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%’ | Bayesian Networks
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Graph structure encodes independence assumptions:
Job conditionally independent of Intelligence given Grade



%P Markov Networks
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The World i1s Richly Structured

= The web

= Webpages (& the entities they represent), hyperlinks
= Biological data

= Genes, proteins, interactions, regulation
= Physical environments

= People, rooms, objects

= Natural language



'6’ Problem

= Bayesian/Markov nets use attribute representation
= Real world has objects, related to each other

| I |

These “instances” are not independent o>
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Holistic Reasoning
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Main Application Domains

= Symbolic understanding of the physical world

= Understanding and reconstructing cellular
processes from genomic data



LUIIYy= 1l OUal.
Scene Understanding

“man wearing a "A cow walking
backpack, through the grass
smoking a cigarette, on a pasture by the sea”

walking a dog”



Object Detectlon




Basic Object Detection
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'grass’, 'road’, 'tree’, 'sky’, 'water’, 'building’, 'foreground’



V|Segmentation CRF
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V Hierarchical Scene Model

/’ objects
R, .

Energy Function
EP,R, S, G, A, O,v"*, K |1, 0)

pixels

[Gould, Gao, Koller submitted]



'5’ Results: 21-class MSRC

= Validate against state-of-

21 CLASS Mean
the-art approaches
= Region/pixel class only Shotton et &/ 22
= Ground truth labels are Gould et al. 76.5
approximate Pixelwise 75.3
= No geometry information Region-based 75.4
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[Gould, Fulton, Koller, ICCV 2009]



% High Quality Dataset
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= MSRC dataset is limited e it g S e L
= poorly labeled boundaries e [ :;E;”t

= Mmany missing pixels (void)
= N0 geometry information

= Collected images from
MSRC, Hoiem et al., Pascal
VOC

= /15 outdoor scenes with
high-quality labels
= region boundaries
= region class and geometry
= horizon

[Gould, Fulton, Koller, ICCV 2009]



'5. Amazon Mechanical Turk (AMT)

= $0.10 per task (regions, classes,
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= 5-10 minutes per task o E—
= 24-48 hour turn-around time (for = -

= Less than 10% of tasks needed e o e oS o b o e
rework Tl

= Total cost for labels: under BN
$250 (includes $40 textbook on k. —
Adobe Flash)

= Saving Steve from having to
label images: priceless.
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[Gould, Fulton, Koller, ICCV 2009]



%P AMT: Label Quality

Typical quality (hand Iabeled)

You don'’t always get R
what you want = N

Comparison with MSRC labels

r
|

[Gould, Fulton, Koller, ICCV 2009]




?|Example Results

.sky .tree .road .grass .water .bldg .mntn .fgobj.
[Gould, Fulton, Koller, ICCV 2009]
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VMore Example Results

[Gould, Fulton, Koller, ICCV 2009]



'5.

Application: 3d Reconstruction

s Estimate camera tilt from location of horizon

= Predict region 3D position using ray projected
through camera plane

horizon camera

------------------------------------- iImage plane

—

Image

ground plane

[Gould, Fulton, Koller, ICCV 2009]



Example 3D Reconstructions




VObject Detection Examples




%P Sliding-Window Failures

Our region-based object detector results




2%4 Object Detection
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2 with correct regions we’d get near perfect "y

detection, but region model still has some way

T run on Street Scene dataset * run on subset of 21-class MSRC data

[Gould, Gao, Koller submitted]



%’ |Shape-Based Segmentation

\ N

= Set of shape landmarks
= Shape defined by connecting piecewise-linear contour
= Semantic outlining = assignment L of landmarks to pixels

[Heitz, Elidan, Packer, Koller, NIPS-08b]



%P|The LOOPS Model

———

- -~
L —assignment of model
landmarks to pixels

Ak

P(LIO=11,w,u,X%)= pairwise image features

;KSHAPE(L H Z)]i[exp{ IJ(II’ K I)}

{ Outlining = MAP Inference over L }

[Heitz, Elidan, Packer, Koller, NIPS-08&]jdmark detectors




[UATI 2008]

Learning the Shape Model

Problem:
Training Set: With few instances, learned
models aren’t robust

Principal
Components

std +1




[UAI 2008]

Undirected Probabilistic Model

Dive;géhceHDiQé{gence

|:data -

Divergence:

Encourage parameters to Encourage parameters to
explain data be similar to parents



[UAI 2008]

Degrees of Transfer

Not all parameters deserve

equal sharing
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[UAI 2008]

Do Degrees of Transfer Help?
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[UAI 2008]

®P| Degrees of Transfer

Distribution of DOT coefficients
using Hyperprior
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Outlining Results: Mammals
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Outlining: Comparison
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[Heitz, Elidan, Packer, Koller, NIPS-08b]



l;" Descriptive Classification

Standard Approach
g Standard

Feature-based
Classifier [>

(XJI ') (Xz +) (XIV ')

TRAINING DATA

LOOPS Approach

=N s PR,
S| » LOOPS LA
o a1l I

LOOPS TRAINING DATA
2<< N

IIUPII




Mammals

Classification Accuracy
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%P Gene Regulatory Networks

I\NPUT INPUT
gl A gl B

Cantrolled by di verse mechamsms

lllllll

Modified b |% endogenous and

exogenous perturbatlons

http://en.wikipedia.org/wiki/Gene_regulatory network



P |Goals

= Infer regulatory network and mechanisms that
control gene expression

= |ldentify effect of perturbations on network

= Understand effect of gene regulation on phenotype



'3" Regulatory Network |

= MRNA level of regulator can indicate its activity level
= Target expression is predicted by expression of its regulators

= Use expression of regulatory genes as regulators

Transcription factors, signal transduction
proteins, mRNA processing factors, ..

0,
@@e

Da

LD 5 €
i)

Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006



%P |Regulatory Network I

= Co-regulated genes have similar regulation program
= Exploit modularity and predict expression of entire module
= Allows uncovering complex regulatory programs

| module |

— - —— g,
’— -~ -~

——————
- ~~

~~~. "Regulatory Program” ?’
N S




%P |Regulation as Linear Regression

minimize,, (ZwW;X; = E1 gets)?

parameters

Eorgets= Wi Xy F oo+ Wy Xy+€

= But we often have hundreds or thousands of regulators
= ... and linear regression gives them all nonzero weight!

Problem: This objective learns too many regulators



BP| Lasso* (L,) Regression

parameters

= Induces sparsity in the solution w (many w;'s set to zero)
= Provably selects “right” features when many features are irrelevant

= Convex optimization problem
= Unigue global optimum
= Efficient optimization

= But, arbitrary choice among correlated regulators
* Tibshirani, 1996



R |Elastic Net* Regression

- E )e+ X C |w,

Targets

= Induces sparsity
= But avoids arbitrary choices among relevant features

= Convex optimization problem
= Unique global optimum
= Efficient optimization algorithms

Lee et al,, PLOS Genetics 2009 * Zhou & Hastie, 20(



?‘ Learning Regulatory Network

= Cluster genes into |-3x (2
0.5 x QMFAL

= Learn a regulatory
|

(@)

This is a Bayesian network
 But multiple genes share same program
 Dependency L"ﬁ!el is linear regression

w e,

Lee et al., PLoS Genet 20
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%P Genotype — phenotype

/ Different Perturbations to Different \
sequences regulatory network phenotypes

...ACTCGGTTGGCCTAAATTCGGCCCGG... .\ / \

...ACCCGGTAGGCCTTAATTCGGCCCGG. l @ Q/.
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‘ e Q TL Da ta [Brem et al. (2002) Science]
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'3" LirNet Regulatory network

= E-regulators: Activity (expression) of regulatory genes

= G-regulators: Genotype of genes
= Measured as values of chromosomal markers @

Lee et al., PNAS 2006; Lee et al., PLoS Genetics 2009



%P | Motivation

= Not all SNPs are equally likely to be causal.

ChrX1V: 449,639-502,316

Gene

TACG TAGGAA CC TGTACCA ... GGAAAATATCAAATCCAACGACG TTAGCCAA TGCGA TCGAA TGGAACG TA

R GH G PN FEE TH

"Regulatory features” F
/ \ \\ 1. Gene region?
SNP 1: SNP 2: 2. Protein coding region?
Conserved residue in a In nonconserved 3. Nonsynonymous?
gene involved in RNA intergenic region 4. Create a stop codon?
degradation S
5. Strong conservation:

» JIdea: Prioritize SNPs that have "good” regulatory features

=  But how do we weight different features?

Lee et al., PLOS Genetics 2009



'2;’ Bayesian L,-Regularization

Zlog P(Yo | X, W) =D ClW,,, |

mk 4

Prior
variance
" / | W'I_—V
Module m i ) - —

higher prior variance
Regulator k ‘ = weight can more easily deviate from

o

~ P(W) Qregulator more likely to be selec%
= Laplacian(0,C)

é ~ P(Y,, /L'w)

=N (ZT w, mkxmldgz)

Lee et al., PLOS Genetics 2009



'6’

Metaprior Model (Hierarchical Bayes)

YES YES
Module| NO NO | .
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Lee et al., PLOS Genetics 2009



? MetaprlOr Meth()d BY(lab) MVLT ELVQ VSDASKQLW

RM(wild) MVIET ELWQ VSDASKQLU
Non-synonymous
Conservation
AA small < large

21| 3 | Regulatory
s Empirical hierarchical Bayes
« Use point estimate of model parameters —
« Learn priors from data to maximize joint

Yvy

x0 || x1| features F

- ._f
posterior antials
Maximize p
P(E,B,W/[X) Regulatory programs

x; ){x X,

Modlule;
e x Maximize

i P(E,B,W/X)
Lee et al., PLOS Genetics 2009 ﬁ B




&P Transfer Learning

= What do regulatory potentials do?

= They do not change selection of “strong” regulators —
those where prediction of targets is clear

= They only help disambiguate between weak ones

= Strong regulators help teach us what to look for in
other regulators

Transfer of knowledge
between different prediction tasks



Yeast regulatory weights

Regulatory features, 01 0.2 03

04 0.5
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Change of polarity

Change of pH
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Lee et al., PLOS Genetics 2009
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Learned reqgulatory weights

Human regulatory weights
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%P |Biological evaluation |

= How many predicted interactions have support in
other data?

= Deletion/ over-expression microarrays [Hughes et al. 2000; Chua et al. 2006]
ChIP-chip binding experiments [Harbison et al. 2004]
Transcription factor binding sites [Maclsaac et al. 2006]
mRNA binding pull-down experiments [Gerber et al. 2004]

= obiterature-curated-signaling-ini Lirnet without
) regulatory
§ 80 features
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o Module }’
%ointeractions % modules
Lee et al., PLOS Genetics 2009



?

Biological Evaluation |1

100
90~ — Lirnet
80 - — Zhu et al (Nature Genet
— R98%bm

70 -
60 -
50 -
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20 -

% supported regulatory predictions

significance of support
Lee et al., PLOS Genetics 2009



)

8 validated 14 validated
? P r C regulators in 7 S al R e g u I )| regulatorsin 11
7 reg ions

= Finding causy, regulators for 13 “chromosomal h\ ispots”

Region § Zhu et al [Nat Genet 08] Lirnet (top 3 are considered)
SEC18 RDH54 SPT7
1 § None
TBS1, TOS1, ARAL, CSH1, SUP45, AMN1 CNS1 TOS1
2 | CNS1, AMN1
3 | None TRS20 ABD1 PRP5
4 FLEUZ2,/ILV6, NFS1, CIT2, MATALPHAL | LEU2 PGS1 ILV6
5 | MATALPHA1 MATALPHAL1 [ MATALPHA2Z | RBK1
6 J URA3 URA3 NPP2 PAC2
7 | GPAL STP2 GPAl NEM1
8 | HAP1 HAP1 NEJ1 GSY2
9 1 YRF1-4, YRF1-5, YLR464W SIR3 HMG2 ECM7
10 | None ARGS81 TAF13 CAC2
11 § SALL, TOP2 MKT1 TOP2 MSK1
12 y PHMY PHMY7 ATG19 BRX1
13 § None ADE2 ORT1 CATS

Lee et al., PLOS Genetics 2009



Current & Future Directions

Understand mechanism by which individual
genotype leads to changes in phenotype

= Genotype & copy number changes (e.g., in cancer)

= First step to personalized medicine

Analysis and reconstruction of cellular pathways

Understand immune response and how it is
affected by aging



The Computer Science Inside

Computational Issues: Huge graphical models require
development of new algorithms

= Convex optimization methods for learning network structure

= Learning using MAP inference

= Using combinatorial optimization within standard inference

Statistical issues: Sparse data in high dimension
= “Holistic models” to exploit correlations between different labels
= Transfer learning between related problems
= New algorithms for feature selection
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http://ai.stanford.edu/~koller/
http://dags.stanford.edu/




	Probabilistic Models �of Structured Data
	Bayesian Networks
	Markov Networks
	The World is Richly Structured
	Problem
	Holistic Reasoning
	Main Application Domains
	Long-Term Goal: �Scene Understanding
	Object Detection
	Basic Object Detection
	Scene Segmentation
	Segmentation CRF
	Hierarchical Scene Model
	Results: 21-class MSRC
	High Quality Dataset
	Amazon Mechanical Turk (AMT)
	AMT: Label Quality
	Example Results
	More Example Results
	Application: 3d Reconstruction
	Example 3D Reconstructions
	Object Detection Examples
	Sliding-Window Failures
	Object Detection
	Shape-Based Segmentation
	The LOOPS Model
	Learning the Shape Model
	Undirected Probabilistic Model
	Degrees of Transfer
	Do Degrees of Transfer Help?
	Degrees of Transfer
	Outlining Results: Mammals
	Outlining: Comparison
	Descriptive Classification 
	Mammals 
	Gene Regulatory Networks
	Goals
	Regulatory Network I
	Regulatory Network II
	Regulation as Linear Regression
	Lasso* (L1) Regression
	Elastic Net* Regression
	Learning Regulatory Network
	Genotype  phenotype
	LirNet Regulatory network
	Motivation
	Bayesian L1-Regularization
	Metaprior Model (Hierarchical Bayes)
	Metaprior Method
	Transfer Learning
	Learned regulatory weights
	Biological evaluation I
	Biological Evaluation II
	Predicting Causal Regulators
	Current & Future Directions
	The Computer Science Inside

