centroids
of two clusters, which are then
successively split in the same fashion, until
each cluster consists of a single gene
expression vector. A binary tree is then
constructed from the history of the how
the data were split. Alon et al? also
included a node-switching algorithm to
order the branches in a somewhat optimal
manner.

The clustering methods described
above can lead to artefacts. In the
agglomerative method, the expression
vector that represents a cluster, which is
the average of all gene expression vectors
that belong to the cluster, may not reflect
accurately any of the contained vectors,
especially as clusters become larger. Thus
as one looks higher up in the tree, gene
expression vectors within a cluster will
become less similar to each other. In
addition ‘bad’ decisions made early on
during tree construction cannot be
corrected later. A further drawback is
that when clustering by arrays (columns),

Figure Ib: An example of joining two
nodes when hierarchically clustering, which
indicates that there are four possible ways in
which to join the nodes, by rotating each of
them around their roots

the similarity between each expression
vector is typically calculated over the
total number of genes within the data set,
and is therefore only an overall
measurement of similarity — indeed this
is true also when clustering genes. Thus,
if sample A is most similar to sample B
overall, the fact that for a subset of genes,
sample A is most similar to sample C,
will be ignored, potentially losing some
valuable biological information.
Furthermore, it may simply be the case
that a hierarchical structure does not
apply to the data. There are clustering
methods, which instead of organising
data into a hierarchy, seek to partition
the data into groups. Several clustering
methods exist to partition expression data
into groups; below the application of
self-organising maps and k-means
clustering is discussed.

DATA PARTITIONING
USING SELF-ORGANISING
MAPS

Self-organising maps (SOMs)'* have been
applied to gene expression data.*!* To
initialise a SOM the number of partitions
to use must be defined, as must their
geometry with respect to each other, for
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SOMs and k-means can
be used to partition the
data

Deciding how many
partitions to make is a
drawback of such
methods

instance a 4 X 4 two-dimensional grid of
16 partitions. Each partition in the grid is
more related to its neighbours than to
distant partitions, and thus the geometry,
as well as the number of partitions, will
influence the outcome, iea 1 X 16 grid
will give a different, though similar, result
from a 4 X 4 grid. Each partition is
assigned a seed vector, which has the same
number of data points, or coordinates, as
there are experiments being considered,
and is usually initialised with random data.
Genes are then assigned to these partitions
by an iterative method that manipulates
these seed vectors. During each iteration
the seed vectors, and thus the partitions,
are recalculated to represent the
expression data more closely, by the
following sequence of events. A gene is
picked at random, and its expression
vector is compared to each of the seed
vectors. The seed vector that is most
similar to the expression vector of the
picked gene is then modified, so that it
more closely resembles the expression
vector of that gene. In addition the seed
vectors of the partitions that are physically
closest (in the two-dimensional grid) to
the partition whose vector was just
modified are also modified, so that they
too resemble the gene’s expression vector
a little more closely. This process is
repeated thousands of times. With every
iteration, the amount by which the seed
vectors are altered decreases, and the
definition of which partitions are close to
each other also changes, eg in the first
iteration all partitions may be considered
close to each other, but after 50,000
iterations a partition may be considered
close to another, only if it is less than half
of the width of the entire grid away. At
the end no partition may be considered
close to another. Hence each iteration
results in fewer vectors being modified by
smaller amounts, so that the map
eventually converges to a solution. Thus
as the map is organised, the vectors of
neighbouring partitions being somewhat
similar to each other, and vectors of
partitions that are physically distant being
dissimilar to each other.

DATA PARTITIONING BY
k-MEANS CLUSTERING
k-Means clustering'> partitions data in a
manner similar to self-organising maps,
the key difference being that one partition
does not directly influence another. k-
Means may therefore be considered as
one-dimensional. The seed vectors that
are associated with each partition are
initialised randomly, but differently from
SOM:s: the genes are immediately
segregated to the partition with the most
similar seed vector. These seed vectors are
then recalculated as the centroids of the
genes that mapped to them. This process
is iterated until convergence is reached,
which is the point where subsequent
iterations do not result in genes being
segregated to different partitions from one
iteration to the next. k-Means clustering
has been successfully used to analyse
microarray data generated from studies of
the yeast cell cycle.'® It should also be
noted that a drawback of k-means
clustering is that the initial partitioning,
which is based on random vectors, may
greatly affect the final outcome, resulting
in a local, rather than a global optimum.

An important consideration is how
many partitions to make, and this is
considered one of the main drawbacks of
such methods. Several methods for
determining the correct number of
partitions to make have been suggested
(see Milligan and Cooper'’ for
discussion), including the Gap statistic,'®
which was designed with gene expression
data in mind. The main goal when
partitioning expression data is to reduce
the within-cluster dispersion, such that
each cluster is reasonably homogeneous,
while at the same time the between-
cluster dispersion is large (ie a partition is
not inappropriately split into two or more
similar partitions). Simply plotting the
within-cluster dispersion (which for the
purposes of the Gap statistic is defined as
the sum of the squared Euclidean
distances between all members of a
cluster, divided by twice the number of
members within the cluster, then summed
over all clusters) results in a line that
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The Gap statistic tries
to optimise the number
of partitions

CTWC finds significant
subsets of genes and
experiments

decreases as the number of clusters
increases. This make intuitive sense — the
more clusters we have, the less variation
we will have within each cluster, as they
will have fewer and fewer members.
However, looking at such a plot, there is
often an elbow, or a point where the plot
flattens markedly. The Gap statistic
attempts to formalise detection of this
point in the plot, by making the plot for
real data, and also for a reference
distribution of data, which is created by
drawing random data from the same
distribution as the original data. The
difference between these two curves is
then plotted, and where their difference is
maximal (the details are somewhat
simplified for discussion here), is the
number of clusters, k, into which the data
should be partitioned.

Even though partitioning of the data
using either of the above methods helps
avoid some of the problems associated
with simple hierarchical clustering
methods, neither of these methods is able
to extract features from the data, in such a
way that they find, for instance, a series of
experiments over which a group of genes
are co-expressed, even if that group of
experiments forms only a small subset of
the entire data set. The constraint of the
methods discussed above is that they may
cluster either genes or experiments
separately. While they may cluster both,
using two-way clustering, the clustering
of each is independent of the other, and
the methods are thus ill suited to find such
features of a data set. What instead is
required is a method that couples the
two-way clustering, such that the two are
dependent, and features that span a few
genes and/or experiments can be
discerned. Getz et al.” has applied a
coupled two-way clustering analysis to
gene expression data, such that they are
able to identify subsets of genes and
samples, such that when one is clustered
by the other, stable and significant
partitions emerge. As Getz ef al. discuss, a
naive way to achieve this would be to
consider all possible submatrices of the
original data, and apply standard clustering

techniques to each of them, and keep
track of all stable clusters. Such a method
would guarantee finding all possible stable
clusters, but is intractable, owing to the
exponential increase in the number of
submatrices that exist as the input matrix
increases 1n size. Getz ef al. thus define an
efficient heuristic to generate such subsets
that form stable clusters, using an iterative
method. Performing standard two-way
clustering on the entire data matrix
initialises the process, and both genes and
experiments that form stable clusters are
stored. Each of the groups of genes that
define a stable cluster are then combined
with each of the groups of samples that
form a stable cluster, and again standard
two-way clustering is performed, to
further identify groups of genes, and
groups of samples that form stable clusters.
This process is iterated until no new stable
clusters can be found that satisfy some
criteria, such as size or stability. In this
fashion, only submatrices are considered
whose parent matrices formed stable
clusters of either genes or samples, thus
significantly reducing the search space.
The authors point out that any clustering
method, with an attached notion of what
is a stable cluster, can be used with this
coupled two-way clustering (CTWC)
technique, thus making it flexible.
Intuitively, it helps us consider and, it is to
be hoped, solve, the following — we have
500 samples/experiments, which span the
range of what biological phenomena have
been investigated. Genes may participate
in many different processes, and thus
different, overlapping groups may be co-
regulated in different samples. CTWC
may enable identification of such
subgroups, and thus enable us to really get
to the heart of the combinatorial nature of
biological control.

SINGULAR VALUE
DECOMPOSITION
Background

Singular value decomposition (SVD) (also
known as Karhunen—Loeéve expansion in
pattern recognitionzo and principal
components analysis in statistics™ ) is a
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linear transformation, which relies on the
following theorem from linear algebra:
any M X N matrix, A, whose number of
rows M is greater than or equal to its
number of columns N, can be written as
the product of an M X N column-
orthogonal matrix U, an N X N diagonal
matrix W with positive or zero elements
(the singular values), and the transpose of
an N X N orthogonal matrix V. This
can be written as:

A=UXWXV"

and is represented in Figure 2. For the
case of gene expression data, our
expression data matrix corresponds to A,
which has M genes and N experiments.
The reason that this technique is of utility
when analysing gene expression data, is
that the matrix ¥'T contains essentially the
underlying patterns within the data
(which may be referred to as Eigen
vectors), while the matrix W (which
contains the Eigen values) indicates how
much information each Eigen vector
contributes to the original data matrix.
The matrix U contains coefficients for
each gene, in each Eigen vector, thus
indicating the amount of information
contributed by each Eigen vector to each
gene’s expression vector. There are some
important points to note: the matrix VT
is orthonormal, ie each Eigen vector has

VT

unit length, and is at an angle of 90° from
every other Eigen vector. The orthogonal
nature of the Eigen vectors means that
they are independent of one another.
Secondly, the matrix W is a diagonal
matrix, with positive values found on the
diagonal line from top-left to bottom-
right, with all other values being zero.
‘When the matrices are sorted such the
Eigen values in matrix W are in
descending order, the order of Eigen
vectors in VT will be from most
important to least. In addition, the
fraction of ‘Eigen expression’ for each
Eigen vector can be calculated as:

>
€

where & is the Ith Eigen value, in the
diagonal matrix W, and p; indicates the
relative significance of the Ith
eigenvector, in terms of the overall
expression that it captures (Figure 2). So
what is SVD good for?

Data normalisation

It has been found that the most significant
Eigen vector for a gene expression data
matrix is frequently a constant pattern,
which dominates the data>* This may
simply represent the ‘steady state’, and

Figure 2: Singular value decomposition.
Matrix A is the input expression data, the
diagonal matrix, W, is the eigen values,
matrix V7 is the eigen vectors, and matrix U
is the coefficients for the genes in those
vectors. The horizontal bars on the right
indicate how much information each eigen
vector captures (see text for details)
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Correlating expression
information to sample
information can add to
prognostic and

diagnostic information

SVD finds patterns in
the data

removal of this pattern allows the more
biologically interesting patterns
underneath to be better seen. This
technique is akin to centring data, which
is done by making the average expression
for each gene equal to zero, such that the
variation occurs centred on the x-axis.
Removal of this pattern is simple: the
Eigen value for this pattern, in matrix W,
is set to zero, to yield matrix W', and a
new matrix A’ is then calculated as

U- W' VT This new matrix will
contain the original expression data, but
with the constant pattern filtered out.

Removal of experimental
artefacts

[t may be the case that an experimental
artefact 1s known to exist in the data, for
instance a patterns that correlates with the
day of hybridisation of an array. SVD may
be able to detect this pattern, and as
described above, subsequently remove it.
This means that a pattern can be
removed, without any need to remove
any genes or arrays from the data matrix.

Detection of biologically
relevant patterns within the
data

It has been found™ that the Eigen vectors
derived from a gene expression data
matrix contain patterns with very real
biological relevance. In the case studied
by Alter et al., after centring of the data by
SVD, the two most prominent patterns
within the data approximated a sine and
cosine wave respectively. The data that
were being analysed were from the yeast
cell cycle study of Spellman et al. and so
periodic patterns of expression were of’
biological relevance. Thus SVD is data-
driven, and does not require any
suppositions about what may be expected
within the data. SVD has also been
applied (in this case referred to as principal
components) by Raychaudhuri ef al** to
the sporulation data of Chu ef al.”® and
was successful in reducing the features of
the data to their principal components,
and assigning function to two of those,

which captured nearly all of the contained
information.

CORRELATING
EXPRESSION DATA TO
OTHER INFORMATION
While microarray data may form the vast
majority of data associated with a
microarray experiment, there is often
other salient information about the
experiment, which is equally important.
Such information may be annotation of
the samples, or of the genes themselves,
and these data, in the context of the
expression data, may be what is needed to
give biological insight to the analysis. For
instance, several different tumour
subtypes may be assayed for expression,
with the goal of identifying genes whose
expression are predictive of the tumour
subtype, or of correlating genes with
survival information. Thus external
sample information may be used in
conjunction with gene expression data to
glean either diagnostic or prognostic
information. Alternatively, many of the
genes within a selected group of genes
with similar expression patterns (eg a
SOM partition, or a subcluster from
hierarchical clustering) may have
associated annotations, which could
potentially be used to annotate genes for
which the process in which they
participate is not known.

One of the first attempts to associate
microarray data with clinical data was that
of Golub et al*® who analysed the
expression of 6,817 human genes in 27
acute lymphoblastic leukaemias and 11
acute myeloid leukaemias, in an effort to
build a class predictor that could be used
for tumour subtype diagnosis. They
identified genes whose expression
correlated to the class distinction to be
predicted, and then tested whether the
number of genes that appear to have
predictive value was greater than would
be expected by chance. They identified
roughly 1,100 genes, and conservatively
chose the 50 with the highest scores to be
used as part of a predictor. “Weighted
votes’ for each of these genes were then
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SAM finds genes with
significantly differential
expression

Use of GO can help in
interpreting microarray
data

used to assign unknown samples to one
class or the other. Summation of the
weighted votes for all the genes was then
used to assign the new unknown sample
to one class or the other, and the margin
of victory of the vote allowed a
confidence to be attributed to the
assignment. Golub et al** were able to
correctly assign 36 of 38 of their samples,
with the other two having uncertain
assignment. On an independent set of 34
leukaemias, the technique made strong
and correct predictions about 29 of them.
Further they showed that these
predictions were robust using predictors
derived from between 10 and 200 genes.
A more generic method for associating
microarray data with external data, such as
clinical data, has been developed by
Tusher et al.”’ called Significance Analysis
of Microarrays (SAM). SAM seeks to
solve the following problem: if a gene is
identified as having differential expression
between two different classes of
experimental sample, using a
conventional f-test, then even if the
probability is 0.01, if' 5,000 genes are
considered, there will be 50 false
positives. To do this, SAM assigns a score
to each gene on the basis of change in
gene expression relative to the standard
deviation of repeated measurements.
Then, for genes with scores greater than
an adjustable threshold, SAM uses
permutations of the repeated
measurements to estimate the percentage
of genes that would be identified by
chance, the false discovery rate. Of course
the key component to SAM is thus setting
this adjustable threshold. As the threshold
is decreased, both the number of
significant genes, as well as the number of
false positives will rise. In practice, the
threshold is likely to be set empirically,
using a plot of the expected relative
differences v. the observed relative
differences. SAM*’ can be applied not
only to two-class data, but by redefining
the way in which the score is calculated,
may be extended to multi-class data,
survival times, paired data and
quantitative parameters such as tumour

stage, making it a versatile tool in the
arsenal for microarray analysis.

Using clusters of genes made by k-
means clustering of the cell cycle data of
Cho et al. ,28 Tavazoie et al.'®
technique to determine whether the

devised a

functional categories into which the genes
within each cluster fell was significant.
They used the MIPS functional
categories,29 and determined whether the
overlap between the genes in a functional
class and the genes in a particular
expression cluster was greater than would
be expected by chance. While some
categories showed significant overlap with
some of the clusters, it should be noted
that the number of clusters that they used
for the k-means clustering was a subjective
number, and that the significance scores
will change with different numbers of
clusters. The concept is however of
obvious interest. Further discussion of this
idea is presented by Kell and King;”
discuss the need for methods to assign
functional classes to gene expression data.
Of significant promise towards this end is
the gene ontology (GO), which is a
controlled vocabulary to which genes may

who

be annotated.”'”? The most significant
features of GO are (1) it is structured as a
directed acyclic graph, such that a node
may have several parents, rather than
simply being a binary tree, (2) there are
three separate ontologies, which represent
the roughly orthogonal concepts of
molecular function, biological process,
and cellular component, and (3) genes
may be annotated to as many nodes within
any ontology as reflects their roles in the
cell, and at any levels, depending on the
current state of knowledge of that gene.
Use of GO to do a similar study to that
published by Tavazoie ef al.,'® but which
takes advantage of the structure of GO,
will require large numbers of high-quality
annotations to GO, which are currently in
progress by several model organism
databases.

FUTURE PROSPECTS

‘While there are currently huge amounts
of microarray data being generated, it is
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Standards for data
recording and exchange
are needed

clear that we have not exhausted either
the experimental potential of microarrays,
nor have we more than scratched the
surface of the methods and algorithms that
can be used to characterise and classify the
data, with the goal of elucidating biology.
An important lesson learned by the
sequencing community was that access to
large amounts of data drove the
development of tools to analyse the data.
For this to happen in the microarray
community, not only do the data need to
be made freely available, potentially in
public repositories, but also those data
need to be recorded in a format that
allows automated queries and analyses to
be run against the data. In addition,
sufficient detail about the experiments
themselves needs to be recorded such that
sense can be made of interesting results
that may arise from such analyses. There is
movement in the microarray community
to adopt both a standard set of minimal
information that should be recorded
about an experiment, as well as a standard
format for recording and exchanging the
data.?® The fledgling public repositories
have pledged support for both of these
standards, as have two of the open source
databases, though both standards are far
from being finalised and adopted.
‘Without such standards and repositories,
we will be left with a morass of data, for
which interpretation will be difticult. A
second lesson that can be learnt from the
sequencing community is that once
sequence data had quality metrics
attached, the ability to use the data, and
assemble sequence reads with defined
confidence, greatly increased. While there
may be many different metrics and
statistics associated with each spot on a
microarray, there is no standard way of
using that information to assess the
reliability of a measurement, nor is there a
standard method for combining replicate
measurements, both from the same
microarray, and different microarrays.
Development of such methods will
greatly enhance our ability to reach robust
conclusions about the biology we are
trying to observe and dissect.

It is also important to remember that
microarrays do not merely let us look at
gene expression — there are in fact a
myriad of applications for microarrays,
such that we can investigate the
differences between any two populations
of nucleic acids. Thus in addition to
looking at expression, we can investigate
DNA copy number, to look at genomic
differences,34 we can look at DNA
binding proteins going on and off their
chromatin binding sites” ™’ and we can
even look at the parental origin of DNA,
using genomic mismatch scanning,38 or
using single nucleotide polymorphisms
using Affymetrix arrays.””* Investigating
biological systems using microarrays to
probe more than just the gene expression
within those systems, and then combining
those data, will allow us to build a more
complete picture of the system, thus
allowing us to get ever closer to our
ultimate goal, which is simply to
understand biology, and to use that
understanding to our advantage, such as
positively impacting human health.
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