Mixed Reversible Covalent Crosslink Kinetics Enable Precise, Hierarchical Mechanical Tuning of Hydrogel Networks
Volkan Yesilyurt
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Search for more papers by this authorAndrew M. Ayoob
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115 USA
Center for Biomedical Engineering, Charles Stark Draper Laboratory, Cambridge, MA, 02139 USA
Search for more papers by this authorEric A. Appel
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Present Address: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
Search for more papers by this authorJeffrey T. Borenstein
Center for Biomedical Engineering, Charles Stark Draper Laboratory, Cambridge, MA, 02139 USA
Search for more papers by this authorRobert Langer
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Daniel G. Anderson
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]Search for more papers by this authorVolkan Yesilyurt
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Search for more papers by this authorAndrew M. Ayoob
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115 USA
Center for Biomedical Engineering, Charles Stark Draper Laboratory, Cambridge, MA, 02139 USA
Search for more papers by this authorEric A. Appel
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Present Address: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
Search for more papers by this authorJeffrey T. Borenstein
Center for Biomedical Engineering, Charles Stark Draper Laboratory, Cambridge, MA, 02139 USA
Search for more papers by this authorRobert Langer
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Daniel G. Anderson
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115 USA
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]Search for more papers by this authorAbstract
Hydrogels play a central role in a number of medical applications and new research aims to engineer their mechanical properties to improve their capacity to mimic the functional dynamics of native tissues. This study shows hierarchical mechanical tuning of hydrogel networks by utilizing mixtures of kinetically distinct reversible covalent crosslinks. A methodology is described to precisely tune stress relaxation in PEG networks formed from mixtures of two different phenylboronic acid derivatives with unique diol complexation rates, 4-carboxyphenylboronic acid, and o-aminomethylphenylboronic acid. Gel relaxation time and the mechanical response to dynamic shear are exquisitely controlled by the relative concentrations of the phenylboronic acid derivatives. The differences observed in the crossover frequencies corresponding to pKa differences in the phenylboronic acid derivatives directly connect the molecular kinetics of the reversible crosslinks to the macroscopic dynamic mechanical behavior. Mechanical tuning by mixing reversible covalent crosslinking kinetics is found to be independent of other attributes of network architecture, such as molecular weight between crosslinks.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
adma201605947-sup-0001-S1.pdf214.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. P. Lutolf, J. A. Hubbell, Nat. Biotechnol. 2005, 23, 47.
- 2T. R. Hoare, D. S. Kohane, Polymer 2008, 49, 1993.
- 3G. Sun, X. Zhang, Y. I. Shen, R. Sebastian, L. E. Dickinson, K. Fox-Talbot, M. Reinblatt, C. Steenbergen, J. W. Harmon, S. Gerecht, Proc. Natl. Acad. Sci. USA 2011, 108, 20976.
- 4M. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2015, 15, 13.
- 5J. L. Ifkovits, E. Tous, M. Minakawa, M. Morita, J. D. Robb, K. J. Koomalsingh, J. H. Gorman 3rd, R. C. Gorman, J. A. Burdick, Proc. Natl. Acad. Sci. USA 2010, 107, 11507.
- 6B. S. Kim, J. Nikolovski, J. Bonadio, D. J. Mooney, Nat. Biotechnol. 1999, 17, 979.
- 7G. D. Nicodemus, S. J. Bryant, Osteoarthritis Cartilage 2010, 18, 126.
- 8A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Cell 2006, 126, 677.
- 9O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H. P. Lee, E. Lippens, G. N. Duda, D. J. Mooney, Nat. Mater. 2016, 15, 326.
- 10R. Langer, D. A. Tirrell, Nature 2004, 428, 487.
- 11E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed, O. A. Scherman, J. Am. Chem. Soc. 2010, 132, 14251.
- 12N. Huebsch, C. J. Kearney, X. Zhao, J. Kim, C. A. Cezar, Z. Suo, D. J. Mooney, Proc. Natl. Acad. Sci. USA 2014, 111, 9762.
- 13X. Hu, M. Vatankhah-Varnoosfaderani, J. Zhou, Q. Li, S. S. Sheiko, Adv. Mater. 2015, 27, 6899.
- 14M. Guvendiren, H. D. Lu, J. A. Burdick, Soft Matter 2012, 8, 260.
- 15S. C. Grindy, R. Learsch, D. Mozhdehi, J. Cheng, D. G. Barrett, Z. Guan, P. B. Messersmith, N. Holten-Andersen, Nat. Mater. 2015, 14, 1210.
- 16R. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14.
- 17D. D. McKinnon, D. W. Domaille, T. E. Brown, K. A. Kyburz, E. Kiyotake, J. N. Cha, K. S. Anseth, Soft Matter 2014, 10, 9230.
- 18M. C. Roberts, M. C. Hanson, A. P. Massey, E. A. Karren, P. F. Kiser, Adv. Mater. 2007, 19, 2503.
- 19W. L. Brooks, B. S. Sumerlin, Chem. Rev. 2016, 116, 1375.
- 20V. Yesilyurt, M. J. Webber, E. A. Appel, C. Godwin, R. Langer, D. G. Anderson, Adv. Mater. 2016, 28, 86.
- 21M. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, New York, 2003.
- 22J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, New York, 1980.
- 23A. Matsumoto, T. Ishii, J. Nishida, H. Matsumoto, K. Kataoka, Y. Miyahara, Angew. Chem., Int. Ed. 2012, 51, 2124.
- 24A. Matsumoto, S. Ikeda, A. Harada, K. Kataoka, Biomacromolecules 2003, 4, 1410.
- 25M. Piest, PhD Thesis, University of Twente, Enchede, The Netherlands 2011.
- 26L. I. Bosch, T. M. Fyles, T. D. James, Tetrahedron 2004, 60, 11175.
- 27P. J. Flory, J. Rehner, J. Chem. Phys. 1943, 11, 512.