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Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been
characterized by low-pass filtered timeseries at frequencies≤0.1 Hz, and studies of these low-frequency fluctu-
ations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging
evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to
0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect mea-
sure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might
be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the
observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of
echo time (TE). Here we focus on two specific resting state networks — the default-mode network (DMN) and
executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-
dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be
resolved with TR= 1 s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional
models of hemodynamic response functions must bemodified to support resting state BOLD contrast, especially
at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the con-
ventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4–0.5 Hz is ~4 times that at b0.1 Hz); and (4) the spatial patterns
of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns
regarding RSFC above 0.1 Hz are discussed.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Conventional fMRI investigations of brain resting-state (RS) typical-
ly focus on functional connectivity (FC) below 0.1 Hz, and have contrib-
uted consistent and significant findings about the baseline brain
function (Biswal et al., 1995; Fox et al., 2005; Fransson, 2005; Greicius
et al., 2003; Zang et al., 2007). The rationale behind the great interest
in the low-frequency fluctuations and the band-pass filtering (0.01–
0.08/0.1 Hz) step employed in routine preprocessing of RS data is
mainly threefold: (1) spontaneous signals associated with major RS
networks have been found to be dominated by frequency components
below 0.1 Hz (Damoiseaux et al., 2006; Fransson, 2005); (2) cardiac/
respiratory-cycle-locked physiological noise components typically re-
side in frequency bands above 0.1 Hz, where neural-activity-relevant
signal is believed to be minimal; and (3) conventional MR techniques
only support whole brain acquisition at the time scale of seconds,

which potentially limits the capability to observe spontaneous activity
at a broader frequency spectrum.

Recent advances in MR techniques have allowed the examination of
brain FC at faster temporal scales with improved signal to noise ratio
(SNR) (Feinberg et al., 2010; Hennig et al., 2007; Larkman et al., 2001;
Lin et al., 2006; Moeller et al., 2010; Zahneisen et al., 2011), and emerg-
ing evidence has shown that spontaneous activity may persist in
frequency bands above 0.1 Hz (Boyacioglu et al., 2013; Gohel and
Biswal, 2014; Niazy et al., 2011; Wu et al., 2008) and even up to at
least 0.8 Hz (Boubela et al., 2013; Lee et al., 2013). Growing interest in
the higher frequency behavior of spontaneous activity has yielded
several interesting discoveries regarding RSFC. For instance, some
groups reported frequency specificity of the spatial patterns associated
with different RS networks, and the preliminary interpretations were
linked with similar frequency-dependent behavior of spontaneous ac-
tivity using electrophysiological recordings (Gohel and Biswal, 2014;
Wu et al., 2008). Using a sliding window approach, Lee et al. (2013) ob-
served more stable FC patterns in the visual/sensorimotor cortex in the
0.5–0.8 Hz band compared to 0.01–0.1 Hz, which may relate to the fact
that high-frequency spontaneous activity can equilibrate in shorter time
windows while low-frequency components could exhibit spuriously
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large dynamics if the minute-long window fails to encompass a few
complete 2π cycles.

However, cautious optimism should be taken towards the advan-
tages and potential opportunities brought by the observable high-
frequency fluctuations: as an indirect measure of neuronal activity,
blood-oxygenation-level dependent (BOLD) signal results from an in-
herently slow hemodynamic process, which in fact might be too slow
to accommodate the observed high-frequency FC. Widely adopted
models of task-evoked hemodynamic response functions (HRFs) (for
instance, Glover, 1999, canonical HRF in SPM8, Wellcome Trust Centre
for Neuroimaging, University College London, UK), have been tacitly
assumed to apply equally well to either task-based or RS analysis, for
example in de-convolving the true neural activity from RS BOLD re-
sponses (Niazy et al., 2011; Tagliazucchi et al., 2012; Wu et al., 2013)
or establishing direct links between electrophysiological recordings
and BOLD signals (Liu et al., 2012; Sadaghiani et al., 2010). However
such HRF models only support the persistence of BOLD contrast at fre-
quencies up to ~0.3 Hz, which thereby seems inconsistent with recent
observations. Without questioning the validity of these HRF models,
distinctions between task and rest have been widely accepted to lie in
mental functionality instead of the underlying slow hemodynamic na-
ture, which is thought to be limited by the process of perfusion through
the venous compartment. Thus, it has become of critical importance to
investigate whether the observed high-frequency FC originates from
neural activity (through a BOLD mechanism) or other un-identified
sources.

Recently, fMRI acquisitions with multiple echoes have been applied
to differentiate between BOLD and non-BOLD components of fMRI
datasets (Kruger and Glover, 2001; Kundu et al., 2012; Peltier and
Noll, 2002), based on the fact that percent signal change of BOLD signal
should be linearly dependent on TE due to R2⁎ (transverse relaxation
rate) decay. Similarly, we can utilize the property of TE-dependence to
examine whether the observed RSFC above 0.1 Hz also has a BOLD-
like origin.

In the present study, we collected RS data at different TEs, attempt-
ing to gauge the relative contributions of BOLD and non-BOLD compo-
nents to RSFC at different frequency scales (with TR = 1 s, we were
able to resolve spontaneous activity up to 0.5 Hz). Resting-state HRFs
were simulated by evaluating Buxton's balloon model (Buxton et al.,
1998; Mildner et al., 2001) in the equilibrium state to heuristically esti-
mate the qualitative changes of HRFwaveforms that may accommodate
the elevated frequency responses, and possibly the quantitative upper
bound of frequency ranges that these changes may promise. Network
patterns at two non-overlapping frequency bands (b0.1 Hz) and (0.2–
0.4 Hz) were further compared to assess the frequency dependence of
the spatial patterns associated with two RS networks: the default-
mode network (DMN) and the executive-control network (ECN).

Method

Correlated signal amplitudes as a function of TE

Theory
Assumingmono-exponential decay, fMRI signals can bemodeled as:

S ¼ S0e
−TE"R#

2 : ð1Þ

where S0 is the initial signal amplitude at TE=0, and R2⁎ is the inverse of
relaxation time 1/T2⁎. Accordingly, the normalized signal change (the 1st
order derivative of raw fMRI signal divided by the baseline amplitude S)
should be an additivemixture of BOLD component— R2⁎ change (linear-
ly dependent on TE), and non-BOLD component — small changes in S0
(Kruger and Glover, 2001; Kundu et al., 2012):

ΔS
S

¼ ΔS0
S0

−TE " ΔR#
2: ð2Þ

Hence, if we acquire fMRI data at different TEs, and further assume
that ΔS0

S0
is a fixed value independent of ΔR2⁎ changes, we are able to ex-

amine whether the signal fluctuations – which contribute to the
persisted functional connectivity above 0.1 Hz – come from a BOLD-
like origin by fitting signal changes to the linear model in Eq. (2) direct-
ly. The ratio between fitted parameter ΔS0

S0
(intercept) and ΔR2⁎ (slope)

can further inform the fractional contribution of BOLD and non-BOLD-
like components to the observed functional connectivity.

Experiments
Seven healthy subjects (2 females, aged 35 ± 17 years) recruited

from the Stanford community participated in the current study,
among whom, four subjects were scanned a second time with identical
protocols 5–6 months after the first experiment to examine reproduc-
ibility. All subjects provided written informed consent, using a protocol
approved by the Stanford Institutional Review Board.

FMRI data were collected using a 3 T scanner with an 8-channel
receive-only radio frequency coil (GE Discovery 750, Milwaukee, WI).
Fifteen oblique axial slices were acquired with 4-mm slice thickness,
1 mm-skip (covering major regions inside the DMN and ECN). T2-
weighted fast spin echo structural images (TR = 3000 ms, TE =
68ms, ETL=12, FOV=22 cm,matrix 192× 256)were acquired for an-
atomical reference. A gradient echo spiral-out pulse sequence was used
for T2*-weighted functional imaging (TR = 1000 ms, flip angle = 61°,
matrix 64 × 64, FOV= 22 cm, same slice prescription as the anatomical
volume). Each subject underwent six 6-min RS scans with TE = 5, 10,
15, 20, 25, 30 ms separately (order was randomized across subjects).
Respiration and cardiac (pulse oximetry) data were recorded using
the scanner's built-in physiological monitoring system.

Data preprocessing
Datasets were preprocessed using custom C and Matlab routines.

Standard preprocessing included slice-time correction, physiological
noise correction with both RETROICOR (Glover et al., 2000) and
RVHRCOR (Chang et al., 2009), and nuisance regression of scan drifts
(linear and quadratic trends), as well as six head motion parameters.
Temporal signals were normalized to percent signal changes. No spatial
smoothing was conducted, and all the analyses were performed in sub-
jects' native spaces.

Correlated signal amplitude
Here, we focused on the RSFC within the DMN and ECN. The corre-

lated signal amplitude (the intensity of sub-component inside a signal
that is correlated with the rest of the network, i.e. the ‘true’ signal that
contributes to the observed functional correlation) of time series within
each network was calculated as follows: For each subject,

(1) datasets from scanswith TE=15, 20, 25, 30mswere normalized
to z-score (demeaned and normalized by the temporal standard
deviation), temporally concatenated, and entered into the GIFT
independent component analysis (ICA) toolbox (http://mialab.
mrn.org/software/) to extract the topographies of the DMN and
ECN (as the fMRI acquisition only covered part of the brain, the
# of ICs was set to be 10, and TE = 5 and 10 ms scans were not
used due to low BOLD contrast);

(2) network masks were generated based on the ICA results (see
Appendix A schemes to generate the RS network masks from
ICA results for detailed description);

(3) square roots of the averaged between-voxel covariance values
(see Appendix B Computation of between-voxel covariance
across different frequency bands) inside the DMN and ECN
masks were calculated across different frequency bands: 0–
0.5 Hz (B0), 0.01–0.1 Hz (B1), 0.1–0.2 Hz (B2), 0.2–0.3 Hz (B3),
0.3–0.4 Hz (B4), and 0.4–0.5 Hz (B5) to represent the correlated
signal amplitudes.
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Correlated signal amplitude vs. TE
Correlated signal amplitude from each subject was normalized

(divided by the mean correlated amplitude across different TEs of B0
band), and further taken independently to regress against TEs (i.e. 7 ob-
servations for each TE, 42 observations at 6 different TEs in total) to test
the linear dependence of spontaneous FC in different frequency bands.
For subjects who participated in the study twice, correlated signal am-
plitudes from the two separate scans were averaged before group
fitting.

To test the reproducibility of the results on TE-dependence, the ‘cor-
related signal amplitude vs. TE’ linear regression was performed for
each twice-scanned subject's scans separately, and the estimated re-
gression parameters from the two scans were quantitatively compared
with a paired-t test (see below the TE-dependence of correlated signal
amplitude section).

Using the averaged covariance values of all the voxel-pairs within a
network mask instead of a single signal per cortical region obtained by
averaging all voxels within the region can enhance SNR and data consis-
tency across subjects, but can also raise potential concerns— voxel-pairs
within a network mask consist of both inter- and intra-region voxel-
pairs. If the former, which are more informative in the sense of ‘correla-
tion’ (synchronized fluctuation between remote cortical regions), are
overwhelmed by the latter — which may contain synchronized non-
neuronal-activity-related confounds due to closer cortical locations,
conclusions on TE-dependence drawn above would become less con-
vincing. To examine such concerns, an alternate analysis was performed
by extracting the time series from the voxel with peak ICA z-score in
each region of interest (ROI) (see Fig. 1 for atlases of the chosen network
ROIs) to represent the overall temporal behavior of that ROI, and the av-
erage of the pair-wise correlations between ROIs was computed as the
correlated signal amplitudes associated with each network.

To obtain a more comprehensive view on the frequency characteris-
tic of the correlated BOLD-like components, ‘correlated signal amplitude
vs. TE’ linear regression (see the Correlated signal amplitude vs. TE sec-
tion above) was further performed at each specific frequency instead of
divided bands, and the fitted slope β( f) at each frequency fwas taken to
reflect the signal amplitude of BOLD-like component. To suppress ill-
conditioned estimation of β( f) due to noise, a Tikhonov regularization
was applied using Eq. (3):

argminα;β ∑ f ϵ 0 0:5½ 'Hz∑TE¼5∼30ms Sc;TE fð Þ−α fð Þ−TE " β fð Þ
!! !!2

2

" #
þ λ αk k22 þ βk k22

" #n o

ð3Þ

where Sc,TE(f) denotes the correlated signal amplitude at frequency f and
echo time TE, and α( f) and β( f) denote the intercept and slope term in
Eq. (2). Unlike previous analysis where all the subjects' data were com-
bined for a single model fitting, this analysis was performed for individ-
ual subjects separately. In this analysis we set λ = 1, and the subject
mean of the fitted BOLD-like component did not change prominently
for λ ∈ [10−7 101].

Model of the RS HRF

The HRF in the resting state wasmodeled based on Buxton's balloon
model (Buxton et al., 1998), with implementation and parameters
adapted for 3 T (Mildner et al., 2001). To mimic RS, a negligible flow
input was entered into the non-linear system (two differential equa-
tions characterizing the changes of deoxygenated hemoglobin concen-
tration and vessel volumes). The equations are listed in Appendix C
Equations for RS HRF simulation, and detailed parameters of the simula-
tion are listed in Table 1. The difference in our calculation therefore lies
in assuming only small perturbations from the baseline condition rather
than the large in-flow modeled for task-evoked conditions.

Seed-based correlation

Pre-processed data were temporally filtered into two distinct fre-
quency bands: (b0.1 Hz) and (0.2–0.4 Hz). The spatial patterns of RS
networks within the two frequency bands were derived using seed-
based Pearson correlation, and voxels with peak ICA z-scores in the pos-
terior cingulate cortex (PCC) region and among all the regions in the
ECN map from ICA were chosen as the network seeds for DMN and
ECN separately.

Results

TE-dependence of correlated signal amplitude

Fig. 2 plots the correlated signal amplitude as a function of TE in the
six different frequency bands: 0–0.5 Hz (B0), 0.01–0.1 Hz (B1), 0.1–
0.2 Hz (B2), 0.2–0.3 Hz (B3), 0.3–0.4 Hz (B4), and 0.4–0.5 Hz (B5). Sig-
nals across all frequency bands exhibited a significantly linear depen-
dence on TE, demonstrating persisting BOLD-like contributions to
RSFC at frequency bands above the conventional 0.1 Hz. However, inter-
cepts of the fitted linear models deviated from the theoretical zero, and
were frequency dependent and more prominent in higher frequency

Fig. 1. ROI atlases of the DMN and ECN (network templates downloaded from http://findlab.stanford.edu/functional_ROIs.html).
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bands (see Table 2 for the statistical significance of fitted intercepts, and
Fig. 3 for the ratio of fitted intercepts and slopes — the ratio at B5 is ~4
times that of B1), implying increased contributions from non-BOLD-
contrast relative to BOLD contrast at higher frequencies.

A paired-t test (α=0.05) revealed no significant difference between
the fitted parameters from two separate sets of scans except the fitted
slope of (0.1–0.2 Hz) (p = 0.0386, uncorrected). At the group level
(correlated signal amplitudes of different subjects were combined and
regressed against TE), results turned out to be remarkably reproducible,

as revealed by the comparison of two separate scans from subjects who
were scanned twice (see Fig. 3, Supplementary Fig. S1).

Results estimated using signals from separate ROIswere qualitative-
ly similar — spontaneous FC exhibited linear TE-dependence in all the
frequency bands and increasing fractions of non-BOLD-like contribu-
tionswere present at higher frequencies, although therewere quantita-
tive differences in the values of fitted slopes and intercepts (see Table 2,
Fig. 3, Supplementary Fig. S2).

Figs. 4E and F show the frequency characteristics of BOLD-like sig-
nal amplitudes within DMN and ECN respectively. Consistent with
prior RS studies, the power spectrum primarily encompasses frequen-
cies b0.1 Hz, and signals decay fast at higher frequencies but the ampli-
tude (the slope of the TE-dependence of signal) appears to reach a non-
zero asymptote up to 0.5 Hz.

HRF at rest

The simulated RS HRFs (see the Model of the RS HRF section) and
their corresponding frequency responses for the range of parameters
in Table 1 are shown in Figs. 4C and D, respectively. Compared with
the HRF models during task conditions where large changes in capil-
lary flow into the venous outflow tract are assumed (Figs. 4A, B), the
RS waveforms have accelerated signal rise and recovery as well as
diminished undershoot — resulting in elevated frequency responses
at 0.3 Hz (and beyond to ~1 Hz). If we further contrast modeled fre-
quency characteristics of HRFs at task and rest conditions (Figs. 4B,
D) with measured BOLD spectral characteristics (Figs. 4E, F), we note
that the RS HRF model more reasonably supports the BOLD spectra

Table 1
Summary of the parameters used to simulate the rest HRF. Balloon model parameters
were selected based on the values reported in previous literature — Mildner et al.
(2001) for α, τ0, τv, k1, k2, and k3 and Buxton et al. (2004) for E0, and V0.

Parameters Values

Inflow
(a trapezoid)

Ramp time 0.1 s
Maximum amplitude 1.05
Plateau time 1 s

Balloon model
parameters

α (steady-state flow-volume relation: v = fα) 0.3–0.6
τv (a viscosity parameter depicting an
additional resistance to rapid volume
changes during undershoot)

25–35 (s)

τ0 (mean transit time through the venous
compartment at rest)

1.8–2.5 (s)

E0 (baseline O2 extraction fraction) 0.4
V0 (baseline blood volume) 0.03
Dimensionless parameters quantifying
the BOLD contributions from different
components

k1 6.7
k2 2.73
k3 0.57

Fig. 2. Functional connectivity signal amplitudes vs. TE. Statistics shownhere are standard linearmodel vs. Gaussian noise tests; lack-of-fit testswere also performed and failed to reject the
linear hypothesis for all frequency bands (not shown). To account for the inter-subject variability, each subject's correlated signal amplitudes were first normalized (divided by themean
correlated amplitude across different TEs of B0 band) before group fitting.
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estimated from experimental data than does the task HRF (Figs. 4A, B):
Under the roughly linear assumptions of the hemodynamic process
(Boynton et al., 1996; Dale and Buckner, 1997), non-zero system out-
puts (Figs. 4E, F) above 0.3 Hz require a non-zero response of the system
transfer function (HRF in the stable hemodynamic system) in the corre-
sponding frequency range. It is important to note that without changing
the fundamental balloonmodel design, but simply running themodel at
baseline conditions rather than elevated RCBF, the frequency response
is elevated enough to support the measured BOLD fluctuations at high
frequencies. These results suggest the need to utilize different HRF
models under task and RS conditions.

Seed-based RS functional connectivity

Fig. 5 shows the RS connectivity patterns from the seed-based corre-
lation analysis (see the Seed-based correlation section above) in repre-
sentative subjects at two non-overlapping frequency bands (b0.1 Hz)
and (0.2–0.4Hz); correlationmapswere smoothed by aGaussian kernel
(FWHM= 4 mm) before display. Results of the remaining subjects are
displayed in Supplementary Figs. S3 and S4. FC b 0.1 Hz exhibited robust
RSN patterns as reported in previous literature (Greicius et al., 2003;
Shirer et al., 2012) in all the examined subjects, while connectivity pat-
terns between 0.2 and 0.4 Hzwere observable in a subset of subjects, as
shown in Fig. 2 and Supplementary Figs. S3 and S4. Notably, although
RSFC persisted at a higher frequency range in certain subjects, the
spatial patterns were frequency dependent: for instance, in the DMN

of sub02, the correlation of the dorsolateral prefrontal cortex and the
PCC seed was significantly negative at frequency bands below 0.1 Hz,
but became significantly positive between 0.2 and 0.4 Hz, as indicated
by white circles (Fig. 5A).

To further quantify the similarity of RS network patterns at different
frequency bands, we introduced a similarity measure POV as follows:

Percentage of overlapped voxels POVð Þ ¼ CorrMapb 0:1Hzð Þ∩ CorrMap0:2∼0:4Hzð Þ
CorrMapb 0:1Hzð Þ∪ CorrMap0:2∼0:4Hzð Þ

where CorrMap refers to the thresholded correlationmap. The POV sim-
ilarity between network patterns derived at different frequencies is
shown in Fig. 6A. Among all the results associated with DMN and ECN,
the maximum POV is only ~50%, reflecting inconsistent spectral behav-
iors of spontaneous activity in general. Moreover, the curves of ‘POV vs.
thresholds’ (dashed blue lines) vary largely across subjects, implying
non-negligible inter-subject variability in frequency specificity of spon-
taneous FC.

We also counted the number of voxels with significant positive/
negative correlations within DMN (p b 0.05, |r| N 0.13, uncorrected)
for each subject, as shown in Fig. 6B. Compared to correlations estimat-
ed utilizing thewhole frequency band, both positive and negative corre-
lationswere amplified in the restricted band b0.1 Hz, and diminished at
0.2–0.4 Hz. In particular, anti-correlations were strongly attenuated in
higher frequency bands for all the examined subjects.

Noise and SNR as a function of frequency

Results presented above (Figs. 2, 4E, F) suggest that although spon-
taneous activity persisted at frequencies above 0.1 Hz, the amplitude
still decays quickly as a function of frequency. Hence, to support the ob-
served functional connectivity at higher frequency bands, residual noise
must also decay as a function of frequency to compensate. Fig. 7A shows
the amplitudes of signals (the correlated part of the raw signals) and
noise (uncorrelated residuals) across different frequency bands esti-
mated from ROI signal pairs (see Fig. 1), and both decrease quickly as
frequency increases. As a result, the SNR, which is tightly coupled to
correlation amplitude, exhibits a milder decay compared to BOLD am-
plitudes themselves (Fig. 7B). Indeed, the SNR at B5 (0.4–0.5 Hz) is
~50% that at B1 (0.01–0.1 Hz), while the corresponding signal ratio is
only ~13%.

Influences of distinct HRF spectral characteristics on the spatial pattern of
functional connectivity

If regions within the same RS network are characterized by different
HRFs (both amplitudes and the frequency responses), the evoked re-
sponses across brain regionswill naturally exhibit distinct intensity pat-
terns at different frequencies even though the underlying neuronal
mechanisms (system input)may be spatially-invariant, andmay further
result in frequency-dependent correlation patterns when contaminated
by noise with disproportional spectral characteristics.

Table 2
Summary of the statistical significance (p-values) of the fitted intercepts (conventional t test of the estimated covariates in a linear regression). ‘Voxel-pairs’: fitted results using between-
voxel covariance as correlated signal amplitude; ‘ROI-pairs’: fitted results using covariance between network ROIs as correlated signal amplitude; ‘Reproducibility’: fitted results in the
reproducibility test (datasets from four subjects acquired in separate scans) using between-voxel covariance as correlated signal amplitude. ‘Trial 1’: data collection from the 1st trial of
the experiment; ‘Trial 2’: data collection from the 2nd trial of the experiment.

0–0.5
Hz

0.01–0.1
Hz

0.1–0.2
Hz

0.2–0.3
Hz

0.3–0.4
Hz

0.4–0.5
Hz

Voxel-pairs DMN 2.8e−5 9e−4 1.4e−3 4.3e−3 1.1e−6 7e−7
ECN 1.4e−6 3.1e−4 1.4e−4 4e−3 1.8e−4 1.8e−5

ROI-pairs DMN 0.051 0.128 4e−3 0.038 1.1e−4 1.2e−4
ECN 0.030 0.443 8.3e−4 5.1e−4 1.5e−6 8e−6

Reproducibility Trial 1 6.7e−7 1.7e−4 0.039 7.9e−4 4.2e−6 2.9e−8
Trial 2 4e−3 9e−3 0.015 0.36 0.025 8e−3

Fig. 3. Ratios of fitted intercepts (non-BOLD contrast) over slopes (BOLD contrast), sug-
gesting increased importance of non-BOLD contributions at higher frequencies; see
Table 2 for descriptions of ‘Voxel-pairs’, ‘ROI-pairs’, and ‘Reproducibility’.
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To examine the potential confounds from inconsistent HRF
shapes (frequency characteristics) inside a RS network on the exhibited
network pattern, we take signals inside the DMN of sub01(2) (Fig. 8B)
as an example for further analysis. The recently proposed blind de-
convolution approach (Wu et al., 2013) was employed to estimate the
rest HRFs of each ROI (HRFs were fitted with bases shown in Fig. 8A).
De-convolution resulted in heterogeneous HRFs across ROIs (Fig. 8C)
and differences in intensity patterns across frequency bands (shown
in Fig. 8D, where the intensity of ROI 1 was nearly identical with ROI
4 b 0.1 Hz, while prominently higher than ROI 4 within 0.2–0.4 Hz, as
indicated by red arrows). We therefore performed further simulations
to examine the influence of HRF inconsistency across regions on the
frequency characteristics of the overall networks. In the simulation,
we assumed periodic autonomic neuronal stimuli at two distinct pe-
riods — 3 s (‘Event1’) and 15 s (‘Event2’) (Fig. 8 E ‘events’), and signals
from different ROIs were simulated by convolving the stimulus with
the estimated HRFs (Fig. 8E, ‘Simulated signals’) and temporally filtered
(0.2–0.4 Hz for ‘Event1’, b0.1 Hz for ‘Event2’) to remove higher order
harmonics. Raw noise terms were generated from randomly permuted
versions of the fitted residuals from the HRF estimation. To mimic
the frequency-dependence of SNR in real data (Fig. 7), the raw noise
was temporally filtered into two bands (b0.1 Hz, SNR ~ 1.40 and 0.2–
0.4 Hz, SNR ~ 0.74) and scaled separately based on the mean standard
deviation of the simulated signal amplitudes across ROIs (i.e. noise
levels of different ROIs were identical) and SNR at the corresponding
band. Contrasting the correlation matrixes of the ROIs under different
stimulus conditions (Fig. 8E Correlationmatrix, top, 0.2–0.4 Hz, bottom,
b0.1 Hz) clearly demonstrates differences in the patterns. For instance,
correlation between ROIs 4 and 5 was higher than ROIs 1–5 below
0.1 Hz, but the comparison was inverted in 0.2–0.4 Hz band (indicated
with red arrows), which was attributable to the changes of intensity
patterns shown in Fig. 8D. Imagining the simulated neuronal stimulus
being an additivemixture of ‘Event1’ and ‘Event2’, data correlation atfil-
tered bands would therefore exhibit a distinct correlation structure as
shown here.

It may appear contradictory that we have suggested modifications of
hemodynamicmodels at rest, but still adopted thebases from taskmodels
(Fig. 8A) to de-convolve RSFC data to generate rest HRFs (Fig. 8C). How-
ever, for task models, the coefficients fit for the amplitude of the three
bases in the general linear model must have a specific relationship so
that the linear approximation of the 1st order derivative can hold. Here,
we relaxed such constraints, and only set |βdispersion |≤ 0.5βcanonical to en-
force reasonable shapes of fitted HRFs (no double overshoots), which
resulted in more flexible waveforms and extended frequencies beyond
0.3 Hz (Fig. 8C). Of note, the simulations performed here do not aim to
justify the validity of the blind de-convolution approach (the fitted
HRFs indeed deviate from the shapes simulated with Buxton's model
(cf. Fig. 4C)), but rather to generate versatile HRFs within a RS network
in order to demonstrate that frequency specificity of RSFC may also
source from a non-stationary vascular origin.

Discussion

BOLD-like contributions to RSFC above 0.1 Hz

With TR= 1 s, we observed salient linear dependence of correlated
signal amplitudes on TE at frequency bands up to 0.5 Hz within the
DMN/ECN, demonstrating persistence of BOLD-like RSFC at frequencies
above 0.1 Hz.

The apparent contradiction between predictions from the conven-
tional HRF model (Fig. 4B) and BOLD-like signals at frequency bands
up to 0.5 Hz (Figs. 4E, F) implies that canonical task HRFsmay not be ap-
plicable to rest conditions, where the cerebral blood flow exhibits only
small fluctuations about equilibrium. Simulations using Buxton's
balloon model at equilibrium extends the limit of observable BOLD re-
sponses to nearly 1 Hz (Fig. 4D), and the simulated HRFs (system trans-
fer functions) qualitatively support the experimental results in Figs. 4E
and F (fitted slope of correlated signal amplitudes as a function of
frequency, viewed as system outputs). To our knowledge, a distinction
between the HRF during task and in RS has not been proposed before.

Fig. 4. (A) Conventional HRFs and (B) frequency responses; (C) simulated RS-HRFs and (D) frequency responses; (E, F) BOLD signal amplitudes (fitted slopes, BOLD-like contrast only) vs.
frequency estimated from experimental data for DMN and ECN, respectively, normalized by themaximum amplitude of subjectmean. As predicted, BOLD signal amplitudes dropped dra-
matically with frequency, but were still nonzero at the highest frequency (0.5 Hz).
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Fig. 6. (A) The POV (percentage of overlapped voxels) similarity index between the high-frequency RSFC pattern (0.2–0.4 Hz, thresholded at r=0.15) and the low-frequency RSFC pattern
(b0.1 Hz, thresholds were varied from 0 to 0.8). Each dashed blue line represents the result of one single scan. Dark line presents themean; (B) the number of voxelswith significant pos-
itive/negative correlationswith PCC (p b 0.05, |r| N 0.13, uncorrected) at different frequency bands, the numbers of voxels significantly anti-correlatedwith PCC (blue) aremultiplied by ten
to contrast those associated with positive correlations (red) on the same legend scale; error bars are the standard deviations across subjects.

Fig. 5. DMN/ECN patterns of representative subjects at b0.1 Hz (upper rows) and 0.2–0.4 Hz (bottom rows) (|r| N 0.2, p b 0.002, uncorrected). The power spectra of the chosen network
seed signals at (b0.1 Hz) and (0.2–0.4 Hz) are highlighted in blue and red separately. Numbers in the parenthesis indicate the scan trial for subjects who participated twice.
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While our extension of Buxton's balloon model to RS conditions may
need further refinement, these simulations demonstrate that higher
frequency BOLD signal changes can be predicted than is expected
from current models as the strength of stimulus input approaches equi-
librium. Qualitatively, because the outflow tract “balloon” is in equilibri-
um rather than distended by a bolus of deoxygenated blood from an
evoked metabolic response, there is negligible signal undershoot and a
more rapid response to small perturbations in blood flow.

Of note, although the modified RS HRF apparently supports BOLD
responses in frequency bands up to 1Hz, the BOLD spectrum still decays
quickly due to the inherently sluggish nature of perfusion through the
capillary bed. Despite this decrease in signal at higher frequencies, the
persistence of significant functional connectivity in the high frequency
correlation patterns (Fig. 5 and Supplementary Figs. S3, S4) suggests
that residual noise must also decay as a function of frequency to com-
pensate, as was proposed by Lee et al. (2013) and demonstrated in
Fig. 7 of the present datasets.

Although the spectral behavior of the uncorrelated noise residuals
(Fig. 7A noise) is in accordance with the wide prevalence of ‘1/f’-like
noise found in nature, and specifically in fMRI signals (Bullmore et al.,
2001; He, 2011), further exploration into the confounding sources of
noise may provide additional insights into the mechanisms underlying
FC structures at different frequency scales. For instance, it is possible
that RSFC at the lower frequency range meditates the general excitabil-
ity (Raichle, 2011) and distinct RS networks that are spatially over-
lapped (Smith et al., 2012), while RSFC at the higher frequency ranges
may be confined to focal functions. Thus, an ROI in one RS network
(RSN1 for instance) may contain slow fluctuations synchronized with
the principal activity associated with a different network (say RSN2)
but uncorrelated with the temporal behavior of the other ROIs inside
RSN1. It is also possible that fluctuations and FC at low-frequency may
derive largely from the maintenance of basic hemodynamic stasis that
is controlled by the parasympathetic nerve system rather than by fluc-
tuations in neural metabolism. If that is so, then higher frequency FC
may offer a more direct and precise characterization of cognitive pro-
cesses than the typical low-pass filtered FC analyses.

Non-BOLD-like contributions to RSFC above 0.1 Hz

As demonstrated in Fig. 2, the correlated signal amplitude remains
positive as TE approaches zero at all frequencies, which deviates from
the theoretical BOLD model. The ratio of the fitted intercepts to the
slopes further suggests more prominent fractional contributions from
the non-BOLD-like components to RSFC at higher frequency ranges
(see Fig. 3). One possible mechanism is blood inflow (Gao and Liu,
2012), however this contribution is most prominent with heavy T1
weighting and not likely to be appreciable at the 1 s TR employed
here. An alternate contrast mechanism that is most important as TE
approaches 0, that of proton density weighted imaging is Signal En-
hancement by Extravascular water Protons (SEEP), which reflects en-
dogenous proton-density changes associated with astrocyte swelling
and increased tissue water content in active neural tissue (Figley et al.,
2010). This alternative mechanism underlying fMRI changes was first
identified in spinal cord imaging (Stroman et al., 1999) and extended
to brain areas later (Stroman et al., 2001). It has been postulated to ac-
count for the non-zero extrapolates at TE= 0 in multi-TE experimental
results resembling current observations (Stroman et al., 2001). More-
over, as a direct measure of the endogenous change of proton density
(signals may exhibit no clear favor in specific frequency bands), it is in
good accordance with the extended correlations in a higher frequency
range (see Figs. 4E, F). However, due to the long TR required for the
acquisition of proton-density weighted images, resolving SEEP contrast
at higher temporal scales is challenging. Accordingly, without further
experimental evidence, the interpretation proposed here is speculative.

Another potential source for non-BOLD functional connectivity
relates to the physiological noise, which has been demonstrated by
Kruger and Glover (2001) to contain both BOLD-like components
(caused by the same mechanism that induces changes in R2⁎) and non-
BOLD-like image-to-image signalfluctuationsdue to cardiac/respiratory
functions. Although physiological corrections (Glover et al., 2000;
Chang et al., 2009) were applied to the datasets, residuals may still
persist and contribute to the non-TE dependency of the RS functional
connectivity. There are two arguments against this hypothesis: (1) as

Fig. 7. (A) Correlated signal amplitudes (averaged across ROI signal pairs) and noise amplitudes (root mean square of the uncorrelated residuals, also estimated from ROI signal pairs) at
different frequency bands; each dot represents the result from a single scan (scans with TE = 25 and 30 ms are displayed). (B) SNR as a function of frequency bands.
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revealed by the spatial patterns of DMN/ECN at higher frequency bands
(Figs. 5, S3, S4), functional connectivity is mainly confined to standard
DMN/ECN regions, whereas cardiac noise manifests primarily near
large vessels and respiratory noise is more global; and (2) it is unclear

how non-BOLD physiological contributions can become more promi-
nent at higher frequencies. Similarly, we exclude potential confounds
from subjects' motion because: (1) the motion was small (root-mean-
square of translational movements = 0.26 ± 0.11 mm across all 66

Fig. 8. The influence of heterogeneousHRFswithin a RS network on the frequency specificity of the exhibited network patterns. (A) Basis functions employed inHRF fitting: canonical HRF
(blue), temporal derivative (green), and dispersive derivative (red); (B) ROIs within the DMN (sub01 (2)) chosen for simulations; (C) estimated HRFs and the normalized frequency re-
sponses; (D) frequency specificity of signal intensity patterns (un-normalized response power of estimated HRFs in (C) integrated within the corresponding frequency bands);
(E) disparate correlation patterns of simulated signals (‘Simulated signals’) (shown by ‘Correlation matrix’) with stimulus input (‘Events’) given at different frequency scales.
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scans), and (2) motion regressors were employed as nuisance covari-
ates. Thus, headmotion is unlikely to contribute greatly to the observed
non-BOLD functional connectivity.

Inconsistent network patterns across frequency bands

The spatial patterns of RSFC were found to be frequency-dependent
(Figs. 5, 6, Supplementary Figs. S3, S4), which is in line with the results
reported by other groups (Boubela et al., 2013; Gohel and Biswal, 2014;
Niazy et al., 2011; Wu et al., 2008). If such frequency specificity relates
to different aspects of neural activity, as has been hypothesized here
and by others, promising avenues for future analysis may involve char-
acterizing the correspondence of distinct frequency bands of fMRI data
and different rhythms of electrophysiological recordings (Buzsaki and
Draguhn, 2004; Chang et al., 2013; Laufs et al., 2006; Mantini et al.,
2007; Raichle, 2011; Yuan et al., 2012).

However, it has been demonstrated that the shapes of HRF, which
depend on vessel diameters and structures, are heterogeneous across
different brain areas even though these areas are functionally coupled
(see Buxton, 2012; Handwerker et al., 2012; Menon, 2012 for reviews).
Such inconsistency of HRF shapes may likely contribute to the observed
frequency specificity of RSFC, as demonstrated in Fig. 8.

Given that regional HRFs may plausibly have disparate spectral re-
sponses, our observation of inter-subject variability in the spatial
patterns of RS networks (Figs. 5, 6A, Supplementary Figs. S3, S4)may re-
late to these regional HRF differences rather than the more commonly
assumed inconsistent functional organizations across subjects. This sug-
gests that more careful analyses of RSFC should include consideration of
latency (Chang et al., 2008) and shape changes in the HRF across nodes
of the networks.

Another study finding is that negative correlations were barely ob-
servable at 0.2–0.4Hz (Figs. 5 and 6B),whichmay require positing a dis-
tinct neuronal mechanism at higher frequency, or by the possibility that
negative interactions may undergo inherently slower hemodynamic
processes.

We further note that while the temporal resolution of fMRI acquisi-
tions may continue to increase through technical improvements, the
spatial- and subject-variable nature of HRFs may act as a ‘frequency
domain smoother’, and limit our capability to generalize quantitative
results at very finely divided frequency intervals, say an average band-
width of 0.05 Hz or even narrower (Wu et al., 2008).

Further technical considerations

Unlike multi-echo acquisition as performed by Kundu et al. (2012)
and Peltier and Noll (2002), we collected RS datasets with different
TEs in separate scans, overlooking the fact that subjects' states may
vary over time. To assess thedata consistency across scans, an additional
6-min RS scan with a randomly chosen TE was performed at the end of
the 6 RS scans in a subset of experiments: sub04(1) 20ms, sub05 25ms,
and sub06(1) 5ms. For all the examined cases, the correlated amplitude
estimated from the additional scan agreed well with that of a prior scan
with an identical TE parameter (data not shown).

With TR= 1 s, our data acquisition only supported the examination
of spontaneous activity up to 0.5 Hz. However, both the simulated RS
HRF (Figs. 4C, D) and the observed BOLD spectra (Figs. 4E, F) imply
the presence of functional connectivity at an even higher frequency
range (Boubela et al., 2013; Lee et al., 2013),which inspires thepotential
concern that these observations may contain aliased components from
frequencies above 0.5 Hz. Although themajor discoveries and questions
inspired by the study are not violated, the quantitative results presented
here may require cautious interpretation and warrant further examina-
tion with data acquisition at a much faster sampling rate.

Of note, most analyses herein focused on the intra-scan comparison
of functional connectivity across different frequency bands (Figs. 2, 4,
5A), and a 6-min scan (360 time points with TR = 1 s) should be long

enough to provide adequate degrees of freedom (even considering tem-
poral autocorrelation) to yield reliable conclusions on functional corre-
lation/covariance. However, for studies attempting to generate reliable
measures of the spatial patterns of RS functional connectivity across dif-
ferent frequency bands, longer scan durations (9–13 min as suggested
by Birn et al., 2013) may be needed to encompass enough cycles of
slow frequency network dynamics.

To resolve RSFC at higher frequency bands, fMRI protocols with
faster sampling rates are needed. However, accompanying the in-
creased number of sample points acquired and increase in degrees of
freedom in a fixed scan duration is the decreased correlation threshold
for a given p-value (assuming that the null distribution is unaltered):
the lower bound of significant correlation r (p b 0.05, uncorrected)
drops from 0.15 at TR = 2 s to 0.055 at TR = 0.1 s for a 6-min long
scan (using an AR(1) autocorrelation model). An effect of the lowered
threshold is that the results become more sensitive to non-neural-
activity-relevant correlations incurred by non-random sources, saymo-
tion at sub-periods of a scan etc. Also noteworthy is that the ‘expansion’
of actual correlation introduced by spatial smoothingmay becomemore
prominent given the lowered statistical threshold. Although smoothing
has been widely adopted to enhance local SNR and mitigate the bias
between inherent noise structure of real data and the assumed model
in conventional RS analysis (Friston et al., 2000), it is worthwhile to re-
consider the feasibility to extend identical preprocessing to RS data col-
lected at higher frequencies, which may be of particular relevance for
studies attempting to examine persisted RSFC within a focal region
(say the visual cortex in Lee et al., 2013 and Wu et al., 2008) instead
of between remote brain areas.

Another technical concern involves the approach employed to ex-
tract the RS networks across different frequency bands — the majority
of studies looking at RSFC have been relying on the results generated
by either ICA (Beckmann et al., 2005; Smith et al., 2009) or seed-based
correlation (Biswal et al., 1995). Although prior studies have demon-
strated that, with ICA, one is able to produce similar network patterns
generated by the conventional seed-based correlation approach
(Greicius et al., 2004), it is worth noting that ICA differs fundamentally
from linear correlation— various ICA algorithms only enforce the output
spatial maps to be sparse and statistically independent (see Beckmann,
2012 for different algorithms defining independence). Therefore, it is
possible to observe disparate network patterns using different analysis
approaches, whichmay likely be the case especially in higher frequency
bands: in the case for ICA, with the drop of SNR (see Fig. 7) and possibly
more complicated mixture of un-identified signal sources as proposed
hereby, the performance of ICA is yet unclear; moreover, in the case of
seed-based correlation, locations of network hubs (seeds) may be fre-
quency dependent aswell (Lee et al., 2014), and optimum seed location
across frequency bands may vary. Indeed, in Gohel and Biswal (2014),
the authors observed certain discrepancies between these two ap-
proaches: for instance, networks resolved by ICA exhibited more vari-
able spatial patterns across frequency compared to the seed-based
correlation approach.

Conclusion

This fMRI study provides further evidence supporting the persis-
tence of RSFC at frequency bands higher than 0.1 Hz and the differences
in network patterns across different frequencies. With acquisition at
different TEs,we have observed BOLD-like linear dependence of sponta-
neous activity on TE, supporting neural relevance of the RSFC in extend-
ed frequency bands and implying that HRF models should be modified
for rest compared to traditional task-based models. We have also dem-
onstrated considerable contributions to the FC signals, particularly in
higher frequency bands, from TE-independent components in the ex-
amined two networks, although whether these signals originate from
neural activity instead of confounding noise sources remains unclear.
Given the very limited knowledge of spontaneous activity above
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0.1 Hz at the current stage, mechanisms underlying the present obser-
vations are not yet conclusive, which may be of great interest to query
in future studies.
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Appendix A. Schemes to generate the RS network masks from ICA
results (for each subject separately)

(1) Identify the independent components (ICs) resembling the spa-
tial patterns of DMN/ECN by visual inspection. In cases where
ECN was separated into left ECN (LECN) and right ECN (RECN),
both ICs were selected;

(2) Threshold the IC maps to generate a preliminary mask of each
network, thresholds were tuned so that 300–500 voxels
remained in the mask (LECN and RECN were thresholded sepa-
rately and combined as a unified mask);

(3) Average fMRI time series within each preliminary network mask
and linearly correlate the averaged signal to voxels across the
brain for all the six scans with different TEs;

(4) Joint voxels of thresholded correlation maps (correlation coeffi-
cient r N 0.2, and 0.15 for subjects with generally weaker correla-
tions) from scans with TE= 15, 20, 25, 30 ms were taken as the
final network mask. Thresholds of correlation coefficients rang-
ing from 0.1 to 0.25 resulted in very minor effects on the results,
because the results associated with each subject were first
normalized before ensuing group analysis (Correlated signal
amplitude vs. TE section).

Appendix B. Computation of between-voxel covariance across
different frequency bands

Let {xi}1≤ i ≤ N and {yi}1≤ i ≤ N denote two demeaned time series, and
{xiB}1≤ i ≤ N and {yiB}1≤ i ≤ N denote the filtered time series within fre-
quency band B.

Based on the Plancherel theorem, the covariance of {xiB}1≤ i ≤ N and
{yiB}1≤ i ≤ N

Cov xB; yB
" #

¼ 1
N−1

XN
i¼1

xBi " y
B
i ðB:1Þ

equals to

1
N−1

" 1
N

XN
k¼1

XB
k " YB

K ¼ 1
N−1

" 2
N
Re

X
1≤ l≤N; lN f s∈B

Xl"YlÞ
$

ðB:2Þ

where fs is the sampling rate (1/TR), {Xk}1≤ k ≤ N, {Yk}1≤ k ≤ N, {XkB}1≤ k ≤ N,
and {YkB}1≤ k ≤ N correspond to the DFT series of {xi}1≤ i ≤ N, {yi}1≤ i ≤ N,
{xiB}1≤ i ≤ N, and {yiB}1≤ i ≤ N respectively, and Re refers to the real part
of a complex number.

Appendix C. Equations for RS HRF simulation

The simulationwas conducted using equations presented inMildner
et al. (2001), which provided a modified version of Buxon's balloon
model (Eq. (C1)):

q
)

tð Þ ¼ 1
τ0

f in tð Þ E tð Þ
E0

− fout vð Þq tð Þ
s tð Þ

% &

v
)

tð Þ ¼ 1
τ0

f in tð Þ− fout vð Þf g
C1

where the total deoxyhemoglobin content q(t), the blood volume v(t),
inflow function fin(t) and outflow function fout(v) are scaled by their
values at rest. q

)

tð Þ and v
)

tð Þ denote the temporal derivative of
q(t) and v(t) separately. τ0 denotes the mean transit time estimated
by the ratio of the blood volume to blood flow at rest, E0 denotes the
baseline O2 extraction fraction, and E tð Þ ¼ 1− 1−E0ð Þ1− f in tð Þ.

The relationship between fout and v is modeled as:

fout vð Þ ¼ v1=α þ τv
dv
dt

ðC2Þ

where τv is an additional resistance to the rapid volume change.
Assuming τ0 ≪ τv, Eq. (C1) can be approximated by:
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Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.12.012.
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