Washington, D.C.—With mounting vigor for combating global climate change, increasing the use of renewable energy resources such as solar, without compromising natural habitats, is a challenge to the traditional model of utility-scale solar energy installations. Such facilities use vast swaths of...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

Stanford, CA—Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy during the daytime. But these photosynthetic organisms activate other biochemical pathways at night, when they generate energy by breaking down the sugars, starches, and oils that they created during the day.

Explore this Story

Washington, DC— As astronomers continue to find more and more planets around stars beyond our own Sun, they are trying to discover patterns and features that indicate what types of planets are likely to form around different kinds of stars. This will hopefully inform and make more efficient the ongoing planet hunting process, and also help us better understand our own Solar System’s formation.  

Explore this Story

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. New work from a team including three Carnegie scientists demonstrates that different magnesium compounds could be abundant inside other planets as compared to Earth. 

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

San Diego, CA— Ghosts are not your typical cell biology research subjects. But scientists at the Carnegie Institution for Science and the National Institute of Child Health and Human Development (NICHD) who developed a technique to observe muscle stem/progenitor cells migrating within injury sites in live mice, report that “ghost fibers,” remnants of the old extracellular matrix left by dying muscle fibers, guide the cells into position for healing to begin.

Explore this Story
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center...
Explore this Project
Special Events
Wednesday, January 6, 2016 -
6:00pm to 8:00pm

The Carnegie Institution for Science and the producers of the PBS science series NOVA present
a...

Explore this Event
Capital Science Evening Lectures
Thursday, January 21, 2016 -
6:45pm to 8:00pm

The Curiosity rover has been exploring Mars for more than three years, measuring the past and present habitability potential of our nearest planetary neighbor. We’ve also been busy on Earth,...

Explore this Event
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist

Explore Carnegie Science

December 10, 2015

50 years after the first U.S. president was warned about climate change, it is "the defining issue of our time," Department of Global Ecology Director Chris Field told attendees. More

December 10, 2015

Now is the perfect moment for satellites to start measuring biodiversity, Carnegie's Greg Asner tells Mongabay. “It’s the perfect storm of conditions,” he says. More

December 10, 2015

“I started out thinking that it was all about information, and if we only got the right information to the right people, then the right things would happen,” Carnegie's Ken Caldeira tells WIRED Magazine. More

December 10, 2015

San Diego, CA— Ghosts are not your typical cell biology research subjects. But scientists at the Carnegie Institution for Science and the National Institute of Child Health and Human Development (NICHD) who developed a technique to observe muscle stem/progenitor cells migrating within injury sites in live mice, report that “ghost fibers,” remnants of the old extracellular matrix left by dying muscle fibers, guide the cells into position for healing to begin. Using intravital two-photon imaging combined with second-harmonic generation (SHG) microscopy, the Carnegie’s Micah Webster and Chen-Ming Fan and the NICHD’s Uri Manor and Jennifer Lippincott-Schwartz observed these cells riding to

January 6, 2016

The Carnegie Institution for Science and the producers of the PBS science series NOVA present
a special screening of "Life's Rocky Start" premiering January 13 on PBS.

Featuring a panel discussion and audience Q & A with:

Paula S. Apsell
Senior Executive Producer, NOVA

Julia Cort
Deputy Executive Producer, NOVA

Doug Hamilton
Writer, Producer, Director

Robert M. Hazen
Geophysical Laboratory, Carnegie Institution for Science

Life's Rocky Start

What is the secret link between rocks and minerals, and

January 21, 2016

The Curiosity rover has been exploring Mars for more than three years, measuring the past and present habitability potential of our nearest planetary neighbor. We’ve also been busy on Earth, exploring the harshest environments we could find on this planet, not only to help us understand what makes them habitable, but also how to measure it. Dr. Conrad will tell us about what we’ve learned on and from both planets about the evolution and decline of habitable environments.

Dr. Pamela Conrad, Planetary Environments Laboratory, NASA Goddard Space Flight Center

 

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling the

Together with Dr. Jamie Shuda, Steve Farber created a Science Outreach Program, Project BioEYES, that incorporates life science and laboratory education using zebrafish. The outreach program has two main components: educating students and community members through hands-on tours of a Zebrafish Facility, and bringing the zebrafish to 4-12th grade classrooms for hands-on experiments. The program teaches students about science literacy, genetics, the experimental process and the cardiovascular system through the use of live zebrafish.

The mission of the Science Outreach Program is to foster an enthusiasm for science education, promote interest for future participation in a biology-

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary census.

Director of Plant Biology, Wolf Frommer, believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to

Looking far into space is looking back in time. Staff astronomer Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs take light collected by

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an interior