Bio

Professional Education


  • Doctor of Philosophy, Universite De Paris Vii (2011)
  • Bachelor of Science, Universite De Nantes (2006)
  • Master of Science, Universite De Paris Vii (2009)

Stanford Advisors


Publications

All Publications


  • Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy JOURNAL OF INFECTIOUS DISEASES Le Gars, M., Kay, A. W., Bayless, N. L., Aziz, N., Dekker, C. L., Swan, G. E., Davis, M. M., Blish, C. A. 2016; 214 (11): 1666-1671

    Abstract

    Pregnancy-induced alterations in immunity may contribute to the increased morbidity associated with influenza A virus infection during pregnancy. We characterized the immune response of monocytes and plasmacytoid dendritic cells (pDCs) to influenza A virus infection in 21 pregnant and 21 nonpregnant women. In pregnant women, monocytes and pDCs exhibit an exaggerated proinflammatory immune response to 2 strains of influenza A virus, compared with nonpregnant women, characterized by increased expression of major histocompatibility complex class II (approximately 2.0-fold), CD69 (approximately 2.2-fold), interferon γ-induced protein 10 (approximately 2.0-fold), and macrophage inflammatory protein 1β (approximately 1.5-fold). This enhanced innate inflammatory response during pregnancy could contribute to pulmonary inflammation following influenza A virus infection.

    View details for DOI 10.1093/infdis/jiw448

    View details for Web of Science ID 000393128800008

    View details for PubMedID 27655870

    View details for PubMedCentralID PMC5144734

  • Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination JOURNAL OF IMMUNOLOGY Le Gars, M., Haustant, M., Klezovich-Benard, M., Paget, C., Trottein, F., Goossens, P. L., Tournier, J. 2016; 197 (8): 3225-3232

    Abstract

    Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.

    View details for DOI 10.4049/jimmunol.1600830

    View details for Web of Science ID 000387965100025

    View details for PubMedID 27605012