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Bayesian Networks

nodes = variables
edges = direct influence

Graph structure encodes independence assumptions:
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Markov Networks
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The World is Richly Structured

The web
Webpages (& the entities they represent), hyperlinks

Biological data
Genes, proteins, interactions, regulation

Physical environments
People, rooms, objects

Natural language



Problem

Bayesian/Markov nets use attribute representation
Real world has objects, related to each other

Intelligence Difficulty

Grade
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These “instances” are not independent



Welcome to

CS101

low / high
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Main Application Domains

Symbolic understanding of the physical world

Understanding and reconstructing cellular 
processes from genomic data



Long-Term Goal: 
Scene Understanding

“man wearing a 
backpack,

smoking a cigarette, 
walking a dog”

Man

Dog

Backpack

Cigarette

“A cow walking 
through the grass 

on a pasture by the sea”



Object Detection



Basic Object Detection

car person motorcycl
e



Scene Segmentation

‘grass’, ‘road’, ‘tree’, ‘sky’, ‘water’, ‘building’, ‘foreground’



Segmentation CRF

Singleton energy:

Mean R,G,B
Mean H,U,V
Texture Responses
…

Pairwise energy:

Delta R,G,B
Offset Vector
…
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Hierarchical Scene Model

pixels

regions
Pi

objects
Rk

On

Sk , Gk

Variables
αi: pixel appearance
Pi: pixel-to-region correspondence
Ak: region appearance
Sk: region semantic class
Gk: region geometry
Rk: region-to-object correspondence
On: object class
vhz: location of horizon

[Gould, Gao, Koller submitted]

Energy Function
E(P, R, S, G, A, O, vhz, K | I, θ)



Results: 21-class MSRC
Validate against state-of-
the-art approaches
Region/pixel class only
Ground truth labels are 
approximate
No geometry information

21 CLASS Mean

Shotton et al. 72.2

Gould et al. 76.5

Pixelwise 75.3

Region-based 75.4

hand labeled image pixelwise region-based

[Gould, Fulton, Koller, ICCV 2009]



High Quality Dataset

MSRC dataset is limited
poorly labeled boundaries
many missing pixels (void)
no geometry information

Collected images from 
MSRC, Hoiem et al., Pascal 
VOC

715 outdoor scenes with 
high-quality labels

region boundaries
region class and geometry
horizon

[Gould, Fulton, Koller, ICCV 2009]



Amazon Mechanical Turk (AMT)

$0.10 per task (regions, classes, 
surface types)
5-10 minutes per task
24-48 hour turn-around time (for 
715 images)
Less than 10% of tasks needed 
rework

Total cost for labels: under 
$250 (includes $40 textbook on 
Adobe Flash)
Saving Steve from having to 
label images: priceless.

[Gould, Fulton, Koller, ICCV 2009]



AMT: Label Quality

You don’t always get
what you want

Comparison with MSRC labels

Typical quality (hand labeled)

[Gould, Fulton, Koller, ICCV 2009]



Example Results

[Gould, Fulton, Koller, ICCV 2009]



More Example Results

[Gould, Fulton, Koller, ICCV 2009]



Application: 3d Reconstruction

ground plane

camera

h

image plane

image

horizon

Estimate camera tilt from location of horizon
Predict region 3D position using ray projected 
through camera plane

[Gould, Fulton, Koller, ICCV 2009]



Example 3D Reconstructions



Object Detection Examples



Sliding-Window Failures

Sliding-window detector top results

Our region-based object detector results



Object Detection

car† pedestrian† cow*

* run on subset of 21-class MSRC datas† run on Street Scene dataset

[Gould, Gao, Koller submitted]

improved precision by only 
considering regions in 

context 

With correct regions we’d get near perfect 
detection, but region model still has some way 

to go 



Shape-Based Segmentation

Set of shape landmarks
Shape defined by connecting piecewise-linear contour
Semantic outlining = assignment L of landmarks to pixels

[Heitz, Elidan, Packer, Koller, NIPS-08b]
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The LOOPS Model

shape
distribution

state of-the-art 
landmark detectors

pairwise image features

L – assignment of model
landmarks to pixels

Outlining = MAP Inference over L
[Heitz, Elidan, Packer, Koller, NIPS-08b]



Learning the Shape Model
Problem: 

With few instances, learned
models aren’t robust

MEAN

Principal
Components

Training Set:

std +1std -1

std +1

std -1

MEAN

[UAI 2008]



Fdata: 
Encourage parameters to 
explain data

Undirected Probabilistic Model

θroot

Fdata Fdata

Divergence

β: 
high

θRhino

β: low

Divergence: 
Encourage parameters to 
be similar to parents

Divergence

[UAI 2008]

θElephant



Degrees of Transfer

Not all parameters deserve 
equal sharing

[UAI 2008]



Do Degrees of Transfer Help?
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Mammal Pairs
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Hyperprior

[UAI 2008]



Degrees of Transfer

1/λ
Stronger transfer Weaker transfer

θroot

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Distribution of DOT coefficients 
using Hyperprior

[UAI 2008]



Outlining Results: Mammals

[Heitz, Elidan, Packer, Koller, NIPS-08b]



LOOPS
Outlining: Comparison

OBJ CUT [Kumar et al., CVPR 05]

kAS [Ferrari et al., CVPR 07]

[Heitz, Elidan, Packer, Koller, NIPS-08b]



LOOPS Approach

Descriptive Classification 

LOOPS TRAINING DATA

… LOOPS

“UP”

Standard Approach

TRAINING DATA

(X1,-)

…
Standard 

Feature-based

Classifier

H(x) = +0.6
“UP”

(X2,+) (XN,-)

X1 X2 XN (1,-) (2,+)

CLASSIFICATION 
TRAINING DATA2 << N



Mammals 



Gene Regulatory Networks

http://en.wikipedia.org/wiki/Gene_regulatory_network

Controlled by diverse mechanisms
Modified by endogenous and 

exogenous perturbations



Goals

Infer regulatory network and mechanisms that 
control gene expression 

Identify effect of perturbations on network

Understand effect of gene regulation on phenotype



Regulatory Network I
mRNA level of regulator can indicate its activity level
Target expression is predicted by expression of its regulators
Use expression of regulatory genes as regulators
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Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006

Transcription factors, signal transduction 
proteins, mRNA processing factors, …



Co-regulated genes have similar regulation program 
Exploit modularity and predict expression of entire module
Allows uncovering complex regulatory programs 

Regulatory Network II

module
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Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006

“Regulatory Program” ?



Regulation as Linear Regression
minimizew (Σwixi - ETargets)2

But we often have hundreds or thousands of regulators
… and linear regression gives them all nonzero weight!

xN
…x1 x2

w1
w2 wN

ETargets

parameters
w1

w2 wN

ETargets= w1 x1+…+wN xN+ε

Problem: This objective learns too many regulators

=

MFA1

Module 

GPA1-3 x
+

0.5 x



Lasso* (L1) Regression

minimizew (w1x1 + … wNxN - ETargets)2+ Σ C |wi|

Induces sparsity in the solution w (many wi‘s set to zero)
Provably selects “right” features when many features are irrelevant

Convex optimization problem
Unique global optimum
Efficient optimization

But, arbitrary choice among correlated regulators

xN
…x1 x2

w1
w2 wN

ETargets

parameters
w1

w2

x1 x2

* Tibshirani, 1996

L2 L1



Elastic Net* Regression

minimizew (w1x1 + … wNxN - ETargets)2+ Σ C |wi| + Σ D wi
2

Induces sparsity
But avoids arbitrary choices among relevant features

Convex optimization problem
Unique global optimum
Efficient optimization algorithms

Lee et al., PLOS Genetics 2009 * Zhou & Hastie, 200

xN
…x1 x2

w1
w2 wN

ETargets

w1
w2

x1 x2 L2 L1



Cluster genes into modules
Learn a regulatory program for each module

Learning Regulatory Network
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=

MFA1

Module 

GPA1-3 x
+

0.5 x

This is a Bayesian network
• But multiple genes share same program
• Dependency model is linear regression 



Genotype → phenotype

…ACTCGGTTGGCCTAAATTCGGCCCGG…

…ACCCGGTAGGCCTTAATTCGGCCCGG…

:

…ACTCGGTAGGCCTATATTCGGCCGGG…

Different 
sequences

Different 
phenotypes

??

Perturbations to
regulatory network



eQTL Data [Brem et al. (2002) Science]
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LirNet Regulatory network
E-regulators: Activity (expression) of regulatory genes
G-regulators: Genotype of genes

Measured as values of chromosomal markers

Lee et al., PNAS 2006; Lee et al., PLoS Genetics 2009
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Motivation
Not all SNPs are equally likely to be causal.

Gene

SNPs

TACGTAGGAACCTGTACCA … GGAAAATATCAAATCCAACGACGTTAGCCAATGCGATCGAATGGGAACGTA

ChrXIV: 449,639-502,316

SNP 1:
Conserved residue in a 
gene involved in RNA 
degradation

SNP 2:
In nonconserved 
intergenic region

“Regulatory features” F
1. Gene region?
2. Protein coding region?
3. Nonsynonymous?
4. Create a stop codon?
5. Strong conservation?

:

Idea: Prioritize SNPs that have “good” regulatory features

But how do we weight different features?

Lee et al., PLOS Genetics 2009



Bayesian L1-Regularization

wmk

ym

Module m

xmk

Regulator k

~ P(ym|x;w) 
= N (Σk wmkxmk,ε2) 

~ P(w)
= Laplacian(0,C)

higher prior variance
⇒ weight can more easily deviate from 
0
⇒ regulator more likely to be selected

wiwi

Prior
variance
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Lee et al., PLOS Genetics 2009



Metaprior Model (Hierarchical Bayes)

ym

xmk wmk ~ Laplacian (0,Cmk)

= g(ßTfmk)

:

~ P(ym|x;w) 
= N (Σk wmkxmk,ε2)

Cmk

fmk

Regulator
yprior ß

Module m

Regulator k

Module 1

Module M

xN
…x1 x2x1 x2

Emodule 1

Potential regulators

xN
…x1 x2x2

Emodule M

xN

Regulatory features
Inside a gene?
Protein coding region? 
Strong conservation?
TF binds to module genes 

:

“Regulatory potential” = 
ß1 x Inside a gene? + ß2 x Protein coding 
region? + ß3 x Conserved? …

YES
NO

:

YES
NO

:

NO
NO

:

w11
w12 w1N

wN1
wN2 wMN

Lee et al., PLOS Genetics 2009



Metaprior Method

Regulatory potentials
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Maximize 
P(E,ß,W|X)

Maximize 
P(E,ß,W|X)

Empirical hierarchical Bayes
Use point estimate of model parameters
Learn priors from data to maximize joint 
posterior



Transfer Learning
What do regulatory potentials do?

They do not change selection of “strong” regulators –
those where prediction of targets is clear
They only help disambiguate between weak ones

Strong regulators help teach us what to look for in 
other regulators

Transfer of knowledge 
between different prediction tasks



Learned regulatory weights
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Pairwise 
feature

Regulatory features

Lee et al., PLOS Genetics 2009

Yeast regulatory weights



How many predicted interactions have support in 
other data?

Deletion/ over-expression microarrays [Hughes et al. 2000; Chua et al. 2006]
ChIP-chip binding experiments [Harbison et al. 2004]
Transcription factor binding sites [Maclsaac et al. 2006]
mRNA binding pull-down experiments [Gerber et al. 2004]
Literature-curated signaling interactions

Biological evaluation I
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Biological Evaluation II
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Lirnet
Zhu et al (Nature Genet 
2008)Random

significance of support



Predicting Causal Regulators

Region Zhu et al [Nat Genet 08]

1 None

2
TBS1, TOS1, ARA1, CSH1, SUP45, 
CNS1, AMN1

3 None

4 LEU2, ILV6, NFS1, CIT

5 MATALPHA1
6 URA3
7 GPA1
8 HAP1
9 YRF1-4, YRF1-5, YLR464W

10 None

11 SAL1, TOP2

12 PHM7
13 None

Lirnet (top 3 are considered)
SEC18 RDH54 SPT7

AMN1 CNS1 TOS1

TRS20 ABD1 PRP5

2, MATALPHA1 LEU2 PGS1 ILV6
MATALPHA1 MATALPHA2 RBK1

URA3 NPP2 PAC2

STP2 GPA1 NEM1

HAP1 NEJ1 GSY2

SIR3 HMG2 ECM7

ARG81 TAF13 CAC2

MKT1 TOP2 MSK1

PHM7 ATG19 BRX1

ADE2 ORT1 CAT5

Finding causal regulators for 13 “chromosomal hotspots”

8 validated 
regulators in 7 

regions

14 validated 
regulators in 11 

regions

Lee et al., PLOS Genetics 2009



Current & Future Directions

Understand mechanism by which individual 
genotype leads to changes in phenotype

Genotype & copy number changes (e.g., in cancer)
First step to personalized medicine

Analysis and reconstruction of cellular pathways 
Understand immune response and how it is 
affected by aging
…



The Computer Science Inside

Computational Issues: Huge graphical models require 
development of new algorithms

Convex optimization methods for learning network structure
Learning using MAP inference
Using combinatorial optimization within standard inference

Statistical issues: Sparse data in high dimension
“Holistic models” to exploit correlations between different labels
Transfer learning between related problems
New algorithms for feature selection



http://ai.stanford.edu/~koller/

http://dags.stanford.edu/
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