Bio


Scott Delp is the James H. Clark Professor, Founding Chairman of the Department of Bioengineering at Stanford, and Director of the National Center for Simulation in Rehabilitation Research. Delp transformed the field of biomechanics by creating highly accurate computer models of musculoskeletal structures and providing them to researchers worldwide using a software system (OpenSim) that he and his team developed. Delp invented fundamental technology for surgical navigation that is now in wide clinical use. Together with Mark Schnitzer and their students, Delp developed novel microendoscopes that allow realtime in vivo imaging of human muscle microstructure. Together with Karl Deisseroth and their students, Delp pioneered the use of optogenetics to control activity in the peripheral nervous system leading to important inventions for treating paralysis, spasticity and pain.

Academic Appointments


Administrative Appointments


  • Chairman, Biomechanical Engineering Division (2000 - 2002)
  • Chairman, Bioengineering Department (2002 - 2007)
  • Co-Director, NIH Center for Biomedical Computation at Stanford (Simbios) (2001 - Present)
  • Director, National Center for Simulation in Rehabilitation Research (NCSRR) (2010 - Present)

Honors & Awards


  • Baxter Faculty Fellow, Baxter Foundation (1991)
  • Technology Reinvestment Award, White House (1993)
  • National Young Investigator Award, NSF (1992-1998)
  • Powell Faculty Scholar, Stanford University (2000)
  • Fellow, American Institute of Biological and Medical Engineers (2003)
  • Maurice E Muller Award, Excellence in Computer Assisted Surgery (2004)
  • Distinguished Alumnus Award, Colorado State University (2005)
  • Charles Lee Powell Professor, Stanford University (2006-2009)
  • Van C. Mow Medal, Am Soc. Mech. Eng (2008)
  • James H. Clark Professor, Stanford University (2009-)
  • Giovanni Borelli Award, Am. Soc. Biomech. (2012)

Professional Education


  • Ph.D., Stanford University, Mechanical Engineering (1990)
  • M.S., Stanford University, Mechanical Engineering (1986)
  • B.S., Colorado State University, Mechanical Engineering (1983)

Current Research and Scholarly Interests


Experimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design new medical products, and guide surgery. Imaging technology development including MRI and microendoscopy. Optogenetic manipulation of peripheral neural circuits. Biomedical technology development.

2015-16 Courses


Stanford Advisees


All Publications


  • Muscle velocity and inertial force from phase contrast MRI JOURNAL OF MAGNETIC RESONANCE IMAGING Wentland, A. L., McWalter, E. J., Pal, S., Delp, S. L., Gold, G. E. 2015; 42 (2): 526-532

    Abstract

    To evaluate velocity waveforms in muscle and to create a tool and algorithm for computing and analyzing muscle inertial forces derived from 2D phase contrast (PC) magnetic resonance imaging (MRI).PC MRI was performed in the forearm of four healthy volunteers during 1 Hz cycles of wrist flexion-extension as well as in the lower leg of six healthy volunteers during 1 Hz cycles of plantarflexion-dorsiflexion. Inertial forces (F) were derived via the equation F = ma. The mass, m, was derived by multiplying voxel volume by voxel-by-voxel estimates of density via fat-water separation techniques. Acceleration, a, was obtained via the derivative of the PC MRI velocity waveform.Mean velocities in the flexors of the forearm and lower leg were 1.94 ± 0.97 cm/s and 5.57 ± 2.72 cm/s, respectively, as averaged across all subjects; the inertial forces in the flexors of the forearm and lower leg were 1.9 × 10(-3)  ± 1.3 × 10(-3) N and 1.1 × 10(-2)  ± 6.1 × 10(-3) N, respectively, as averaged across all subjects.PC MRI provided a promising means of computing muscle velocities and inertial forces-providing the first method for quantifying inertial forces. J. Magn. Reson. Imaging 2015;42:526-532.

    View details for DOI 10.1002/jmri.24807

    View details for Web of Science ID 000358258600001

  • Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion PEERJ Hutchinson, J. R., Rankin, J., Rubenson, J., Rosenbluth, K. H., Siston, R. A., Delp, S. L. 2015; 3

    Abstract

    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model's results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.

    View details for DOI 10.7717/peerj.1001

    View details for Web of Science ID 000356351100005

    View details for PubMedID 26082859

  • Making a meaningful impact: modelling simultaneous frictional collisions in spatial multibody systems PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES Uchida, T. K., Sherman, M. A., Delp, S. L. 2015; 471 (2177)
  • Running with a load increases leg stiffness JOURNAL OF BIOMECHANICS Slider, A., Besier, T., Delp, S. L. 2015; 48 (6): 1003-1008

    Abstract

    Spring-mass models have been used to characterize running mechanics and leg stiffness in a variety of conditions, yet it remains unknown how running while carrying a load affects running mechanics and leg stiffness. The purpose of this study was to test the hypothesis that running with a load increases leg stiffness. Twenty-seven subjects ran at a constant speed on a force-measuring treadmill while carrying no load, and while wearing weight vests loaded with 10%, 20%, and 30% of body weight. We measured lower extremity motion and created a scaled musculoskeletal model of each subject, which we used to estimate lower extremity joint angles and leg length. We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force (normalized to body weight) and the change in stance phase leg length (normalized to leg length at initial foot contact). Leg length was calculated as the distance from the center of the pelvis to the center-of-pressure under the foot. We found that dimensionless leg stiffness increased when running with load (p=0.001); this resulted from an increase in the peak vertical ground reaction force (p<0.001) and a smaller change in stance phase leg length (p=0.025). When running with load, subjects had longer ground contact times (p<0.020), greater hip (p<0.001) and knee flexion (p=0.048) at the time of initial foot contact, and greater peak stance phase hip, knee, and ankle flexion (p<0.05). Our results reveal that subjects run in a more crouched posture and with higher leg stiffness to accommodate an added load.

    View details for DOI 10.1016/j.jbiomech.2015.01.051

    View details for Web of Science ID 000352672100017

    View details for PubMedID 25728581

  • Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomechanics and modeling in mechanobiology Wisdom, K. M., Delp, S. L., Kuhl, E. 2015; 14 (2): 195-215

    Abstract

    Skeletal muscle undergoes continuous turnover to adapt to changes in its mechanical environment. Overload increases muscle mass, whereas underload decreases muscle mass. These changes are correlated with, and enabled by, structural alterations across the molecular, subcellular, cellular, tissue, and organ scales. Despite extensive research on muscle adaptation at the individual scales, the interaction of the underlying mechanisms across the scales remains poorly understood. Here, we present a thorough review and a broad classification of multiscale muscle adaptation in response to a variety of mechanical stimuli. From this classification, we suggest that a mathematical model for skeletal muscle adaptation should include the four major stimuli, overstretch, understretch, overload, and underload, and the five key players in skeletal muscle adaptation, myosin heavy chain isoform, serial sarcomere number, parallel sarcomere number, pennation angle, and extracellular matrix composition. Including this information in multiscale computational models of muscle will shape our understanding of the interacting mechanisms of skeletal muscle adaptation across the scales. Ultimately, this will allow us to rationalize the design of exercise and rehabilitation programs, and improve the long-term success of interventional treatment in musculoskeletal disease.

    View details for DOI 10.1007/s10237-014-0607-3

    View details for PubMedID 25199941

  • T1 rho Dispersion in Articular Cartilage: Relationship to Material Properties and Macromolecular Content CARTILAGE Keenan, K. E., Besier, T. F., Pauly, J. M., Smith, R. L., Delp, S. L., Beaupre, G. S., Gold, G. E. 2015; 6 (2): 113-122

    Abstract

    This study assessed T1ρ relaxation dispersion, measured by magnetic resonance imaging (MRI), as a tool to noninvasively evaluate cartilage material and biochemical properties. The specific objective was to answer two questions: (1) does cartilage initial elastic modulus (E 0) correlate with T1ρ dispersion effects and (2) does collagen or proteoglycan content correlate with T1ρ dispersion effects?Cadaveric patellae with and without visible cartilage damage on conventional MR were included. T2 and T1ρ relaxation times at 500 and 1000 Hz spin-lock field amplitudes were measured. We estimated T1ρ dispersion effects by measuring T1ρ relaxation time at 500 and 1000 Hz and T2 relaxation time and using a new tool, the ratio T1ρ/T2. Cartilage initial elastic modulus, E 0, was measured from initial response of mechanical indentation creep tests. Collagen and proteoglycan contents were measured at the indentation test sites; proteoglycan content was measured by their covalently linked sulfated glycosaminoglycans (sGAG). Pearson correlation coefficients were determined, taking into account the clustering of multiple samples within a single patella specimen.Cartilage initial elastic modulus, E 0, increased with decreasing values of T1ρ/T2 measurements at both 500 Hz (P = 0.034) and 1000 Hz (P = 0.022). 1/T1ρ relaxation time (500 Hz) increased with increasing sGAG content (P = 0.041).T1ρ/T2 ratio, a new tool, and cartilage initial elastic modulus are both measures of water-protein interactions, are dependent on the cartilage structure, and were correlated in this study.

    View details for DOI 10.1177/1947603515569529

    View details for Web of Science ID 000356631400006

  • Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking PLOS ONE Dorn, T. W., Wang, J. M., Hicks, J. L., Delp, S. L. 2015; 10 (4)

    Abstract

    Predictive simulation is a powerful approach for analyzing human locomotion. Unlike techniques that track experimental data, predictive simulations synthesize gaits by minimizing a high-level objective such as metabolic energy expenditure while satisfying task requirements like achieving a target velocity. The fidelity of predictive gait simulations has only been systematically evaluated for locomotion data on flat ground. In this study, we construct a predictive simulation framework based on energy minimization and use it to generate normal walking, along with walking with a range of carried loads and up a range of inclines. The simulation is muscle-driven and includes controllers based on muscle force and stretch reflexes and contact state of the legs. We demonstrate how human-like locomotor strategies emerge from adapting the model to a range of environmental changes. Our simulation dynamics not only show good agreement with experimental data for normal walking on flat ground (92% of joint angle trajectories and 78% of joint torque trajectories lie within 1 standard deviation of experimental data), but also reproduce many of the salient changes in joint angles, joint moments, muscle coordination, and metabolic energy expenditure observed in experimental studies of loaded and inclined walking.

    View details for DOI 10.1371/journal.pone.0121407

    View details for Web of Science ID 000352135600071

    View details for PubMedID 25830913

  • How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. Journal of biomechanics Lerner, Z. F., Demers, M. S., Delp, S. L., Browning, R. C. 2015; 48 (4): 644-650

    Abstract

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment.

    View details for DOI 10.1016/j.jbiomech.2014.12.049

    View details for PubMedID 25595425

  • Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A., Delp, S. L. 2015; 137 (2)

    Abstract

    Computational modeling and simulation of neuromusculoskeletal (NMS) systems enables researchers and clinicians to study the complex dynamics underlying human and animal movement. NMS models use equations derived from physical laws and biology to help solve challenging real-world problems, from designing prosthetics that maximize running speed to developing exoskeletal devices that enable walking after a stroke. NMS modeling and simulation has proliferated in the biomechanics research community over the past 25 years, but the lack of verification and validation standards remains a major barrier to wider adoption and impact. The goal of this paper is to establish practical guidelines for verification and validation of NMS models and simulations that researchers, clinicians, reviewers, and others can adopt to evaluate the accuracy and credibility of modeling studies. In particular, we review a general process for verification and validation applied to NMS models and simulations, including careful formulation of a research question and methods, traditional verification and validation steps, and documentation and sharing of results for use and testing by other researchers. Modeling the NMS system and simulating its motion involves methods to represent neural control, musculoskeletal geometry, muscle-tendon dynamics, contact forces, and multibody dynamics. For each of these components, we review modeling choices and software verification guidelines; discuss variability, errors, uncertainty, and sensitivity relationships; and provide recommendations for verification and validation by comparing experimental data and testing robustness. We present a series of case studies to illustrate key principles. In closing, we discuss challenges the community must overcome to ensure that modeling and simulation are successfully used to solve the broad spectrum of problems that limit human mobility.

    View details for DOI 10.1115/1.4029304

    View details for Web of Science ID 000350571400005

    View details for PubMedID 25474098

  • Differences in muscle activity between natural forefoot and rearfoot strikers during running JOURNAL OF BIOMECHANICS Yong, J. R., Silder, A., Delp, S. L. 2014; 47 (15): 3593-3597

    Abstract

    Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle׳s activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury.

    View details for DOI 10.1016/j.jbiomech.2014.10.015

    View details for Web of Science ID 000345805500001

  • Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification? PLOS ONE Valente, G., Pitto, L., Testi, D., Seth, A., Delp, S. L., Stagni, R., Viceconti, M., Taddei, F. 2014; 9 (11)

    Abstract

    Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur.

    View details for DOI 10.1371/journal.pone.0112625

    View details for Web of Science ID 000349144400111

    View details for PubMedID 25390896

  • Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping JOURNAL OF EXPERIMENTAL BIOLOGY Farris, D. J., Hicks, J. L., Delp, S. L., Sawicki, G. S. 2014; 217 (22): 4018-4028

    Abstract

    Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle-tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle-tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40-50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance.

    View details for DOI 10.1242/jeb.107656

    View details for Web of Science ID 000344867000016

    View details for PubMedID 25278469

  • 3D finite element models of shoulder muscles for computing lines of actions and moment arms COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING Webb, J. D., Blemker, S. S., Delp, S. L. 2014; 17 (8): 829-837

    Abstract

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

    View details for DOI 10.1080/10255842.2012.719605

    View details for Web of Science ID 000334075400002

    View details for PubMedID 22994141

  • Changes in Tibiofemoral Forces due to Variations in Muscle Activity during Walking JOURNAL OF ORTHOPAEDIC RESEARCH DeMers, M. S., Pal, S., Delp, S. L. 2014; 32 (6): 769-776

    Abstract

    Muscles induce large forces in the tibiofemoral joint during walking and thereby influence the health of tissues like articular cartilage and menisci. It is possible to walk with a wide variety of muscle coordination patterns, but the effect of varied muscle coordination on tibiofemoral contact forces remains unclear. The goal of this study was to determine the effect of varied muscle coordination on tibiofemoral contact forces. We developed a musculoskeletal model of a subject walking with an instrumented knee implant. Using an optimization framework, we calculated the tibiofemoral forces resulting from muscle coordination that reproduced the subject's walking dynamics. We performed a large set of optimizations in which we systematically varied the coordination of muscles to determine the influence on tibiofemoral force. Model-predicted tibiofemoral forces arising with minimum muscle activation matched in vivo forces measured during early stance, but were greater than in vivo forces during late stance. Peak tibiofemoral forces during late stance could be reduced by increasing the activation of the gluteus medius, uniarticular hip flexors, and soleus, and by decreasing the activation of the gastrocnemius and rectus femoris. These results suggest that retraining of muscle coordination could substantially reduce tibiofemoral forces during late stance. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:769-776, 2014.

    View details for DOI 10.1002/jor.22601

    View details for Web of Science ID 000333716100006

  • Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention GAIT & POSTURE Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., Delp, S. L. 2014; 40 (1): 11-19
  • Neuroscience. Optogenetic regeneration. Science Iyer, S. M., Delp, S. L. 2014; 344 (6179): 44-45

    View details for DOI 10.1126/science.1253088

    View details for PubMedID 24700845

  • Changes in Tibiofemoral Forces due to Variations in Muscle Activity during Walking JOURNAL OF NEUROCHEMISTRY DeMers, M. S., Pal, S., Delp, S. L. 2014; 129 (2): 769-776

    View details for DOI 10.1002/jor.22601

    View details for Web of Science ID 000333716700006

  • Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice NATURE BIOTECHNOLOGY Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K., Delp, S. L. 2014; 32 (3): 274-278

    Abstract

    Primary nociceptors are the first neurons involved in the complex processing system that regulates normal and pathological pain. Because of constraints on pharmacological and electrical stimulation, noninvasive excitation and inhibition of these neurons in freely moving nontransgenic animals has not been possible. Here we use an optogenetic strategy to bidirectionally control nociceptors of nontransgenic mice. Intrasciatic nerve injection of adeno-associated viruses encoding an excitatory opsin enabled light-inducible stimulation of acute pain, place aversion and optogenetically mediated reductions in withdrawal thresholds to mechanical and thermal stimuli. In contrast, viral delivery of an inhibitory opsin enabled light-inducible inhibition of acute pain perception, and reversed mechanical allodynia and thermal hyperalgesia in a model of neuropathic pain. Light was delivered transdermally, allowing these behaviors to be induced in freely moving animals. This approach may have utility in basic and translational pain research, and enable rapid drug screening and testing of newly engineered opsins.

    View details for DOI 10.1038/nbt.2834

    View details for Web of Science ID 000332819800026

    View details for PubMedID 24531797

  • Rejuvenation of the muscle stem cell population restores strength to injured aged muscles NATURE MEDICINE Cosgrove, B. D., Gilbert, P. M., Porpiglia, E., Mourkioti, F., Lee, S. P., Corbel, S. Y., Llewellyn, M. E., Delp, S. L., Blau, H. M. 2014; 20 (3): 255-264

    Abstract

    The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.

    View details for DOI 10.1038/nm.3464

    View details for Web of Science ID 000332595600020

    View details for PubMedID 24531378

  • Improved Muscle Wrapping Algorithms Using Explicit Path-Error Jacobians COMPUTATIONAL KINEMATICS (CK2013) Scholz, A., Stavness, I., Sherman, M., Delp, S., Kecskemethy, A. 2014; 15: 395-403
  • Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces JOURNAL OF BIOMECHANICS Gerus, P., Sartori, M., Besier, T. F., Fregly, B. J., Delp, S. L., Banks, S. A., Pandy, M. G., D'Lima, D. D., Lloyd, D. G. 2013; 46 (16): 2778-2786

    Abstract

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.

    View details for DOI 10.1016/j.jbiomech.2013.09.005

    View details for Web of Science ID 000328093200004

    View details for PubMedID 24074941

  • Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2 SCIENTIFIC REPORTS Liske, H., Qian, X., Anikeeva, P., Deisseroth, K., Delp, S. 2013; 3

    Abstract

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro.

    View details for DOI 10.1038/srep03110

    View details for Web of Science ID 000326334000003

    View details for PubMedID 24173561

  • Men and women adopt similar walking mechanics and muscle activation patterns during load carriage JOURNAL OF BIOMECHANICS Silder, A., Delp, S. L., Besier, T. 2013; 46 (14): 2522-2528

    Abstract

    Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.

    View details for DOI 10.1016/j.jbiomech.2013.06.020

    View details for Web of Science ID 000325591800024

  • Optogenetic Control of Targeted Peripheral Axons in Freely Moving Animals PLOS ONE Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K., Delp, S. L. 2013; 8 (8)
  • Sarcomere lengths in human extensor carpi radialis brevis measured by microendoscopy MUSCLE & NERVE Cromie, M. J., Sanchez, G. N., Schnitzer, M. J., Delp, S. L. 2013; 48 (2): 286-292

    Abstract

    Second-harmonic generation microendoscopy is a minimally invasive technique to image sarcomeres and measure their lengths in humans, but motion artifact and low signal have limited the use of this novel technique.We discovered that an excitation wavelength of 960 nm maximized image signal; this enabled an image acquisition rate of 3 frames/s, which decreased motion artifact. We then used microendoscopy to measure sarcomere lengths in the human extensor carpi radialis brevis with the wrist at 45° extension and 45° flexion in 7 subjects. We also measured the variability in sarcomere lengths within single fibers.Average sarcomere lengths in 45° extension were 2.93±0.29 μm (±SD) and increased to 3.58±0.19 μm in 45° flexion. Within single fibers the standard deviation of sarcomere lengths in series was 0.20 μm.Microendoscopy can be used to measure sarcomere lengths at different body postures. Lengths of sarcomeres in series within a fiber vary substantially. Muscle Nerve, 48: 286-292, 2013.

    View details for DOI 10.1002/mus.23760

    View details for Web of Science ID 000322158500019

    View details for PubMedID 23813625

  • Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis JOURNAL OF ORTHOPAEDIC RESEARCH Shull, P. B., Silder, A., Shultz, R., Dragoo, J. L., Besier, T. F., Delp, S. L., Cutkosky, M. R. 2013; 31 (7): 1020-1025

    Abstract

    This study examined the influence of a 6-week gait retraining program on the knee adduction moment (KAM) and knee pain and function. Ten subjects with medial compartment knee osteoarthritis and self-reported knee pain participated in weekly gait retraining sessions over 6 weeks. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and a 10-point visual-analog pain scale score were measured at baseline, post-training (end of 6 weeks), and 1 month after training ended. Gait retraining reduced the first peak KAM by 20% (p < 0.01) post-training as a result of a 7° decrease in foot progression angle (i.e., increased internal foot rotation), compared to baseline (p < 0.01). WOMAC pain and function scores were improved at post-training by 29% and 32%, respectively (p < 0.05) and visual-analog pain scale scores improved by two points (p < 0.05). Changes in WOMAC pain and function were approximately 75% larger than the expected placebo effect (p < 0.05). Changes in KAM, foot progression angle, WOMAC pain and function, and visual-analog pain score were retained 1 month after the end of the 6-week training period (p < 0.05). These results show that a 6-week gait retraining program can reduce the KAM and improve symptoms for individuals with medial compartment knee osteoarthritis and knee pain. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1020-1025, 2013.

    View details for DOI 10.1002/jor.22340

    View details for Web of Science ID 000319350500004

    View details for PubMedID 23494804

  • A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait JOURNAL OF BIOMECHANICS Hamner, S. R., Seth, A., Steele, K. M., Delp, S. L. 2013; 46 (10): 1772-1776

    Abstract

    Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are consistent with experimentally measured ground reaction forces and moments. We show here that a rolling constraint can model foot-ground contact and reproduce measured ground reaction forces and moments in an induced acceleration analysis of muscle-driven simulations of walking, running, and crouch gait. We also illustrate that a point constraint and a weld constraint used to model foot-ground contact in previous studies produce inaccurate reaction moments and lead to contradictory interpretations of muscle function. To enable others to use and test these different constraint types (i.e., rolling, point, and weld constraints) we have included them as part of an induced acceleration analysis in OpenSim, a freely-available biomechanics simulation package.

    View details for DOI 10.1016/j.jbiomech.2013.03.030

    View details for Web of Science ID 000321422400025

    View details for PubMedID 23702045

  • Optical inhibition of motor nerve and muscle activity in vivo. Muscle & nerve Liske, H., Towne, C., Anikeeva, P., Zhao, S., Feng, G., Deisseroth, K., Delp, S. 2013; 47 (6): 916-921

    Abstract

    There is no therapeutic approach that provides precise and rapidly reversible inhibition of motor nerve and muscle activity for treatment of spastic hypertonia.We used optogenetics to demonstrate precise and rapidly reversible light-mediated inhibition of motor nerve and muscle activity in vivo in transgenic Thy1::eNpHR2.0 mice.We found optical inhibition of motor nerve and muscle activity to be effective at all muscle force amplitudes and determined that muscle activity can be modulated by changing light pulse duration and light power density.This demonstration of optical inhibition of motor nerves is an important advancement toward novel optogenetics-based therapies for spastic hypertonia.

    View details for DOI 10.1002/mus.23696

    View details for PubMedID 23629741

  • How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. journal of experimental biology Arnold, E. M., Hamner, S. R., Seth, A., Millard, M., Delp, S. L. 2013; 216: 2150-2160

    Abstract

    The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle-tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0-1.75 m s(-1) and ran at speeds of 2.0-5.0 m s(-1). We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force-length and force-velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle-tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running.

    View details for DOI 10.1242/jeb.075697

    View details for PubMedID 23470656

  • Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait. Gait & posture Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. H., Delp, S. L. 2013; 38 (1): 86-91

    Abstract

    The goals of this study were to determine if the muscle contributions to vertical and fore-aft acceleration of the mass center differ between crouch gait and unimpaired gait and if these muscle contributions change with crouch severity. Examining muscle contributions to mass center acceleration provides insight into the roles of individual muscles during gait and can provide guidance for treatment planning. We calculated vertical and fore-aft accelerations using musculoskeletal simulations of typically developing children and children with cerebral palsy and crouch gait. Analysis of these simulations revealed that during unimpaired gait the quadriceps produce large upward and backward accelerations during early stance, whereas the ankle plantarflexors produce large upward and forward accelerations later in stance. In contrast, during crouch gait, the quadriceps and ankle plantarflexors produce large, opposing fore-aft accelerations throughout stance. The quadriceps force required to accelerate the mass center upward was significantly larger in crouch gait than in unimpaired gait and increased with crouch severity. The gluteus medius accelerated the mass center upward during midstance in unimpaired gait; however, during crouch gait the upward acceleration produced by the gluteus medius was significantly reduced. During unimpaired gait the quadriceps and ankle plantarflexors accelerate the mass center at different times, efficiently modulating fore-aft accelerations. However, during crouch gait, the quadriceps and ankle plantarflexors produce fore-aft accelerations at the same time and the opposing fore-aft accelerations generated by these muscles contribute to the inefficiency of crouch gait.

    View details for DOI 10.1016/j.gaitpost.2012.10.019

    View details for PubMedID 23200083

  • Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING John, C. T., Anderson, F. C., Higginson, J. S., Delp, S. L. 2013; 16 (4): 451-462

    Abstract

    A fundamental question in movement science is how humans perform stable movements in the presence of disturbances such as contact with objects. It remains unclear how the nervous system, with delayed responses to disturbances, maintains the stability of complex movements. We hypothesised that intrinsic muscle properties (i.e. the force-length-velocity properties of muscle fibres and tendon elasticity) may help stabilise human walking by responding instantaneously to a disturbance and providing forces that help maintain the movement trajectory. To investigate this issue, we generated a 3D muscle-driven simulation of walking and analysed the changes in the simulation's motion when a disturbance was applied to models with and without intrinsic muscle properties. Removing the intrinsic properties reduced the stability; this was true when the disturbing force was applied at a variety of times and in different directions. Thus, intrinsic muscle properties play a unique role in stabilising walking, complementing the delayed response of the central nervous system.

    View details for DOI 10.1080/10255842.2011.627560

    View details for Web of Science ID 000317722400011

    View details for PubMedID 22224406

  • Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: An upright, weightbearing MRI study JOURNAL OF ORTHOPAEDIC RESEARCH Pal, S., Besier, T. F., Beaupre, G. S., Fredericson, M., Delp, S. L., Gold, G. E. 2013; 31 (3): 448-457

    Abstract

    The purpose of this study is to determine if patellar maltracking is more prevalent among patellofemoral (PF) pain subjects with patella alta compared to subjects with normal patella height. We imaged 37 PF pain and 15 pain free subjects in an open-configuration magnetic resonance imaging scanner while they stood in a weightbearing posture. We measured patella height using the Caton-Deschamps, Blackburne-Peel, Insall-Salvati, Modified Insall-Salvati, and Patellotrochlear indices, and classified the subjects into patella alta and normal patella height groups. We measured patella tilt and bisect offset from oblique-axial plane images, and classified the subjects into maltracking and normal tracking groups. Patellar maltracking was more prevalent among PF pain subjects with patella alta compared to PF pain subjects with normal patella height (two-tailed Fisher's exact test, p<0.050). Using the Caton-Deschamps index, 67% (8/12) of PF pain subjects with patella alta were maltrackers, whereas only 16% (4/25) of PF pain subjects with normal patella height were maltrackers. Patellofemoral pain subjects classified as maltrackers displayed a greater patella height compared to the pain free and PF pain subjects classified as normal trackers (two-tailed unpaired t-tests with Bonferroni correction, p<0.017). This study adds to our understanding of PF pain in two ways-(1) we demonstrate that patellar maltracking is more prevalent in PF pain subjects with patella alta compared to subjects with normal patella height; and (2) we show greater patella height in PF pain subjects compared to pain free subjects using four indices commonly used in clinics.

    View details for DOI 10.1002/jor.22256

    View details for Web of Science ID 000313980600016

  • Changes in in vivo knee contact forces through gait modification JOURNAL OF ORTHOPAEDIC RESEARCH Kinney, A. L., Besier, T. F., Silder, A., Delp, S. L., D'Lima, D. D., Fregly, B. J. 2013; 31 (3): 434-440

    Abstract

    Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non-invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force-measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0-100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal-Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis.

    View details for DOI 10.1002/jor.22240

    View details for Web of Science ID 000313980600014

  • Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds JOURNAL OF BIOMECHANICS Hamner, S. R., Delp, S. L. 2013; 46 (4): 780-787

    Abstract

    Running is a bouncing gait in which the body mass center slows and lowers during the first half of the stance phase; the mass center is then accelerated forward and upward into flight during the second half of the stance phase. Muscle-driven simulations can be analyzed to determine how muscle forces accelerate the body mass center. However, muscle-driven simulations of running at different speeds have not been previously developed, and it remains unclear how muscle forces modulate mass center accelerations at different running speeds. Thus, to examine how muscles generate accelerations of the body mass center, we created three-dimensional muscle-driven simulations of ten subjects running at 2.0, 3.0, 4.0, and 5.0m/s. An induced acceleration analysis determined the contribution of each muscle to mass center accelerations. Our simulations included arms, allowing us to investigate the contributions of arm motion to running dynamics. Analysis of the simulations revealed that soleus provides the greatest upward mass center acceleration at all running speeds; soleus generates a peak upward acceleration of 19.8m/s(2) (i.e., the equivalent of approximately 2.0 bodyweights of ground reaction force) at 5.0m/s. Soleus also provided the greatest contribution to forward mass center acceleration, which increased from 2.5m/s(2) at 2.0m/s to 4.0m/s(2) at 5.0m/s. At faster running speeds, greater velocity of the legs produced larger angular momentum about the vertical axis passing through the body mass center; angular momentum about this vertical axis from arm swing simultaneously increased to counterbalance the legs. We provide open-access to data and simulations from this study for further analysis in OpenSim at simtk.org/home/nmbl_running, enabling muscle actions during running to be studied in unprecedented detail.

    View details for DOI 10.1016/j.jbiomech.2012.11.024

    View details for Web of Science ID 000315973700022

    View details for PubMedID 23246045

  • Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME Millard, M., Uchida, T., Seth, A., Delp, S. L. 2013; 135 (2)

    Abstract

    Muscle-driven simulations of human and animal motion are widely used to complement physical experiments for studying movement dynamics. Musculotendon models are an essential component of muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the simulated forces has been adequately evaluated. Here we compare the speed and accuracy of three musculotendon models: two with an elastic tendon (an equilibrium model and a damped equilibrium model) and one with a rigid tendon. Our simulation benchmarks demonstrate that the equilibrium and damped equilibrium models produce similar force profiles but have different computational speeds. At low activation, the damped equilibrium model is 29 times faster than the equilibrium model when using an explicit integrator and 3 times faster when using an implicit integrator; at high activation, the two models have similar simulation speeds. In the special case of simulating a muscle with a short tendon, the rigid-tendon model produces forces that match those generated by the elastic-tendon models, but simulates 2-54 times faster when an explicit integrator is used and 6-31 times faster when an implicit integrator is used. The equilibrium, damped equilibrium, and rigid-tendon models reproduce forces generated by maximally-activated biological muscle with mean absolute errors less than 8.9%, 8.9%, and 20.9% of the maximum isometric muscle force, respectively. When compared to forces generated by submaximally-activated biological muscle, the forces produced by the equilibrium, damped equilibrium, and rigid-tendon models have mean absolute errors less than 16.2%, 16.4%, and 18.5%, respectively. To encourage further development of musculotendon models, we provide implementations of each of these models in OpenSim version 3.1 and benchmark data online, enabling others to reproduce our results and test their models of musculotendon dynamics.

    View details for DOI 10.1115/1.4023390

    View details for Web of Science ID 000326075300006

    View details for PubMedID 23445050

  • Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis JOURNAL OF BIOMECHANICS Shull, P. B., Shultz, R., Slider, A., Dragoo, J. L., Besier, T. F., Cutkosky, M. R., Delp, S. L. 2013; 46 (1): 122-128

    Abstract

    The first peak of the knee adduction moment has been linked to the presence, severity, and progression of medial compartment knee osteoarthritis. The objective of this study was to evaluate toe-in gait (decreased foot progression angle from baseline through internal foot rotation) as a means to reduce the first peak of the knee adduction moment in subjects with medial compartment knee osteoarthritis. Additionally, we examined whether the first peak in the knee adduction moment would cause a concomitant increase in the peak external knee flexion moment, which can eliminate reductions in the medial compartment force that result from lowering the knee adduction moment. We tested the following hypotheses: (a) toe-in gait reduces the first peak of the knee adduction moment, and (b) toe-in gait does not increase the peak external knee flexion moment. Twelve patients with medial compartment knee osteoarthritis first performed baseline walking trials and then toe-in gait trials at their self-selected speed on an instrumented treadmill in a motion capture laboratory. Subjects altered their foot progression angle from baseline to toe-in gait by an average of 5° (p<0.01), which reduced the first peak of the knee adduction moment by an average of 13% (p<0.01). Toe-in gait did not increase the peak external knee flexion moment (p=0.85). The reduced knee adduction moment was accompanied by a medially-shifted knee joint center and a laterally-shifted center of pressure during early stance. These results suggest that toe-in gait may be a promising non-surgical treatment for patients with medial compartment knee osteoarthritis.

    View details for DOI 10.1016/j.jbiomech.2012.10.019

    View details for Web of Science ID 000314258000021

  • How much muscle strength is required to walk in a crouch gait? JOURNAL OF BIOMECHANICS Steele, K. M., van der Krogt, M. M., Schwartz, M. H., Delp, S. L. 2012; 45 (15): 2564-2569

    Abstract

    Muscle weakness is commonly cited as a cause of crouch gait in individuals with cerebral palsy; however, outcomes after strength training are variable and mechanisms by which muscle weakness may contribute to crouch gait are unclear. Understanding how much muscle strength is required to walk in a crouch gait compared to an unimpaired gait may provide insight into how muscle weakness contributes to crouch gait and assist in the design of strength training programs. The goal of this study was to examine how much muscle groups could be weakened before crouch gait becomes impossible. To investigate this question, we first created muscle-driven simulations of gait for three typically developing children and six children with cerebral palsy who walked with varying degrees of crouch severity. We then simulated muscle weakness by systematically reducing the maximum isometric force of each muscle group until the simulation could no longer reproduce each subject's gait. This analysis indicated that moderate crouch gait required significantly more knee extensor strength than unimpaired gait. In contrast, moderate crouch gait required significantly less hip abductor strength than unimpaired gait, and mild crouch gait required significantly less ankle plantarflexor strength than unimpaired gait. The reduced strength required from the hip abductors and ankle plantarflexors during crouch gait suggests that weakness of these muscle groups may contribute to crouch gait and that these muscle groups are potential targets for strength training.

    View details for DOI 10.1016/j.jbiomech.2012.07.028

    View details for Web of Science ID 000310107300012

    View details for PubMedID 22959837

  • Comparison of MRI and 18F-NaF PET/CT in patients with patellofemoral pain JOURNAL OF MAGNETIC RESONANCE IMAGING Draper, C. E., Quon, A., Fredericson, M., Besier, T. F., Delp, S. L., Beaupre, G. S., Gold, G. E. 2012; 36 (4): 928-932

    Abstract

    To determine whether bone metabolic activity corresponds to bone and cartilage damage in patients with patellofemoral pain.We acquired magnetic resonance imaging (MRI) and (18) F-NaF positron emission tomography (PET) / computed tomography (CT) scans of the knees of 22 subjects. We compared locations of increased tracer uptake on the (18) F-NaF PET images to bone marrow edema and cartilage damage visualized on MRI.We found that increased bone activity on (18) F-NaF PET does not always correspond to structural damage in the bone or cartilage as seen on MRI.Our results suggest that (18) F-NaF PET/CT may provide additional information in patellofemoral pain patients compared to MRI.

    View details for DOI 10.1002/jmri.23682

    View details for Web of Science ID 000308884300018

    View details for PubMedID 22549985

  • Contributions of muscles to mediolateral ground reaction force over a range of walking speeds JOURNAL OF BIOMECHANICS John, C. T., Seth, A., Schwartz, M. H., Delp, S. L. 2012; 45 (14): 2438-2443

    Abstract

    Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.

    View details for DOI 10.1016/j.jbiomech.2012.06.037

    View details for Web of Science ID 000310043100019

    View details for PubMedID 22884038

  • Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives ACM TRANSACTIONS ON GRAPHICS Wang, J. M., Hamner, S. R., Delp, S. L., Koltun, V. 2012; 31 (4)
  • Predicting the metabolic cost of incline walking from muscle activity and walking mechanics JOURNAL OF BIOMECHANICS Slider, A., Besier, T., Delp, S. L. 2012; 45 (10): 1842-1849

    Abstract

    The goal of this study was to identify which muscle activation patterns and gait features best predict the metabolic cost of inclined walking. We measured muscle activation patterns, joint kinematics and kinetics, and metabolic cost in sixteen subjects during treadmill walking at inclines of 0%, 5%, and 10%. Multivariate regression models were developed to predict the net metabolic cost from selected groups of the measured variables. A linear regression model including incline and the squared integrated electromyographic signals of the soleus and vastus lateralis explained 96% of the variance in metabolic cost, suggesting that the activation patterns of these large muscles have a high predictive value for metabolic cost. A regression model including only the peak knee flexion angle during stance phase, peak knee extension moment, peak ankle plantarflexion moment, and peak hip flexion moment explained 89% of the variance in metabolic cost; this finding indicates that kinematics and kinetics alone can predict metabolic cost during incline walking. The ability of these models to predict metabolic cost from muscle activation patterns and gait features points the way toward future work aimed at predicting metabolic cost when gait is altered by changes in neuromuscular control or the use of an assistive technology.

    View details for DOI 10.1016/j.jbiomech.2012.03.032

    View details for Web of Science ID 000306451800014

    View details for PubMedID 22578744

  • Patellar tilt correlates with vastus lateralis: Vastus medialis activation ratio in maltracking patellofemoral pain patients JOURNAL OF ORTHOPAEDIC RESEARCH Pal, S., Besier, T. F., Draper, C. E., Fredericson, M., Gold, G. E., Beaupre, G. S., Delp, S. L. 2012; 30 (6): 927-933

    Abstract

    Patellofemoral (PF) pain is a common ailment of the lower extremity. A theorized cause for pain is patellar maltracking due to vasti muscle activation imbalance, represented as large vastus lateralis:vastus medialis (VL:VM) activation ratios. However, evidence relating vasti muscle activation imbalance to patellar maltracking is limited. The purpose of this study was to investigate the relationship between VL:VM activation ratio and patellar tracking measures, patellar tilt and bisect offset, in PF pain subjects and pain-free controls. We evaluated VL:VM activation ratio and VM activation delay relative to VL activation in 39 PF pain subjects and 15 pain-free controls during walking. We classified the PF pain subjects into normal tracking and maltracking groups based on patellar tilt and bisect offset measured from weight-bearing magnetic resonance imaging. Patellar tilt correlated with VL:VM activation ratio only in PF pain subjects classified as maltrackers. This suggests that a clinical intervention targeting vasti muscle activation imbalance may be effective only in PF pain subjects classified as maltrackers.

    View details for DOI 10.1002/jor.22008

    View details for Web of Science ID 000302466700012

    View details for PubMedID 22086708

  • How robust is human gait to muscle weakness? GAIT & POSTURE van der Krogt, M. M., Delp, S. L., Schwartz, M. H. 2012; 36 (1): 113-119

    Abstract

    Humans have a remarkable capacity to perform complex movements requiring agility, timing, and strength. Disuse, aging, and disease can lead to a loss of muscle strength, which frequently limits the performance of motor tasks. It is unknown, however, how much weakness can be tolerated before normal daily activities become impaired. This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking. By clarifying which muscles are critical to maintaining normal gait, our results provide important insights for developing therapies to prevent or improve gait pathology.

    View details for DOI 10.1016/j.gaitpost.2012.01.017

    View details for Web of Science ID 000306449100021

    View details for PubMedID 22386624

  • Compressive tibiofemoral force during crouch gait GAIT & POSTURE Steele, K. M., Demers, M. S., Schwartz, M. H., Delp, S. L. 2012; 35 (4): 556-560

    Abstract

    Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait.

    View details for DOI 10.1016/j.gaitpost.2011.11.023

    View details for Web of Science ID 000303229300006

    View details for PubMedID 22206783

  • Grand challenge competition to predict in vivo knee loads JOURNAL OF ORTHOPAEDIC RESEARCH Fregly, B. J., Besier, T. F., Lloyd, D. G., Delp, S. L., Banks, S. A., Pandy, M. G., D'Lima, D. D. 2012; 30 (4): 503-513

    Abstract

    Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based treatment design is validation of model-based estimates of in vivo contact and muscle forces. This paper introduces an annual "Grand Challenge Competition to Predict In Vivo Knee Loads" based on a series of comprehensive publicly available in vivo data sets for evaluating musculoskeletal model predictions of contact and muscle forces in the knee. The data sets come from patients implanted with force-measuring tibial prostheses. Following a historical review of musculoskeletal modeling methods used for estimating knee muscle and contact forces, we describe the first two data sets used for the first two competitions and summarize four subsequent data sets to be used for future competitions. These data sets include tibial contact force, video motion, ground reaction, muscle EMG, muscle strength, static and dynamic imaging, and implant geometry data. Competition participants create musculoskeletal models to predict tibial contact forces without having access to the corresponding in vivo measurements. These blinded predictions provide an unbiased evaluation of the capabilities and limitations of musculoskeletal modeling methods. The paper concludes with a discussion of how these unique data sets can be used by the musculoskeletal modeling research community to improve the estimation of in vivo muscle and contact forces and ultimately to help make musculoskeletal models clinically useful.

    View details for DOI 10.1002/jor.22023

    View details for Web of Science ID 000299935900001

    View details for PubMedID 22161745

  • Simbios: an NIH national center for physics-based simulation of biological structures JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION Delp, S. L., Ku, J. P., Pande, V. S., Sherman, M. A., Altman, R. B. 2012; 19 (2): 186-189

    Abstract

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

    View details for DOI 10.1136/amiajnl-2011-000488

    View details for Web of Science ID 000300768100009

    View details for PubMedID 22081222

  • Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint JOURNAL OF ORTHOPAEDIC RESEARCH Draper, C. E., Fredericson, M., Gold, G. E., Besier, T. F., Delp, S. L., Beaupre, G. S., Quon, A. 2012; 30 (2): 209-213

    Abstract

    Patellofemoral pain is characterized by pain behind the kneecap and is often thought to be due to high stress at the patellofemoral joint. While we cannot measure bone stress in vivo, we can visualize bone metabolic activity using (18) F NaF PET/CT, which may be related to bone stress. Our goals were to use (18) F NaF PET/CT to evaluate whether subjects with patellofemoral pain exhibit elevated bone metabolic activity and to determine whether bone metabolic activity correlates with pain intensity. We examined 20 subjects diagnosed with patellofemoral pain. All subjects received an (18) F NaF PET/CT scan of their knees. Uptake of (18) F NaF in the patella and trochlea was quantified by computing the standardized uptake value and normalizing by the background tracer uptake in bone. We detected increased tracer uptake in 85% of the painful knees examined. We found that the painful knees exhibited increased tracer uptake compared to the pain-free knees of four subjects with unilateral pain (P?=?0.0006). We also found a correlation between increasing tracer uptake and increasing pain intensity (r(2) ?=?0.55; P?=?0.0005). The implication of these results is that patellofemoral pain may be related to bone metabolic activity at the patellofemoral joint.

    View details for DOI 10.1002/jor.21523

    View details for Web of Science ID 000298581200007

    View details for PubMedID 21812024

  • Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait. Journal of pediatric rehabilitation medicine Steele, K. M., Damiano, D. L., Eek, M. N., Unger, M., Delp, S. L. 2012; 5 (2): 99-106

    Abstract

    Muscle weakness may contribute to crouch gait in individuals with cerebral palsy, and some individuals participate in strength training programs to improve crouch gait. Unfortunately, improvements in muscle strength and gait are inconsistent after completing strength training programs. The purpose of this study was to examine changes in knee extensor strength and knee extension angle during walking after strength training in individuals with cerebral palsy who walk in crouch gait and to determine subject characteristics associated with these changes. A literature review was performed of studies published since January 2000 that included strength training, three-dimensional motion analysis, and knee extensor strength measurements for individuals with cerebral palsy. Three studies met these criteria and individual subject data was obtained from the authors for thirty crouch gait subjects. Univariate regression analyses were performed to determine which of ten physical examination and motor performance variables were associated with changes in strength and knee extension during gait. Change in knee extensor strength ranged from a 25% decrease to a 215% increase, and change in minimum knee flexion angle during gait ranged from an improvement of 9° more knee extension to 15° more knee flexion. Individuals without hamstring spasticity had greater improvement in knee extension after strength training. Hamstring spasticity was associated with an undesired increase in knee flexion during walking. Subject-specific factors such as hamstring spasticity may be useful for predicting which subjects will benefit from strength training to improve crouch gait.

    View details for DOI 10.3233/PRM-2012-0201

    View details for PubMedID 22699100

  • A COMPUTATIONALLY EFFICIENT MUSCLE MODEL PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B Millard, M., Delp, S. 2012: 1055-1056
  • EXPERIMENTAL EVALUATION OF COMPUTATIONALLY PREDICTED CHANGES IN KNEE LOADS RESULTING FROM MEDIAL THRUST GAIT PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B Hall, A. L., Walter, J. P., Besier, T. F., Silder, A., Delp, S. L., D'Lima, D. D., Fregly, B. J. 2012: 189-190
  • CHANGES IN MEDIAL KNEE CONTACT FORCE THROUGH GAIT MODIFICATION PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B Hall, A. L., Besier, T. F., Silder, A., Delp, S. L., D'Lima, D. D., Fregly, B. J. 2012: 239-240
  • Can biomechanical variables predict improvement in crouch gait? GAIT & POSTURE Hicks, J. L., Delp, S. L., Schwartz, M. H. 2011; 34 (2): 197-201

    Abstract

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate 'Improved' and 'Unimproved' knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects' change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: (i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, (ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and (iii) sufficient muscle strength.

    View details for DOI 10.1016/j.gaitpost.2011.04.009

    View details for Web of Science ID 000293429800010

    View details for PubMedID 21616666

  • Fibre operating lengths of human lower limb muscles during walking PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Arnold, E. M., Delp, S. L. 2011; 366 (1570): 1530-1539

    Abstract

    Muscles actuate movement by generating forces. The forces generated by muscles are highly dependent on their fibre lengths, yet it is difficult to measure the lengths over which muscle fibres operate during movement. We combined experimental measurements of joint angles and muscle activation patterns during walking with a musculoskeletal model that captures the relationships between muscle fibre lengths, joint angles and muscle activations for muscles of the lower limb. We used this musculoskeletal model to produce a simulation of muscle-tendon dynamics during walking and calculated fibre operating lengths (i.e. the length of muscle fibres relative to their optimal fibre length) for 17 lower limb muscles. Our results indicate that when musculotendon compliance is low, the muscle fibre operating length is determined predominantly by the joint angles and muscle moment arms. If musculotendon compliance is high, muscle fibre operating length is more dependent on activation level and force-length-velocity effects. We found that muscles operate on multiple limbs of the force-length curve (i.e. ascending, plateau and descending limbs) during the gait cycle, but are active within a smaller portion of their total operating range.

    View details for DOI 10.1098/rstb.2010.0345

    View details for Web of Science ID 000289621400008

    View details for PubMedID 21502124

  • Mechanics, modulation and modelling: how muscles actuate and control movement Introduction PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Higham, T. E., Biewener, A. A., Delp, S. L. 2011; 366 (1570): 1463-1465

    Abstract

    Animal movement is often complex, unsteady and variable. The critical role of muscles in animal movement has captivated scientists for over 300 years. Despite this, emerging techniques and ideas are still shaping and advancing the field. For example, sonomicrometry and ultrasound techniques have enhanced our ability to quantify muscle length changes under in vivo conditions. Robotics and musculoskeletal models have benefited from improved computational tools and have enhanced our ability to understand muscle function in relation to movement by allowing one to simulate muscle-tendon dynamics under realistic conditions. The past decade, in particular, has seen a rapid advancement in technology and shifts in paradigms related to muscle function. In addition, there has been an increased focus on muscle function in relation to the complex locomotor behaviours, rather than relatively simple (and steady) behaviours. Thus, this Theme Issue will explore integrative aspects of muscle function in relation to diverse locomotor behaviours such as swimming, jumping, hopping, running, flying, moving over obstacles and transitioning between environments. Studies of walking and running have particular relevance to clinical aspects of human movement and sport. This Theme Issue includes contributions from scientists working on diverse taxa, ranging from humans to insects. In addition to contributions addressing locomotion in various taxa, several manuscripts will focus on recent advances in neuromuscular control and modulation during complex behaviours. Finally, some of the contributions address recent advances in biomechanical modelling and powered prostheses. We hope that our comprehensive and integrative Theme Issue will form the foundation for future work in the fields of neuromuscular mechanics and locomotion.

    View details for DOI 10.1098/rstb.2010.0354

    View details for Web of Science ID 000289621400001

    View details for PubMedID 21502117

  • New MR Imaging Methods for Metallic Implants in the Knee: Artifact Correction and Clinical Impact JOURNAL OF MAGNETIC RESONANCE IMAGING Chen, C. A., Chen, W., Goodman, S. B., Hargreaves, B. A., Koch, K. M., Lu, W., Brau, A. C., Draper, C. E., Delp, S. L., Gold, G. E. 2011; 33 (5): 1121-1127

    Abstract

    To evaluate two magnetic resonance imaging (MRI) techniques, slice encoding for metal artifact correction (SEMAC) and multiacquisition variable-resonance image combination (MAVRIC), for their ability to correct for artifacts in postoperative knees with metal.A total of 25 knees were imaged in this study. Fourteen total knee replacements (TKRs) in volunteers were scanned with SEMAC, MAVRIC, and 2D fast spin-echo (FSE) to measure artifact extent and implant rotation. The ability of the sequences to measure implant rotation and dimensions was compared in a TKR knee model. Eleven patients with a variety of metallic hardware were imaged with SEMAC and FSE to compare artifact extent and subsequent patient management was recorded.SEMAC and MAVRIC significantly reduced artifact extent compared to FSE (P < 0.0001) and were similar to each other (P = 0.58), allowing accurate measurement of implant dimensions and rotation. The TKRs were properly aligned in the volunteers. Clinical imaging with SEMAC in symptomatic knees significantly reduced artifact (P < 0.05) and showed findings that were on the majority confirmed by subsequent noninvasive or invasive patient studies.SEMAC and MAVRIC correct for metal artifact, noninvasively providing high-resolution images with superb bone and soft tissue contrast.

    View details for DOI 10.1002/jmri.22534

    View details for Web of Science ID 000289999700015

    View details for PubMedID 21509870

  • Patellar Maltracking Correlates With Vastus Medialis Activation Delay in Patellofemoral Pain Patients AMERICAN JOURNAL OF SPORTS MEDICINE Pal, S., Draper, C. E., Fredericson, M., Gold, G. E., Delp, S. L., Beaupre, G. S., Besier, T. F. 2011; 39 (3): 590-598

    Abstract

    Delayed onset of vastus medialis (VM) activity compared with vastus lateralis activity is a reported cause for patellofemoral pain. The delayed onset of VM activity in patellofemoral pain patients likely causes an imbalance in muscle forces and lateral maltracking of the patella; however, evidence relating VM activation delay to patellar maltracking is sparse. The aim of this study was to investigate the relationship between VM activation delay and patellar maltracking measures in pain-free controls and patellofemoral pain patients.Patellar tilt and bisect offset, measures of patellar tracking, correlate with VM activation delay in patellofemoral pain patients classified as maltrackers.Case control study; Level of evidence, 3.Vasti muscle activations were recorded in pain-free (n = 15) and patellofemoral pain (n = 40) participants during walking and jogging. All participants were scanned in an open-configuration magnetic resonance scanner in an upright weightbearing position to acquire the position of the patella with respect to the femur. Patellar tilt and bisect offset were measured, and patellofemoral pain participants were classified into normal tracking and maltracking groups.Correlations between VM activation delay and patellar maltracking measures were statistically significant in only the patellofemoral pain participants classified as maltrackers with both abnormal tilt and abnormal bisect offset (R(2) = .89, P < .001, with patellar tilt during walking; R(2) = .75, P = .012, with bisect offset during jogging). There were no differences between the means of activation delays in pain-free and all patellofemoral pain participants during walking (P = .516) or jogging (P = .731).There was a relationship between VM activation delay and patellar maltracking in the subgroup of patellofemoral pain participants classified as maltrackers with both abnormal tilt and abnormal bisect offset.A clinical intervention such as VM retraining may be effective in only a subset of patellofemoral pain participants-namely, those with excessive tilt and excessive bisect offset measures. The results highlight the importance of appropriate classification of patellofemoral pain patients before selection of a clinical intervention.

    View details for DOI 10.1177/0363546510384233

    View details for Web of Science ID 000288063900019

    View details for PubMedID 21076015

  • Differences in Patellofemoral Kinematics between Weight-Bearing and Non-Weight-Bearing Conditions in Patients with Patellofemoral Pain JOURNAL OF ORTHOPAEDIC RESEARCH Draper, C. E., Besier, T. F., Fredericson, M., Santos, J. M., Beaupre, G. S., Delp, S. L., Gold, G. E. 2011; 29 (3): 312-317

    Abstract

    Patellar maltracking is thought to be one source of patellofemoral pain. Measurements of patellar tracking are frequently obtained during non-weight-bearing knee extension; however, pain typically arises during highly loaded activities, such as squatting, stair climbing, and running. It is unclear whether patellofemoral joint kinematics during lightly loaded tasks replicate patellofemoral joint motion during weight-bearing activities. The purpose of this study was to: evaluate differences between upright, weight-bearing and supine, non-weight-bearing joint kinematics in patients with patellofemoral pain; and evaluate whether the kinematics in subjects with maltracking respond differently to weight-bearing than those in nonmaltrackers. We used real-time magnetic resonance imaging to visualize the patellofemoral joint during dynamic knee extension from 30° to 0° of knee flexion during two conditions: upright, weight-bearing and supine, non-weight-bearing. We compared patellofemoral kinematics measured from the images. The patella translated more laterally during the supine task compared to the weight-bearing task for knee flexion angles between 0° and 5° (p = 0.001). The kinematics of the maltrackers responded differently to joint loading than those of the non-maltrackers. In subjects with excessive lateral patellar translation, the patella translated more laterally during upright, weight-bearing knee extension for knee flexion angles between 25° and 30° (p = 0.001). However, in subjects with normal patellar translation, the patella translated more laterally during supine, non-weight-bearing knee extension near full extension (p = 0.001). These results suggest that patellofemoral kinematics measured during supine, unloaded tasks do not accurately represent the joint motion during weight-bearing activities.

    View details for DOI 10.1002/jor.21253

    View details for Web of Science ID 000287173500002

    View details for PubMedID 20949442

  • Prediction of glycosaminoglycan content in human cartilage by age, T1 rho and T2 MRI OSTEOARTHRITIS AND CARTILAGE Keenan, K. E., Besier, T. F., Pauly, J. M., Han, E., Rosenberg, J., Smith, R. L., Delp, S. L., Beaupre, G. S., Gold, G. E. 2011; 19 (2): 171-179

    Abstract

    A relationship between T1? relaxation time and glycosaminoglycan (GAG) content has been demonstrated in chemically degraded bovine cartilage, but has not been demonstrated with quantitative biochemistry in human cartilage. A relationship has also been established between T2 relaxation time in cartilage and osteoarthritis (OA) severity. We hypothesized that T1? relaxation time would be associated with GAG content in human cartilage with normal T2 relaxation times.T2 relaxation time, T1? relaxation time, and glycosaminoglycan as a percentage of wet weight (sGAG) were measured for top and bottom regions at 7 anatomical locations in 21 human cadaver patellae. For our analysis, T2 relaxation time was classified as normal or elevated based on a threshold defined by the mean plus one standard deviation of the T2 relaxation time for all samples.In the normal T2 relaxation time subset, T1? relaxation time correlated with sGAG content in the full-thickness and bottom regions, but only marginally in the top region alone. sGAG content decreased significantly with age in all regions.In the subset of cartilage specimens with normal T2 relaxation time, T1? relaxation time was inversely associated with sGAG content, as hypothesized. A predictive model, which accounts for T2 relaxation time and the effects of age, might be able to determine longitudinal trends in GAG content in the same person based on T1? relaxation time maps.

    View details for DOI 10.1016/j.joca.2010.11.009

    View details for Web of Science ID 000287470600005

    View details for PubMedID 21112409

  • OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange IUTAM SYMPOSIUM ON HUMAN BODY DYNAMICS Seth, A., Sherman, M., Reinbolt, J. A., Delp, S. L. 2011; 2: 212-232
  • Analysis of Vertical and Horizontal Circular C-Arm Trajectories MEDICAL IMAGING 2011: PHYSICS OF MEDICAL IMAGING Maier, A., Choi, J., Keil, A., Niebler, C., Sarmiento, M., Fieselmann, A., Gold, G., Delp, S., Fahrig, R. 2011; 7961

    View details for DOI 10.1117/12.878502

    View details for Web of Science ID 000294178500070

  • Simulation of human movement: applications using OpenSim IUTAM SYMPOSIUM ON HUMAN BODY DYNAMICS Reinbolt, J. A., Seth, A., Delp, S. L. 2011; 2: 186-198
  • Simbody: multibody dynamics for biomedical research IUTAM SYMPOSIUM ON HUMAN BODY DYNAMICS Sherman, M. A., Seth, A., Delp, S. L. 2011; 2: 241-261
  • Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice CELL Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., Blau, H. M. 2010; 143 (7): 1059-1071

    Abstract

    In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.

    View details for DOI 10.1016/j.cell.2010.11.039

    View details for Web of Science ID 000285625400005

    View details for PubMedID 21145579

  • Muscle contributions to propulsion and support during running JOURNAL OF BIOMECHANICS Hamner, S. R., Seth, A., Delp, S. L. 2010; 43 (14): 2709-2716

    Abstract

    Muscles actuate running by developing forces that propel the body forward while supporting the body's weight. To understand how muscles contribute to propulsion (i.e., forward acceleration of the mass center) and support (i.e., upward acceleration of the mass center) during running we developed a three-dimensional muscle-actuated simulation of the running gait cycle. The simulation is driven by 92 musculotendon actuators of the lower extremities and torso and includes the dynamics of arm motion. We analyzed the simulation to determine how each muscle contributed to the acceleration of the body mass center. During the early part of the stance phase, the quadriceps muscle group was the largest contributor to braking (i.e., backward acceleration of the mass center) and support. During the second half of the stance phase, the soleus and gastrocnemius muscles were the greatest contributors to propulsion and support. The arms did not contribute substantially to either propulsion or support, generating less than 1% of the peak mass center acceleration. However, the arms effectively counterbalanced the vertical angular momentum of the lower extremities. Our analysis reveals that the quadriceps and plantarflexors are the major contributors to acceleration of the body mass center during running.

    View details for DOI 10.1016/j.jbiomech.2010.06.025

    View details for Web of Science ID 000284343700009

    View details for PubMedID 20691972

  • Minimal formulation of joint motion for biomechanisms NONLINEAR DYNAMICS Seth, A., Sherman, M., Eastman, P., Delp, S. 2010; 62 (1-2): 291-303
  • Orderly recruitment of motor units under optical control in vivo NATURE MEDICINE Llewellyn, M. E., Thompson, K. R., Deisseroth, K., Delp, S. L. 2010; 16 (10): 1161-U144

    Abstract

    A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.

    View details for DOI 10.1038/nm.2228

    View details for Web of Science ID 000282644800049

    View details for PubMedID 20871612

  • Muscle contributions to support and progression during single-limb stance in crouch gait JOURNAL OF BIOMECHANICS Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S., Delp, S. L. 2010; 43 (11): 2099-2105

    Abstract

    Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.

    View details for DOI 10.1016/j.jbiomech.2010.04.003

    View details for Web of Science ID 000281534000008

    View details for PubMedID 20493489

  • Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds JOURNAL OF BIOMECHANICS Fox, M. D., Delp, S. L. 2010; 43 (8): 1450-1455

    Abstract

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support.

    View details for DOI 10.1016/j.jbiomech.2010.02.009

    View details for Web of Science ID 000278652000002

    View details for PubMedID 20236644

  • Variation of hamstrings lengths and velocities with walking speed JOURNAL OF BIOMECHANICS Agarwal-Harding, K. J., Schwartz, M. H., Delp, S. L. 2010; 43 (8): 1522-1526

    Abstract

    Crouch gait, one of the most prevalent movement abnormalities among children with cerebral palsy, is frequently treated with surgical lengthening of the hamstrings. To assist in surgical planning many clinical centers use musculoskeletal modeling to help determine if a patient's hamstrings are shorter or lengthen more slowly than during unimpaired gait. However, some subjects with crouch gait walk slowly, and gait speed may affect peak hamstring lengths and lengthening velocities. The purpose of this study was to evaluate the effects of walking speed on hamstrings lengths and velocities in a group of unimpaired subjects over a large range of speeds and to determine if evaluating subjects with crouch gait using speed matched controls alters subjects' characterization as having "short" or "slow" hamstrings. We examined 39 unimpaired subjects who walked at five different speeds. These subjects served as speed-matched controls for comparison to 74 subjects with cerebral palsy who walked in crouch gait. Our analysis revealed that peak hamstrings length and peak lengthening velocity in unimpaired subjects increased significantly with increasing walking speed. Fewer subjects with cerebral palsy were categorized as having hamstrings that were "short" (31/74) or "slow" (38/74) using a speed-matched control protocol compared to a non-speed-matched protocol (35/74 "short", 47/74 "slow"). Evaluation of patients with cerebral palsy using speed-matched controls alters and may improve selection of patients for hamstrings lengthening procedures.

    View details for DOI 10.1016/j.jbiomech.2010.01.008

    View details for Web of Science ID 000278652000013

    View details for PubMedID 20381047

  • Can Strength Training Predictably Improve Gait Kinematics? A Pilot Study on the Effects of Hip and Knee Extensor Strengthening on Lower-Extremity Alignment in Cerebral Palsy PHYSICAL THERAPY Damiano, D. L., Arnold, A. S., Steele, K. M., Delp, S. L. 2010; 90 (2): 269-279

    Abstract

    Computer simulations have demonstrated that excessive hip and knee flexion during gait, as frequently seen in ambulatory children with cerebral palsy (CP), can reduce the ability of muscles to provide antigravity support and increase the tendency of hip muscles to internally rotate the thigh. These findings suggest that therapies for improving upright posture during gait also may reduce excessive internal rotation.The goal of this study was to determine whether strength training can diminish the degree of crouched, internally rotated gait in children with spastic diplegic CP.This was a pilot prospective clinical trial.Eight children with CP participated in an 8-week progressive resistance exercise program, with 3-dimensional gait analysis and isokinetic testing performed before and after the program. Secondary measures included passive range of motion, the Ashworth Scale, and the PedsQL CP Module. To identify factors that may have influenced outcome, individual and subgroup data were examined for patterns of change within and across variables.Strength (force-generating capacity) increased significantly in the left hip extensors, with smaller, nonsignificant mean increases in the other 3 extensor muscle groups, yet kinematic and functional outcomes were inconsistent. The first reported subject-specific computer simulations of crouch gait were created for one child who showed substantial benefit to examine the factors that may have contributed to this outcome.The sample was small, with wide variability in outcomes.Strength training may improve walking function and alignment in some patients for whom weakness is a major contributor to their gait deficits. However, in other patients, it may produce no change or even undesired outcomes. Given the variability of outcomes in this and other strengthening studies in CP, analytical approaches to determine the sources of variability are needed to better identify those individuals who are most likely to benefit from strengthening.

    View details for DOI 10.2522/ptj.20090062

    View details for Web of Science ID 000274130000016

    View details for PubMedID 20022999

  • A Model of the Lower Limb for Analysis of Human Movement ANNALS OF BIOMEDICAL ENGINEERING Arnold, E. M., Ward, S. R., Lieber, R. L., Delp, S. L. 2010; 38 (2): 269-279

    Abstract

    Computer models that estimate the force generation capacity of lower limb muscles have become widely used to simulate the effects of musculoskeletal surgeries and create dynamic simulations of movement. Previous lower limb models are based on severely limited data describing limb muscle architecture (i.e., muscle fiber lengths, pennation angles, and physiological cross-sectional areas). Here, we describe a new model of the lower limb based on data that quantifies the muscle architecture of 21 cadavers. The model includes geometric representations of the bones, kinematic descriptions of the joints, and Hill-type models of 44 muscle-tendon compartments. The model allows calculation of muscle-tendon lengths and moment arms over a wide range of body positions. The model also allows detailed examination of the force and moment generation capacities of muscles about the ankle, knee, and hip and is freely available at www.simtk.org .

    View details for DOI 10.1007/s10439-009-9852-5

    View details for Web of Science ID 000274237000005

    View details for PubMedID 19957039

  • Engineered Myosin VI Motors Reveal Minimal Structural Determinants of Directionality and Processivity JOURNAL OF MOLECULAR BIOLOGY Liao, J., Elting, M. W., Delp, S. L., Spudich, J. A., Bryant, Z. 2009; 392 (4): 862-867

    Abstract

    Myosins have diverse mechanical properties reflecting a range of cellular roles. A major challenge is to understand the structural basis for generating novel functions from a common motor core. Myosin VI (M6) is specialized for processive motion toward the (-) end of actin filaments. We have used engineered M6 motors to test and refine the "redirected power stroke" model for (-) end directionality and to explore poorly understood structural requirements for processive stepping. Guided by crystal structures and molecular modeling, we fused artificial lever arms to the catalytic head of M6 at several positions, retaining varying amounts of native structure. We found that an 18-residue alpha-helical insert is sufficient to reverse the directionality of the motor, with no requirement for any calmodulin light chains. Further, we observed robust processive stepping of motors with artificial lever arms, demonstrating that processivity can arise without optimizing lever arm composition or mechanics.

    View details for DOI 10.1016/j.jmb.2009.07.046

    View details for Web of Science ID 000270601200002

    View details for PubMedID 19631216

  • Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics CELLULAR AND MOLECULAR BIOENGINEERING Parker, D., Bryant, Z., Delp, S. L. 2009; 2 (3): 366-374

    Abstract

    Experimental and computational approaches are needed to uncover the mechanisms by which molecular motors convert chemical energy into mechanical work. In this article, we describe methods and software to generate structurally realistic models of molecular motor conformations compatible with experimental data from different sources. Coarse-grained models of molecular structures are constructed by combining groups of atoms into a system of rigid bodies connected by joints. Contacts between rigid bodies enforce excluded volume constraints, and spring potentials model system elasticity. This simplified representation allows the conformations of complex molecular motors to be simulated interactively, providing a tool for hypothesis building and quantitative comparisons between models and experiments. In an example calculation, we have used the software to construct atomically detailed models of the myosin V molecular motor bound to its actin track. The software is available at www.simtk.org.

    View details for DOI 10.1007/s12195-009-0084-4

    View details for Web of Science ID 000270168900010

    View details for PubMedID 20428469

  • Multiecho IDEAL Gradient-Echo Water-Fat Separation for Rapid Assessment of Cartilage Volume at 1.5 T: Initial Experience RADIOLOGY Chen, C. A., Lu, W., John, C. T., Hargreaves, B. A., Reeder, S. B., Delp, S. L., Siston, R. A., Gold, G. E. 2009; 252 (2): 561-567

    Abstract

    Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. The purpose was to prospectively compare multiecho iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) gradient-echo (GRE) magnetic resonance (MR) imaging with three-dimensional fat-suppressed (FS) spoiled GRE (SPGR) MR imaging to evaluate the articular cartilage of the knee. Six healthy volunteer and 10 cadaver knees were imaged at 1.5 T. Signal-to-noise ratio (SNR), SNR efficiency, and cartilage volume were measured. SNR and SNR efficiency were significantly higher with multiecho IDEAL GRE than with FS SPGR imaging (P < .031). Both methods produced equivalent cartilage volumes (overall concordance correlation coefficient, 0.998) with high precision and accuracy. The use of a cartilage phantom confirmed high accuracy in volume measurements and high reproducibility for both methods. Multiecho IDEAL GRE provides high signal intensity in cartilage and synovial fluid and is a promising technique for imaging articular cartilage of the knee.

    View details for DOI 10.1148/radiol.2522081424

    View details for Web of Science ID 000268875900032

    View details for PubMedID 19528355

  • Predicting outcomes of rectus femoris transfer surgery GAIT & POSTURE Reinbolt, J. A., Fox, M. D., Schwartz, M. H., Delp, S. L. 2009; 30 (1): 100-105

    Abstract

    Rectus femoris transfer surgery is a common treatment for stiff knee gait in children with cerebral palsy. Unfortunately, the improvement in knee motion after surgery is inconsistent. There is great interest in understanding the causes of stiff knee gait and determining predictors of improved knee motion after surgery. This study demonstrates that it is possible to predict whether or not a patient's knee motion will improve following rectus femoris transfer surgery with greater than 80% accuracy. A predictive model was developed that requires only a few preoperative gait analysis measurements, already collected as a routine part of treatment planning. Our examination of 62 patients before and after rectus femoris transfer revealed that a combination of hip power, knee power, and knee flexion velocity at toe-off correctly predicted postoperative outcome for 80% of cases. With the addition of two more preoperative measurements, hip flexion and internal rotation, prediction accuracy increased to nearly 88%. Other combinations of preoperative gait analysis measurements also predicted outcomes with high accuracy. These results provide insight into factors related to positive outcomes and suggest that predictive models provide a valuable tool for determining indications for rectus femoris transfer.

    View details for DOI 10.1016/j.gaitpost.2009.03.008

    View details for Web of Science ID 000266905000019

    View details for PubMedID 19411175

  • Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls JOURNAL OF BIOMECHANICS Besier, T. F., Fredericson, M., Gold, G. E., Beaupre, G. S., Delp, S. L. 2009; 42 (7): 898-905

    Abstract

    One proposed mechanism of patellofemoral pain, increased stress in the joint, is dependent on forces generated by the quadriceps muscles. Describing causal relationships between muscle forces, tissue stresses, and pain is difficult due to the inability to directly measure these variables in vivo. The purpose of this study was to estimate quadriceps forces during walking and running in a group of male and female patients with patellofemoral pain (n = 27, 16 female; 11 male) and compare these to pain-free controls (n = 16, 8 female; 8 male). Subjects walked and ran at self-selected speeds in a gait laboratory. Lower limb kinematics and electromyography (EMG) data were input to an EMG-driven musculoskeletal model of the knee, which was scaled and calibrated to each individual to estimate forces in 10 muscles surrounding the joint. Compared to controls, the patellofemoral pain group had greater co-contraction of quadriceps and hamstrings (p = 0.025) and greater normalized muscle forces during walking, even though the net knee moment was similar between groups. Muscle forces during running were similar between groups, but the net knee extension moment was less in the patellofemoral pain group compared to controls. Females displayed 30-50% greater normalized hamstring and gastrocnemius muscle forces during both walking and running compared to males (p<0.05). These results suggest that some patellofemoral pain patients might experience greater joint contact forces and joint stresses than pain-free subjects. The muscle force data are available as supplementary material.

    View details for DOI 10.1016/j.jbiomech.2009.01.032

    View details for Web of Science ID 000266299300016

    View details for PubMedID 19268945

  • Robotics-based synthesis of human motion JOURNAL OF PHYSIOLOGY-PARIS Khatib, O., Demircan, E., De Sapio, V., Sentis, L., Besier, T., Delp, S. 2009; 103 (3-5): 211-219

    Abstract

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

    View details for DOI 10.1016/j.jphysparis.2009.08.004

    View details for Web of Science ID 000271395900009

    View details for PubMedID 19665552

  • Using Real-Time MRI to Quantify Altered Joint Kinematics in Subjects with Patellofemoral Pain and to Evaluate the Effects of a Patellar Brace or Sleeve on Joint Motion JOURNAL OF ORTHOPAEDIC RESEARCH Draper, C. E., Besier, T. F., Santos, J. M., Jennings, F., Fredericson, M., Gold, G. E., Beaupre, G. S., Delp, S. L. 2009; 27 (5): 571-577

    Abstract

    Abnormal patellofemoral joint motion is a possible cause of patellofemoral pain, and patellar braces are thought to alleviate pain by restoring normal joint kinematics. We evaluated whether females with patellofemoral pain exhibit abnormal patellofemoral joint kinematics during dynamic, weight-bearing knee extension and assessed the effects of knee braces on patellofemoral motion. Real-time magnetic resonance (MR) images of the patellofemoral joints of 36 female volunteers (13 pain-free controls, 23 patellofemoral pain) were acquired during weight-bearing knee extension. Pain subjects were also imaged while wearing a patellar-stabilizing brace and a patellar sleeve. We measured axial-plane kinematics from the images. Females with patellofemoral pain exhibited increased lateral translation of the patella for knee flexion angles between 0 degrees and 50 degrees (p = 0.03), and increased lateral tilt for knee flexion angles between 0 degrees and 20 degrees (p = 0.04). The brace and sleeve reduced the lateral translation of the patella; however, the brace reduced lateral displacement more than the sleeve (p = 0.006). The brace reduced patellar tilt near full extension (p = 0.001), while the sleeve had no effect on patellar tilt. Our results indicate that some subjects with patellofemoral pain exhibit abnormal weight-bearing joint kinematics and that braces may be effective in reducing patellar maltracking in these subjects.

    View details for DOI 10.1002/jor.20790

    View details for Web of Science ID 000265009900002

    View details for PubMedID 18985690

  • Mechanisms of improved knee flexion after rectus femoris transfer surgery JOURNAL OF BIOMECHANICS Fox, M. D., Reinbolt, J. A., Ounpuu, S., Delp, S. L. 2009; 42 (5): 614-619

    Abstract

    Rectus femoris transfer is frequently performed to treat stiff-knee gait in subjects with cerebral palsy. In this surgery, the distal tendon is released from the patella and re-attached to one of several sites, such as the sartorius or the iliotibial band. Surgical outcomes vary, and the mechanisms by which the surgery improves knee motion are unclear. The purpose of this study was to clarify the mechanism by which the transferred muscle improves knee flexion by examining three types of transfers. Muscle-actuated dynamic simulations were created of ten children diagnosed with cerebral palsy and stiff-knee gait. These simulations were altered to represent surgical transfers of the rectus femoris to the sartorius and the iliotibial band. Rectus femoris transfers in which the muscle remained attached to the underlying vasti through scar tissue were also simulated by reducing but not eliminating the muscle's knee extension moment. Simulated transfer to the sartorius, which converted the rectus femoris' knee extension moment to a flexion moment, produced 32+/-8 degrees improvement in peak knee flexion on average. Simulated transfer to the iliotibial band, which completely eliminated the muscle's knee extension moment, predicted only slightly less improvement in peak knee flexion (28+/-8 degrees ). Scarred transfer simulations, which reduced the muscle's knee extension moment, predicted significantly less (p<0.001) improvement in peak knee flexion (14+/-5 degrees ). Simulations revealed that improved knee flexion following rectus femoris transfer is achieved primarily by reduction of the muscle's knee extension moment. Reduction of scarring of the rectus femoris to underlying muscles has the potential to enhance knee flexion.

    View details for DOI 10.1016/j.jbiomech.2008.12.007

    View details for Web of Science ID 000264957900008

    View details for PubMedID 19217109

  • Reconstruction and EMG-Informed Control, Simulation and Analysis of Human Movement for Athletics: Performance Improvement and Injury Prevention Demircan, E., Khatib, O., Wheeler, J., Delp, S. IEEE. 2009: 6534-6537

    Abstract

    In this paper we present methods to track and characterize human dynamic skills using motion capture and electromographic sensing. These methods are based on task-space control to obtain the joint kinematics and extract the key physiological parameters and on computed muscle control to solve the muscle force distribution problem. We also present a dynamic control and analysis framework that integrates these metrics for the purpose of reconstructing and analyzing sports motions in real-time.

    View details for Web of Science ID 000280543605089

    View details for PubMedID 19964175

  • IMAGING SARCOMERES OF EXTENSOR CARPI RADIALIS BREVIS IN HUMANS USING MINIMALLY INVASIVE MICROENDOSCOPY PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B Cromie, M. J., Sanchez, G. N., Schnitzer, M. J., Delp, S. L. 2009: 1009-1010
  • Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke GAIT & POSTURE Jonkers, I., Delp, S., Patten, C. 2009; 29 (1): 129-137

    Abstract

    It is well known that stroke patients walk with reduced speed, but their potential to increase walking speed can also be impaired and has not been thoroughly investigated. We hypothesized that failure to effectively recruit both hip flexor and ankle plantarflexor muscles of the paretic side limits the potential to increase walking speed in lower functioning hemiparetic subjects. To test this hypothesis, we measured gait kinematics and kinetics of 12 persons with hemiparesis following stroke at self-selected and fast walking conditions. Two groups were identified: (1) lower functioning subjects (n=6) who increased normalized walking speed from 0.52 leg lengths/s (ll/s, SEM: 0.04) to 0.72 ll/s (SEM: 0.03) and (2) higher functioning subjects (n=6) who increased walking speed from 0.88 ll/s (SEM: 0.04) to 1.4 ll/s (SEM 0.03). Changes in spatiotemporal parameters, joint kinematics and kinetics between self-selected and fast walking were compared to control subjects examined at matched walking speeds (0.35 ll/s (SEM: 0.03), 0.63 ll/s (SEM: 0.03), 0.92 ll/s (SEM: 0.04) and 1.4 ll/s (SEM: 0.04)). Similar to speed-matched controls, the higher functioning hemiparetic subjects increased paretic limb hip flexion power and ankle plantarflexion power to increase walking speed. The lower functioning hemiparetic subjects did not increase power generation at the hip or ankle to increase walking speed. This observation suggests that impaired ankle power generation combined with saturation of hip power generation limits the potential to increase walking speed in lower functioning hemiparetic subjects.

    View details for DOI 10.1016/j.gaitpost.2008.07.010

    View details for Web of Science ID 000262592200024

    View details for PubMedID 18789692

  • MUSCLE CONTRIBUTIONS TO MEDIAL-LATERAL ACCELERATION OF THE BODY DURING WALKING PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B John, C. T., Fox, M. D., Liu, M. Q., Schwartz, M. H., Delp, S. L. 2009: 1127-1128
  • CROUCH GAIT REPRESENTS A SIMPLIFIED MUSCULAR SUPPORT STRATEGY DURING SINGLE-LIMB STANCE COMPARED TO UNIMPAIRED GAIT PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M., Delp, S. L. 2009: 1093-1094
  • New resource for the computation of cartilage biphasic material properties with the interpolant response surface method COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING Keenan, K. E., Kourtis, L. C., Besier, T. F., Lindsey, D. P., Gold, G. E., Delp, S. L., Beaupre, G. S. 2009; 12 (4): 415-422

    Abstract

    Cartilage material properties are important for understanding joint function and diseases, but can be challenging to obtain. Three biphasic material properties (aggregate modulus, Poisson's ratio and permeability) can be determined using an analytical or finite element model combined with optimisation to find the material properties values that best reproduce an experimental creep curve. The purpose of this study was to develop an easy-to-use resource to determine biphasic cartilage material properties. A Cartilage Interpolant Response Surface was generated from interpolation of finite element simulations of creep indentation tests. Creep indentation tests were performed on five sites across a tibial plateau. A least-squares residual search of the Cartilage Interpolant Response Surface resulted in a best-fit curve for each experimental condition with corresponding material properties. These sites provided a representative range of aggregate moduli (0.48-1.58 MPa), Poisson's ratio (0.00-0.05) and permeability (1.7 x 10(- 15)-5.4 x 10(- 15) m(4)/N s) values found in human cartilage. The resource is freely available from https://simtk.org/home/va-squish.

    View details for DOI 10.1080/10255840802654319

    View details for Web of Science ID 000268912000005

    View details for PubMedID 19675978

  • The Influence of Femoral Internal and External Rotation on Cartilage Stresses within the Patellofemoral Joint JOURNAL OF ORTHOPAEDIC RESEARCH Besier, T. F., Gold, G. E., Delp, S. L., Fredericson, M., Beaupre, G. S. 2008; 26 (12): 1627-1635

    Abstract

    Internal and external rotation of the femur plays an important role in defining the orientation of the patellofemoral joint, influencing contact areas, pressures, and cartilage stress distributions. The purpose of this study was to determine the influence of femoral internal and external rotation on stresses in the patellofemoral cartilage. We constructed finite element models of the patellofemoral joint using magnetic resonance (MR) images from 16 volunteers (8 male and 8 female). Subjects performed an upright weight-bearing squat with the knee at 60 degrees of flexion inside an open-MR scanner and in a gait laboratory. Quadriceps muscle forces were estimated for each subject using an electromyographic-driven model and input to a finite element analysis. Hydrostatic and octahedral shear stresses within the cartilage were modeled with the tibiofemoral joint in a "neutral" position and also with the femur rotated internally or externally by 5 degrees increments to +/-15 degrees . Cartilage stresses were more sensitive to external rotation of the femur, compared with internal rotation, with large variation across subjects. Peak patellar shear stresses increased more than 10% with 15 degrees of external rotation in 75% of the subjects. Shear stresses were higher in the patellar cartilage compared to the femoral cartilage and patellar cartilage stresses were more sensitive to femoral rotation compared with femoral cartilage stress. Large variation in the cartilage stress response between individuals reflects the complex nature of the extensor mechanism and has clinical relevance when considering treatment strategies designed to reduce cartilage stresses by altering femoral internal and external rotation.

    View details for DOI 10.1002/jor.20663

    View details for Web of Science ID 000260934700012

    View details for PubMedID 18524000

  • Muscle contributions to support and progression over a range of walking speeds JOURNAL OF BIOMECHANICS Liu, M. Q., Anderson, F. C., Schwartz, M. H., Delp, S. L. 2008; 41 (15): 3243-3252

    Abstract

    Muscles actuate walking by providing vertical support and forward progression of the mass center. To quantify muscle contributions to vertical support and forward progression (i.e., vertical and fore-aft accelerations of the mass center) over a range of walking speeds, three-dimensional muscle-actuated simulations of gait were generated and analyzed for eight subjects walking overground at very slow, slow, free, and fast speeds. We found that gluteus maximus, gluteus medius, vasti, hamstrings, gastrocnemius, and soleus were the primary contributors to support and progression at all speeds. With the exception of gluteus medius, contributions from these muscles generally increased with walking speed. During very slow and slow walking speeds, vertical support in early stance was primarily provided by a straighter limb, such that skeletal alignment, rather than muscles, provided resistance to gravity. When walking speed increased from slow to free, contributions to support from vasti and soleus increased dramatically. Greater stance-phase knee flexion during free and fast walking speeds caused increased vasti force, which provided support but also slowed progression, while contralateral soleus simultaneously provided increased propulsion. This study provides reference data for muscle contributions to support and progression over a wide range of walking speeds and highlights the importance of walking speed when evaluating muscle function.

    View details for DOI 10.1016/j.jbiomech.2008.07.031

    View details for Web of Science ID 000261657000022

    View details for PubMedID 18822415

  • Posterior Cruciate Ligament Removal Contributes to Abnormal Knee Motion during Posterior Stabilized Total Knee Arthroplasty JOURNAL OF ORTHOPAEDIC RESEARCH Cromie, M. J., Siston, R. A., Giori, N. J., Delp, S. L. 2008; 26 (11): 1494-1499

    Abstract

    Abnormal anterior translation of the femur on the tibia has been observed in mid flexion (20-60 degrees ) following posterior stabilized total knee arthroplasty. The underlying biomechanical causes of this abnormal motion remain unknown. The purpose of this study was to isolate the effects of posterior cruciate ligament removal on knee motion after total knee arthroplasty. We posed two questions: Does removing the posterior cruciate ligament introduce abnormal anterior femoral translation? Does implanting a posterior stabilized prosthesis change the kinematics from the cruciate deficient case? Using a navigation system, we measured passive knee kinematics of ten male osteoarthritic patients during surgery after initial exposure, after removing the anterior cruciate ligament, after removing the posterior cruciate ligament, and after implanting the prosthesis. Passively flexing and extending the knee, we calculated anterior femoral translation and the flexion angle at which femoral rollback began. Removing the posterior cruciate ligament doubled anterior translation (from 5.1 +/- 4.3 mm to 10.4 +/- 5.1 mm) and increased the flexion angle at which femoral rollback began (from 31.2 +/- 9.6 degrees to 49.3 +/- 7.3 degrees). Implanting the prosthesis increased the amount of anterior translation (to 16.1 +/- 4.4 mm), and did not change the flexion angle at which femoral rollback began. Abnormal anterior translation was observed in low and mid flexion (0-60 degrees) after removing the posterior cruciate ligament, and normal motion was not restored by the posterior stabilized prosthesis.

    View details for DOI 10.1002/jor.20664

    View details for Web of Science ID 000260195800012

    View details for PubMedID 18464260

  • Averaging Different Alignment Axes Improves Femoral Rotational Alignment in Computer-Navigated Total Knee Arthroplasty JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME Siston, R. A., Cromie, M. J., Gold, G. E., Goodman, S. B., Delp, S. L., Maloney, W. J., Giori, N. J. 2008; 90A (10): 2098-2104

    Abstract

    Computer navigation systems generally establish the rotational alignment axis of the femoral component on the basis of user-defined anatomic landmarks. However, navigation systems can also record knee kinematics and average alignment axes established with multiple techniques. We hypothesized that establishing femoral rotational alignment with the use of kinematic techniques is more accurate and precise (repeatable) than the use of anatomic techniques and that establishing femoral rotational alignment by averaging the results of different alignment techniques is more accurate and precise than the use of a single technique.Twelve orthopaedic surgeons used three anatomic and two kinematic alignment techniques to establish femoral rotational alignment axes in a series of nine cadaver knees. The axes derived with the individual anatomic and kinematic techniques as well as the axes derived with six combination techniques--i.e., those involving averaging of the alignments established with two of the individual techniques--were compared against a reference axis established with computed tomography images of each femur.The kinematic methods were not more accurate (did not have smaller mean errors) or more precise (repeatable) than the anatomic techniques. The combination techniques were accurate (five of the six had a mean error of <5 degrees ) and significantly more precise than all but one of the single methods. The percentage of measurements with <5 degrees of error as compared with the reference epicondylar axis was 37% for the individual anatomic techniques, 30% for the individual kinematic techniques, and 58% for the combination techniques.Averaging the results of kinematic and anatomic techniques, which is possible with computer navigation systems, appears to improve the accuracy of rotational alignment of the femoral component. The number of rotational alignment outliers was reduced when combination techniques were used; however, they are still a problem and continued improvement in methods to accurately establish rotation of the femoral component in total knee arthroplasty is needed.

    View details for DOI 10.2106/JBJS.G.00996

    View details for Web of Science ID 000259873300006

  • Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans NATURE Llewellyn, M. E., Barretto, R. P., Delp, S. L., Schnitzer, M. J. 2008; 454 (7205): 784-788

    Abstract

    Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.

    View details for DOI 10.1038/nature07104

    View details for Web of Science ID 000258228000049

    View details for PubMedID 18600262

  • Importance of preswing rectus femoris activity in stiff-knee gait JOURNAL OF BIOMECHANICS Reinbolt, J. A., Fox, M. D., Arnold, A. S., Ounpuu, S., Delp, S. L. 2008; 41 (11): 2362-2369

    Abstract

    Stiff-knee gait is characterized by diminished and delayed knee flexion during swing. Rectus femoris transfer surgery, a common treatment for stiff-knee gait, is often recommended when a patient exhibits prolonged activity of the rectus femoris muscle during swing. Treatment outcomes are inconsistent, in part, due to limited understanding of the biomechanical factors contributing to stiff-knee gait. This study used a combination of gait analysis and dynamic simulation to examine how activity of the rectus femoris during swing, and prior to swing, contribute to knee flexion. A group of muscle-actuated dynamic simulations was created that accurately reproduced the gait dynamics of ten subjects with stiff-knee gait. These simulations were used to examine the effects of rectus femoris activity on knee motion by eliminating rectus femoris activity during preswing and separately during early swing. The increase in peak knee flexion by eliminating rectus femoris activity during preswing (7.5+/-3.1 degrees ) was significantly greater on average (paired t-test, p=0.035) than during early swing (4.7+/-3.6 degrees ). These results suggest that preswing rectus femoris activity is at least as influential as early swing activity in limiting the knee flexion of persons with stiff-knee gait. In evaluating rectus femoris activity for treatment of stiff-knee gait, preswing as well as early swing activity should be examined.

    View details for DOI 10.1016/j.jbiomech.2008.05.030

    View details for Web of Science ID 000259129000004

    View details for PubMedID 18617180

  • The Simbios National Center: Systems biology in motion PROCEEDINGS OF THE IEEE Schmidt, J. P., Delp, S. L., Sherman, M. A., Taylor, C. A., Pande, V. S., Altman, R. B. 2008; 96 (8): 1266-1280
  • Feasibility of using real-time MRI to measure joint kinematics in 1.5T and open-bore 0.5T systems JOURNAL OF MAGNETIC RESONANCE IMAGING Draper, C. E., Santos, J. M., Kourtis, L. C., Besier, T. F., Fredericson, M., Beaupre, G. S., Gold, G. E., Delp, S. L. 2008; 28 (1): 158-166

    Abstract

    To test the feasibility and accuracy of measuring joint motion with real-time MRI in a 1.5T scanner and in a 0.5T open-bore scanner and to assess the dependence of measurement accuracy on movement speed.We developed an MRI-compatible motion phantom to evaluate the accuracy of tracking bone positions with real-time MRI for varying movement speeds. The measurement error was determined by comparing phantom positions estimated from real-time MRI to those measured using optical motion capture techniques. To assess the feasibility of measuring in vivo joint motion, we calculated 2D knee joint kinematics during knee extension in six subjects and compared them to previously reported measurements.Measurement accuracy decreased as the phantom's movement speed increased. The measurement accuracy was within 2 mm for velocities up to 217 mm/s in the 1.5T scanner and 38 mm/s in the 0.5T scanner. We measured knee joint kinematics with small intraobserver variation (variance of 0.8 degrees for rotation and 3.6% of patellar width for translation).Our results suggest that real-time MRI can be used to measure joint kinematics when 2 mm accuracy is sufficient. They can also be used to prescribe the speed of joint motion necessary to achieve certain measurement accuracy.

    View details for DOI 10.1002/jmri.21413

    View details for Web of Science ID 000257865800021

    View details for PubMedID 18581329

  • iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources PLOS ONE Dinov, I. D., Rubin, D., Lorensen, W., Dugan, J., Ma, J., Murphy, S., Kirschner, B., Bug, W., Sherman, M., Floratos, A., Kennedy, D., Jagadish, H. V., Schmidt, J., Athey, B., Califano, A., Musen, M., Altman, R., Kikinis, R., Kohane, I., Delp, S., Parker, D. S., Toga, A. W. 2008; 3 (5)

    Abstract

    The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu.

    View details for DOI 10.1371/journal.pone.0002265

    View details for Web of Science ID 000262268500012

    View details for PubMedID 18509477

  • Least action principles and their application to constrained and task-level problems in robotics and biomechanics MULTIBODY SYSTEM DYNAMICS De Sapio, V., Khatib, O., Delp, S. 2008; 19 (3): 303-322
  • The Simbios National Center: Systems Biology in Motion. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers Schmidt, J. P., Delp, S. L., Sherman, M. A., Taylor, C. A., Pande, V. S., Altman, R. B. 2008; 96 (8): 1266

    Abstract

    Physics-based simulation is needed to understand the function of biological structures and can be applied across a wide range of scales, from molecules to organisms. Simbios (the National Center for Physics-Based Simulation of Biological Structures, http://www.simbios.stanford.edu/) is one of seven NIH-supported National Centers for Biomedical Computation. This article provides an overview of the mission and achievements of Simbios, and describes its place within systems biology. Understanding the interactions between various parts of a biological system and integrating this information to understand how biological systems function is the goal of systems biology. Many important biological systems comprise complex structural systems whose components interact through the exchange of physical forces, and whose movement and function is dictated by those forces. In particular, systems that are made of multiple identifiable components that move relative to one another in a constrained manner are multibody systems. Simbios' focus is creating methods for their simulation. Simbios is also investigating the biomechanical forces that govern fluid flow through deformable vessels, a central problem in cardiovascular dynamics. In this application, the system is governed by the interplay of classical forces, but the motion is distributed smoothly through the materials and fluids, requiring the use of continuum methods. In addition to the research aims, Simbios is working to disseminate information, software and other resources relevant to biological systems in motion.

    View details for PubMedID 20107615

  • Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait JOURNAL OF BIOMECHANICS Hicks, J. L., Schwartz, M. H., Arnold, A. S., Delp, S. L. 2008; 41 (5): 960-967

    Abstract

    Many children with cerebral palsy walk in a crouch gait that progressively worsens over time, decreasing walking efficiency and leading to joint degeneration. This study examined the effect of crouched postures on the capacity of muscles to extend the hip and knee joints and the joint flexions induced by gravity during the single-limb stance phase of gait. We first characterized representative mild, moderate, and severe crouch gait kinematics based on a large group of subjects with cerebral palsy (N=316). We then used a three-dimensional model of the musculoskeletal system and its associated equations of motion to determine the effect of these crouched gait postures on (1) the capacity of individual muscles to extend the hip and knee joints, which we defined as the angular accelerations of the joints, towards extension, that resulted from applying a 1N muscle force to the model, and (2) the angular acceleration of the joints induced by gravity. Our analysis showed that the capacities of almost all the major hip and knee extensors were markedly reduced in a crouched gait posture, with the exception of the hamstrings muscle group, whose extension capacity was maintained in a crouched posture. Crouch gait also increased the flexion accelerations induced by gravity at the hip and knee throughout single-limb stance. These findings help explain the increased energy requirements and progressive nature of crouch gait in patients with cerebral palsy.

    View details for DOI 10.1016/j.jbiomech.2008.01.002

    View details for Web of Science ID 000254943800005

    View details for PubMedID 18291404

  • OpenSim: open-source software to create and analyze dynamic Simulations of movement IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., Thelen, D. G. 2007; 54 (11): 1940-1950

    Abstract

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

    View details for DOI 10.1109/TBME.2007.901024

    View details for Web of Science ID 000250449200004

    View details for PubMedID 18018689

  • Coronal plane stability before and after total knee arthroplasty CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Siston, R. A., Goodman, S. B., Delp, S. L., Giori, N. J. 2007: 43-49

    Abstract

    The success of total knee arthroplasty depends in part on proper soft tissue management to achieve a stable joint. It is unknown to what degree total knee arthroplasty changes joint stability. We used a surgical navigation system to intraoperatively measure joint stability in 24 patients under going primary total knee arthroplasty to address two questions: (1) Is the total arc of varus-valgus motion after total knee arthroplasty different from the arc of varus-valgus motion in an osteoarthritic knee? (2) Does total knee arthroplasty produce equal amounts of varus/valgus motion (ie, is the knee "balanced")? We observed no difference between the total arc of varus-valgus motion before and after total knee arthroplasty; the total amount of motion was unchanged. On average, osteoarthritic knees were "unbalanced" but were "balanced" after prosthesis implantation. We found a negative correlation between the relative amount of varus/valgus motion in extension before and after prosthesis implantation in extension and a positive correlation between how well the knees were balanced after prosthesis implantation in extension and in flexion. Our data suggest immediately after implantation knees retain a greater than normal amount of varus-valgus motion, but this motion is more evenly distributed.

    View details for DOI 10.1097/BLO.0b013e318137a182

    View details for Web of Science ID 000250100300009

    View details for PubMedID 17621236

  • The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance GAIT & POSTURE Hicks, J., Arnold, A., Anderson, F., Schwartz, M., Delp, S. 2007; 26 (4): 546-552

    Abstract

    Excessive tibial torsion, a rotational deformity about the long axis of the tibia, is common in patients with cerebral palsy who walk with a crouch gait. Previous research suggests that this deformity may contribute to crouch gait by reducing the capacity of soleus to extend the knee; however, the effects of excess external torsion on the capacity of other muscles to extend the stance limb during walking are unknown. A computer model of the musculoskeletal system was developed to simulate a range of tibial torsion deformities. A dynamic analysis was then performed to determine the effect of these deformities on the capacity of lower limb muscles to extend the hip and knee at body positions corresponding to the single-limb stance phase of a normal gait cycle. Analysis of the model confirmed that excessive external torsion reduces the extension capacity of soleus. In addition, our analysis revealed that several important muscles crossing the hip and knee are also adversely affected by excessive tibial torsion. With a tibial torsion deformity of 30 degrees , the capacities of soleus, posterior gluteus medius, and gluteus maximus to extend both the hip and knee were all reduced by over 10%. Since a tibial torsion deformity reduces the capacity of muscles to extend the hip and knee, it may be a significant contributor to crouch gait, especially when greater than 30 degrees from normal, and thus should be considered by clinicians when making treatment decisions.

    View details for DOI 10.1016/j.gaitpost.2006.12.003

    View details for Web of Science ID 000250291100011

    View details for PubMedID 17229573

  • Extending the absorbing boundary method to fit dwell-time distributions of molecular motors with complex kinetic pathways PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Liao, J., Spudich, J. A., Parker, D., Delp, S. L. 2007; 104 (9): 3171-3176

    Abstract

    Dwell-time distributions, waiting-time distributions, and distributions of pause durations are widely reported for molecular motors based on single-molecule biophysical experiments. These distributions provide important information concerning the functional mechanisms of enzymes and their underlying kinetic and mechanical processes. We have extended the absorbing boundary method to simulate dwell-time distributions of complex kinetic schemes, which include cyclic, branching, and reverse transitions typically observed in molecular motors. This extended absorbing boundary method allows global fitting of dwell-time distributions for enzymes subject to different experimental conditions. We applied the extended absorbing boundary method to experimental dwell-time distributions of single-headed myosin V, and were able to use a single kinetic scheme to fit dwell-time distributions observed under different ligand concentrations and different directions of optical trap forces. The ability to use a single kinetic scheme to fit dwell-time distributions arising from a variety of experimental conditions is important for identifying a mechanochemical model of a molecular motor. This efficient method can be used to study dwell-time distributions for a broad class of molecular motors, including kinesin, RNA polymerase, helicase, F(1) ATPase, and to examine conformational dynamics of other enzymes such as ion channels.

    View details for DOI 10.1073/pnas.0611519104

    View details for Web of Science ID 000244661400029

    View details for PubMedID 17360624

  • Image-based musculoskeletal modeling: Applications, advances, and future opportunities JOURNAL OF MAGNETIC RESONANCE IMAGING Blemker, S. S., Asakawa, D. S., Gold, G. E., Delp, S. L. 2007; 25 (2): 441-451

    Abstract

    Computer models of the musculoskeletal system are broadly used to study the mechanisms of musculoskeletal disorders and to simulate surgical treatments. Musculoskeletal models have historically been created based on data derived in anatomical and biomechanical studies of cadaveric specimens. MRI offers an abundance of novel methods for acquisition of data from living subjects and is revolutionizing the field of musculoskeletal modeling. The need to create accurate, individualized models of the musculoskeletal system is driving advances in MRI techniques including static imaging, dynamic imaging, diffusion imaging, body imaging, pulse-sequence design, and coil design. These techniques apply to imaging musculoskeletal anatomy, muscle architecture, joint motions, muscle moment arms, and muscle tissue deformations. Further advancements in image-based musculoskeletal modeling will expand the accuracy and utility of models used to study musculoskeletal and neuromuscular impairments.

    View details for DOI 10.1002/jmri.20805

    View details for Web of Science ID 000244133000020

    View details for PubMedID 17260405

  • Surgical navigation for total knee arthroplasty: A perspective JOURNAL OF BIOMECHANICS Siston, R. A., Giori, N. J., Goodman, S. B., Delp, S. L. 2007; 40 (4): 728-735

    Abstract

    A new generation of surgical tools, known as surgical navigation systems, has been developed to help surgeons install implants more accurately and reproducibly. Navigation systems also record quantitative information such as joint range of motion, laxity, and kinematics intra-operatively. This article reviews the history of surgical navigation for total knee arthroplasty, the biomechanical principles associated with this technology, and the related clinical research studies. We describe how navigation has the potential to address three main challenges for total knee arthroplasty: ensuring excellent and consistent outcomes, treating younger and more physically active patients, and enabling less invasive surgery.

    View details for DOI 10.1016/j.jbiomech.2007.01.006

    View details for Web of Science ID 000245111200003

    View details for PubMedID 17317419

  • Contributions of muscles to terminal-swing knee motions vary with walking speed JOURNAL OF BIOMECHANICS Arnold, A. S., Schwartz, M. H., Thelen, D. G., Delp, S. L. 2007; 40 (16): 3660-3671

    Abstract

    Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects x 4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects' self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects' fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data--which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed--emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.

    View details for DOI 10.1016/j.jbiomech.2007.06.006

    View details for Web of Science ID 000251845100015

    View details for PubMedID 17659289

  • Muscular coordination of knee motion during the terminal-swing phase of normal gait JOURNAL OF BIOMECHANICS Arnold, A. S., Thelen, D. G., Schwartz, M. H., Anderson, F. C., Delp, S. L. 2007; 40 (15): 3314-3324

    Abstract

    Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome "crouched" posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee. Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may, in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.

    View details for DOI 10.1016/j.jbiomech.2007.05.006

    View details for Web of Science ID 000251342800003

    View details for PubMedID 17572431

  • Upper limb muscle volumes in adult subjects JOURNAL OF BIOMECHANICS Holzbaur, K. R., Murray, W. M., Gold, G. E., Delp, S. L. 2007; 40 (4): 742-749

    Abstract

    Muscle force-generating properties are often derived from cadaveric studies of muscle architecture. While the relative sizes of muscles at a single upper limb joint have been established in cadaveric specimens, the relative sizes of muscles across upper limb joints in living subjects remain unclear. We used magnetic resonance imaging to measure the volumes of the 32 upper limb muscles crossing the glenohumeral joint, elbow, forearm, and wrist in 10 young, healthy subjects, ranging from a 20th percentile female to a 97th percentile male, based on height. We measured the volume and volume fraction of these muscles. Muscles crossing the shoulder, elbow, and wrist comprised 52.5, 31.4, and 16.0% of the total muscle volume, respectively. The deltoid had the largest volume fraction (15.2%+/-1%) and the extensor indicis propius had the smallest (0.2%+/-0.05%). We determined that the distribution of muscle volume in the upper limb is highly conserved across these subjects with a three-fold variation in total muscle volumes (1427-4426cm(3)). When we predicted the volume of an individual muscle from the mean volume fraction, on average 85% of the variation among subjects was accounted for (average p=0.0008). This study provides normative data that forms the basis for investigating muscle volumes in other populations, and for scaling computer models to more accurately represent the muscle volume of a specific individual.

    View details for Web of Science ID 000245111200005

    View details for PubMedID 17241636

  • Moment-generating capacity of upper limb muscles in healthy adults JOURNAL OF BIOMECHANICS Holzbaur, K. R., Delp, S. L., Gold, G. E., Murray, W. M. 2007; 40 (11): 2442-2449

    Abstract

    Muscle strength and volume vary greatly among individuals. Maximum isometric joint moment, a standard measurement of strength, has typically been assessed in young, healthy subjects, whereas muscle volumes have generally been measured in cadavers. This has made it difficult to characterize the relationship between isometric strength and muscle size in humans. We measured maximum isometric moments about the shoulder, elbow, and wrist in 10 young, healthy subjects, ranging in size from a 20th percentile female to a 97th percentile male. The volumes of 32 upper limb muscles were determined from magnetic resonance images of these same subjects, and grouped according to their primary function. The maximum moments produced using the shoulder adductors (67.9+/-28.4 Nm) were largest, and were approximately 6.5(+/-1.2) times greater than those produced using the wrist extensors (10.2+/-4.6 Nm), which were smallest. While there were substantial differences in moment-generating capacity among these 10 subjects, moment significantly covaried with muscle volume of the appropriate functional group, explaining between 95% (p<0.0001; shoulder adductors) and 68% (p=0.004; wrist flexors) of the variation in the maximum isometric joint moments among subjects. While other factors, such as muscle moment arms or neural activation and coordination, can contribute to variation in strength among subjects, they either were relatively constant across these subjects compared to large differences in muscle volumes or they covaried with muscle volume. We conclude that differences in strength among healthy young adults are primarily a consequence of variation in muscle volume, as opposed to other factors.

    View details for DOI 10.1016/j.jbiomech.2006.11.013

    View details for Web of Science ID 000248990600011

    View details for PubMedID 17250841

  • Dynamic magnetic resonance imaging of muscle function after surgery SKELETAL RADIOLOGY Asakawa, D. S., Blemker, S. S., Gold, G. E., Delp, S. L. 2006; 35 (12): 885-886

    View details for DOI 10.1007/s00256-006-0163-8

    View details for Web of Science ID 000241797800001

    View details for PubMedID 16810541

  • The high variability of tibial rotational alignment in total knee arthroplasty CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Siston, R. A., Goodman, S. B., Patel, J. J., Delp, S. L., Giori, N. J. 2006: 65-69

    Abstract

    Although various techniques are advocated to establish tibial rotational alignment during total knee arthroplasty, it is unknown which is most repeatable. We evaluated the precision and accuracy of five tibial rotational alignment techniques to determine whether computer-assisted navigation systems can reduce variability of tibial component rotational alignment when compared to traditional instrumentation. Eleven orthopaedic surgeons used four computer-assisted techniques that required identification of anatomical landmarks and one that used traditional extramedullary instrumentation to establish tibial rotational alignment axes on 10 cadaver legs. Two computer-assisted techniques (axes between the most medial and lateral border of the tibial plateau, and between the posterior cruciate ligament [PCL] and the anterior tibial crest) and the traditional technique were least variable, with standard deviations of 9.9 degrees, 10.8 degrees, and 12.1 degrees, respectively. Computer-assisted techniques referencing the tibial tubercle (axes between the PCL and the medial border or medial 1/3 of the tubercle) were most variable, with standard deviations of 27.4 degrees and 28.1 degrees. The axis between the medial border of the tibial tubercle and the PCL was internally rotated compared to the other techniques. None of the techniques consistently established tibial rotational alignment, and navigation systems that establish rotational alignment by identifying anatomic landmarks were not more reliable than traditional instrumentation.

    View details for DOI 10.1097/01.blo.0000229335.36900.a0

    View details for Web of Science ID 000243021400013

    View details for PubMedID 16906095

  • Is cartilage thickness different in young subjects with and without patellofemoral pain? OSTEOARTHRITIS AND CARTILAGE Draper, C. E., Besier, T. F., Gold, G. E., Fredericson, M., Fiene, A., Beaupre, G. S., Delp, S. L. 2006; 14 (9): 931-937

    Abstract

    To determine the differences in load-bearing patellofemoral joint cartilage thickness between genders. To determine the differences in load-bearing cartilage thickness between pain-free controls and individuals with patellofemoral pain.The articular cartilage thickness of the patella and anterior femur was estimated from magnetic resonance images in 16 young, pain-free control subjects (eight males, eight females) and 34 young individuals with patellofemoral pain (12 males, 22 females). The average age of all subjects was 28+/-4 years. The cartilage surfaces were divided into regions approximating the location of patellofemoral joint contact during knee flexion. The mean and peak cartilage thicknesses of each region were computed and compared using a repeated-measures Analysis of Variance.On average, males had 22% and 23% thicker cartilage than females in the patella (P < 0.01) and femur (P < 0.05), respectively. Male control subjects had 18% greater peak patellar cartilage thickness than males with patellofemoral pain (P < 0.05); however, we did not detect differences in patellar cartilage thickness between female control subjects and females with patellofemoral pain (P = 0.45). We detected no significant differences in femoral cartilage thickness between the control and pain groups.Thin cartilage at the patella may be one mechanism of patellofemoral pain in male subjects, but is unlikely to be a dominant factor in the development of pain in the female population.

    View details for DOI 10.1016/j.joca.2006.03.006

    View details for Web of Science ID 000239898500012

    View details for PubMedID 16647278

  • Task-level approaches for the control of constrained multibody systems MULTIBODY SYSTEM DYNAMICS De Sapio, V., Khatib, O., Delp, S. 2006; 16 (1): 73-102
  • Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty JOURNAL OF ORTHOPAEDIC RESEARCH Siston, R. A., Giori, N. J., Goodman, S. B., Delp, S. L. 2006; 24 (8): 1607-1614

    Abstract

    Total knee arthroplasty is a successful procedure to treat pain and functional disability due to osteoarthritis. However, precisely how a total knee arthroplasty changes the kinematics of an osteoarthritic knee is unknown. We used a surgical navigation system to measure normal passive kinematics from 7 embalmed cadaver lower extremities and in vivo intraoperative passive kinematics on 17 patients undergoing primary total knee arthroplasty to address two questions: How do the kinematics of knees with advanced osteoarthritis differ from normal knees?; and, Does posterior substituting total knee arthroplasty restore kinematics towards normal? Osteoarthritic knees displayed a decreased screw-home motion and abnormal varus/valgus rotations between 10 degrees and 90 degrees of knee flexion when compared to normal knees. The anterior-posterior motion of the femur in osteoarthritic knees was not different than in normal knees. Following total knee arthroplasty, we found abnormal varus/valgus rotations in early flexion, a reduced screw-home motion when compared to the osteoarthritic knees, and an abnormal anterior translation of the femur during the first 60 degrees of flexion. Posterior substituting total knee arthroplasty does not appear to restore normal passive varus/valgus rotations or the screw motion and introduces an abnormal anterior translation of the femur during intraoperative evaluation.

    View details for DOI 10.1002/jor.20163

    View details for Web of Science ID 000239364300004

    View details for PubMedID 16770795

  • The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait GAIT & POSTURE Arnold, A. S., Liu, M. Q., Schwartz, M. H., Ounpuu, S., Delp, S. L. 2006; 23 (3): 273-281

    Abstract

    Persons with cerebral palsy frequently walk with excessive knee flexion during terminal swing and stance. This gait abnormality is often attributed to "short" or "spastic" hamstrings that restrict knee extension, and is often treated by hamstrings lengthening surgery. At present, the outcomes of these procedures are inconsistent. This study examined whether analyses of the muscle-tendon lengths and lengthening velocities of patients' hamstrings during walking may be helpful when deciding whether a candidate is likely to benefit from hamstrings surgery. One hundred and fifty-two subjects were cross-classified in a series of multi-way contingency tables based on their pre- and postoperative gait kinematics, muscle-tendon lengths, muscle-tendon velocities, and hamstrings surgeries. The lengths and velocities of the subjects' semimembranosus muscles were estimated by combining kinematic data from gait analysis with a three-dimensional computer model of the lower extremity. Log-linear analysis revealed that the subjects who walked with abnormally "short" or "slow" hamstrings preoperatively, and whose hamstrings did not operate at longer lengths or faster velocities postoperatively, were unlikely to walk with improved knee extension after treatment (p < 0.05). Subjects who did not walk with abnormally short or slow hamstrings preoperatively, and whose hamstrings did operate at longer lengths or faster velocities postoperatively, tended to exhibit unimproved or worsened anterior pelvic tilt after treatment (p < 0.05). Examination of the muscle-tendon lengths and velocities allows individuals who walk with abnormally short or slow hamstrings to be distinguished from those who do not, and thus may help to identify patients who are at risk for unsatisfactory postsurgical changes in knee extension or anterior pelvic tilt.

    View details for DOI 10.1016/j.gaitpost.2005.03.003

    View details for Web of Science ID 000236337700003

    View details for PubMedID 15964759

  • Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait JOURNAL OF BIOMECHANICS Goldberg, S. R., Ounpuu, S., Arnold, A. S., Gage, J. R., Delp, S. L. 2006; 39 (4): 689-698

    Abstract

    Stiff-knee gait is a movement abnormality in which knee flexion during swing phase is significantly diminished. This study investigates the relationships between knee flexion velocity at toe-off, joint moments during swing phase and double support, and improvements in stiff-knee gait following rectus femoris transfer surgery in subjects with cerebral palsy. Forty subjects who underwent a rectus femoris transfer were categorized as "stiff" or "not-stiff" preoperatively based on kinematic measures of knee motion during walking. Subjects classified as stiff were further categorized as having "good" or "poor" outcomes based on whether their swing-phase knee flexion improved substantially after surgery. We hypothesized that subjects with stiff-knee gait would exhibit abnormal joint moments in swing phase and/or diminished knee flexion velocity at toe-off, and that subjects with diminished knee flexion velocity at toe-off would exhibit abnormal joint moments during double support. We further hypothesized that subjects classified as having a good outcome would exhibit postoperative improvements in these factors. Subjects classified as stiff tended to exhibit abnormally low knee flexion velocities at toe-off (p<0.001) and excessive knee extension moments during double support (p=0.001). Subjects in the good outcome group on average showed substantial improvement in these factors postoperatively. All eight subjects in this group walked with normal knee flexion velocity at toe-off postoperatively and only two walked with excessive knee extension moments in double support. By contrast, all 10 of the poor outcome subjects walked with low knee flexion velocity at toe-off postoperatively and seven walked with excessive knee extension moments in double support. Our analyses suggest that improvements in stiff-knee gait are associated with sufficient increases in knee flexion velocity at toe-off and corresponding decreases in excessive knee extension moments during double support. Therefore, while stiff-knee gait manifests during the swing phase of the gait cycle, it may be caused by abnormal muscle activity during stance.

    View details for DOI 10.1016/j.jbiomech.2005.01.015

    View details for Web of Science ID 000235461300011

    View details for PubMedID 16439238

  • Evaluation of a new algorithm to determine the hip joint center JOURNAL OF BIOMECHANICS Siston, R. A., Delp, S. L. 2006; 39 (1): 125-130

    Abstract

    Accurately locating the hip joint center is a challenging and important step in many biomechanical investigations. The purpose of this study was to test the accuracy and robustness of a "pivoting" algorithm used to locate the hip center. We tested the performance of this algorithm with data acquired by manipulating a ball and socket model of the hip through several motion patterns. The smallest mean errors of 2.2+/-0.2 mm occurred with a circumduction motion pattern, while the largest errors of 4.2+/-1.3 mm occurred with single-plane motion (e.g., flexion/extension). Introducing random noise with an amplitude of 30 mm increased the errors by only 1.3+/-0.5 mm with a circumduction motion pattern. The pivoting algorithm performs well in the laboratory, and further work is warranted to evaluate its performance in a clinical setting.

    View details for DOI 10.1016/j.jbiomech.2004.10.032

    View details for Web of Science ID 000233702500014

    View details for PubMedID 16271596

  • Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening? JOURNAL OF BIOMECHANICS Arnold, A. S., Liu, M. Q., Schwartz, M. H., Ounpuu, S., Dias, L. S., Delp, S. L. 2006; 39 (8): 1498-1506

    Abstract

    Children with crouch gait frequently walk with improved knee extension during the terminal swing and stance phases following hamstrings lengthening surgery; however, the mechanisms responsible for these improvements are unclear. This study tested the hypothesis that surgical lengthening enables the hamstrings of persons with cerebral palsy to operate at longer muscle-tendon lengths or lengthen at faster muscle-tendon velocities during walking. Sixty-nine subjects who had improved knee extension after surgery were retrospectively examined. The muscle-tendon lengths and velocities of the subjects' semimembranosus muscles were estimated by combining kinematic data from gait analysis with a three-dimensional computer model of the lower extremity. Log-linear analyses confirmed that the subjects who walked with abnormally short muscle-tendon lengths and/or slow muscle-tendon velocities preoperatively tended to walk with longer lengths (21 of 29 subjects, p<0.01) or faster velocities (30 of 40 subjects, p<0.01) postoperatively. In these cases, surgical lengthening may have slackened the subjects' tight hamstrings and/or diminished the hamstrings' spastic response to stretch. Other subjects walked with muscle-tendon lengths and velocities that were neither shorter nor slower than normal preoperatively (22 of 69 subjects), and the semimembranosus muscles of most of these subjects did not operate at increased lengths or velocities after surgery; in these cases, the subjects' postsurgical improvements in knee extension may have been unrelated to the hamstrings surgery. Analyses of muscle-tendon lengths and velocities may help to distinguish individuals who have "short" or "spastic" hamstrings from those who do not, and thus may augment conventional methods used to describe patients' neuromusculoskeletal impairments and gait abnormalities.

    View details for DOI 10.1016/j.jbiomech.2005.03.026

    View details for Web of Science ID 000238104600016

    View details for PubMedID 15923009

  • Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance JOURNAL OF BIOMECHANICS Ashby, B. M., Delp, S. L. 2006; 39 (9): 1726-1734

    Abstract

    Optimal control simulations of the standing long jump were developed to gain insight into the mechanisms of enhanced performance due to arm motion. The activations that maximize standing long jump distance of a joint torque actuated model were determined for jumps with free and restricted arm movement. The simulated jump distance was 40 cm greater when arm movement was free (2.00 m) than when it was restricted (1.60 m). The majority of the performance improvement in the free arm jump was due to the 15% increase (3.30 vs. 2.86 m/s) in the take-off velocity of the center of gravity. Some of the performance improvement in the free arm jump was attributable to the ability of the jumper to swing the arms backwards during the flight phase to alleviate excessive forward rotation and position the body segments properly for landing. In restricted arm jumps, the excessive forward rotation was avoided by "holding back" during the propulsive phase and reducing the activation levels of the ankle, knee, and hip joint torque actuators. In addition, swinging the arm segments allowed the lower body joint torque actuators to perform 26 J more work in the free arm jump. However, the most significant contribution to developing greater take-off velocity came from the additional 80 J work done by the shoulder actuator in the jump with free arm movement.

    View details for DOI 10.1016/j.jbiomech.2005.04.017

    View details for Web of Science ID 000238777500017

    View details for PubMedID 15992805

  • Muscles that support the body also modulate forward progression during walking JOURNAL OF BIOMECHANICS Liu, M. Q., Anderson, F. C., Pandy, M. G., Delp, S. L. 2006; 39 (14): 2623-2630

    Abstract

    The purpose of this study was to characterize the contributions of individual muscles to forward progression and vertical support during walking. We systematically perturbed the forces in 54 muscles during a three-dimensional simulation of walking, and computed the changes in fore-aft and vertical accelerations of the body mass center due to the altered muscle forces during the stance phase. Our results indicate that muscles that provided most of the vertical acceleration (i.e., support) also decreased the forward speed of the mass center during the first half of stance (vasti and gluteus maximus). Similarly, muscles that supported the body also propelled it forward during the second half of stance (soleus and gastrocnemius). The gluteus medius was important for generating both forward progression and support, especially during single-limb stance. These findings suggest that a relatively small group of muscles provides most of the forward progression and support needed for normal walking. The results also suggest that walking dynamics are influenced by non-sagittal muscles, such as the gluteus medius, even though walking is primarily a sagittal-plane task.

    View details for DOI 10.1016/j.jbiomech.2005.08.017

    View details for Web of Science ID 000241850100009

    View details for PubMedID 16216251

  • Effect of equinus foot placement and intrinsic muscle response on knee extension during stance GAIT & POSTURE Higginson, J. S., Zajac, F. E., Neptune, R. R., Kautz, S. A., Burgar, C. G., Delp, S. L. 2006; 23 (1): 32-36

    Abstract

    Equinus gait, a common movement abnormality among individuals with stroke and cerebral palsy, is often associated with knee hyperextension during stance. Whether there exists a causal mechanism linking equinus foot placement with knee hyperextension remains unknown. To investigate the response of the musculoskeletal system to equinus foot placement, a forward dynamic simulation of normal walking was perturbed by augmenting ankle plantarflexion by 10 degrees at initial contact. The subsequent effect on knee extension was assessed when the muscle forces were allowed, or not allowed, to change in response to altered kinematics and intrinsic force-length-velocity properties. We found that an increase in ankle plantarflexion at initial contact without concomitant changes in muscle forces caused the knee to hyperextend. The intrinsic force-length-velocity properties of muscle, particularly in gastrocnemius and vastus, diminished the effect of equinus posture alone, causing the abnormal knee extension to be less pronounced. We conclude that the effect of ankle position at initial contact on knee motion should be considered in the analysis of equinus gait.

    View details for DOI 10.1016/j.gaitpost.2004.11.011

    View details for Web of Science ID 000234166500005

    View details for PubMedID 16311192

  • Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models JOURNAL OF BIOMECHANICS Blemker, S. S., Delp, S. L. 2006; 39 (8): 1383-1391

    Abstract

    Computer models of the musculoskeletal system frequently represent the force-length behavior of muscle with a lumped-parameter model. Lumped-parameter models use simple geometric shapes to characterize the arrangement of muscle fibers and tendon; this may inaccurately represent changes in fiber length and the resulting force-length behavior, especially for muscles with complex architecture. The purpose of this study was to determine the extent to which the complex features of the rectus femoris and vastus intermedius architectures affect the fiber changes in length ("fiber excursions"). We created three-dimensional finite-element models of the rectus femoris and vastus intermedius muscles based on magnetic resonance (MR) images, and compared the fiber excursions predicted by the finite-element models with fiber excursions predicted by lumped-parameter models of these muscles. The finite-element models predicted rectus femoris fiber excursions (over a 100 degrees range of knee flexion) that varied from 55% to 70% of the excursion of the muscle-tendon unit and vastus intermedius fiber excursions that varied from 55% to 98% of the excursion muscle-tendon unit. In contrast, the lumped-parameter model of the rectus femoris predicted fiber excursions that were 86% of the excursion of the muscle-tendon unit and vastus intermedius fiber excursions that were 97% of the excursion of the muscle-tendon unit. These results suggest that fiber excursions of many fibers are overestimated in lumped-parameter models of these muscles. These new representations of muscle architecture can improve the accuracy of computer simulations of movement and provide insight into muscle design.

    View details for DOI 10.1016/j.jbiomech.2005.04.012

    View details for Web of Science ID 000238104600003

    View details for PubMedID 15972213

  • Muscle contributions to support during gait in an individual with post-stroke hemiparesis JOURNAL OF BIOMECHANICS Higginson, J. S., Zajac, F. E., Neptune, R. R., Kautz, S. A., Delp, S. L. 2006; 39 (10): 1769-1777

    Abstract

    Walking requires coordination of muscles to support the body during single stance. Impaired ability to coordinate muscles following stroke frequently compromises walking performance and results in extremely low walking speeds. Slow gait in post-stroke hemiparesis is further complicated by asymmetries in lower limb muscle excitations. The objectives of the current study were: (1) to compare the muscle coordination patterns of an individual with flexed stance limb posture secondary to post-stroke hemiparesis with that of healthy adults walking very slowly, and (2) to identify how paretic and non-paretic muscles provide support of the body center of mass in this individual. Simulations were generated based on the kinematics and kinetics of a stroke survivor walking at his self-selected speed (0.3 m/s) and of three speed-matched, healthy older individuals. For each simulation, muscle forces were perturbed to determine the muscles contributing most to body weight support (i.e., height of the center of mass during midstance). Differences in muscle excitations and midstance body configuration caused paretic and non-paretic ankle plantarflexors to contribute less to midstance support than in healthy slow gait. Excitation of paretic ankle dorsiflexors and knee flexors during stance opposed support and necessitated compensation by knee and hip extensors. During gait for an individual with post-stroke hemiparesis, adequate body weight support is provided via reorganized muscle coordination patterns of the paretic and non-paretic lower limbs relative to healthy slow gait.

    View details for DOI 10.1016/j.jbiomech.2005.05.032

    View details for Web of Science ID 000239417900002

    View details for PubMedID 16046223

  • Physics-based simulation of biological sturctures 2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3 Delp, S. L., Anderson, F. C., Altman, R. B. 2006: 802-803
  • Three-dimensional representation of complex muscle architectures and geometries (vol 33, pg 661, 2005) ANNALS OF BIOMEDICAL ENGINEERING Blemker, S. S., Delp, S. L. 2005; 33 (8): 1134-1134
  • Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait JOURNAL OF BIOMECHANICS Arnold, A. S., Anderson, F. C., Pandy, M. G., Delp, S. L. 2005; 38 (11): 2181-2189

    Abstract

    Crouch gait, a troublesome movement abnormality among persons with cerebral palsy, is characterized by excessive flexion of the hips and knees during stance. Treatment of crouch gait is challenging, at present, because the factors that contribute to hip and knee extension during normal gait are not well understood, and because the potential of individual muscles to produce flexion or extension of the joints during stance is unknown. This study analyzed a three-dimensional, muscle-actuated dynamic simulation of walking to quantify the angular accelerations of the hip and knee induced by muscles during normal gait, and to rank the potential of the muscles to alter motions of these joints. Examination of the muscle actions during single limb stance showed that the gluteus maximus, vasti, and soleus make substantial contributions to hip and knee extension during normal gait. Per unit force, the gluteus maximus had greater potential than the vasti to accelerate the knee toward extension. These data suggest that weak hip extensors, knee extensors, or ankle plantar flexors may contribute to crouch gait, and strengthening these muscles--particularly gluteus maximus--may improve hip and knee extension. Abnormal forces generated by the iliopsoas or adductors may also contribute to crouch gait, as our analysis showed that these muscles have the potential to accelerate the hip and knee toward flexion. This work emphasizes the need to consider how muscular forces contribute to multijoint movements when attempting to identify the causes of abnormal gait.

    View details for DOI 10.1016/j.jbiomech.2004.09.036

    View details for Web of Science ID 000232456400006

    View details for PubMedID 16154404

  • A modeling framework to estimate patellofemoral joint cartilage stress in vivo MEDICINE AND SCIENCE IN SPORTS AND EXERCISE Besier, T. F., Gold, G. E., Beaupre, G. S., Delp, S. L. 2005; 37 (11): 1924-1930

    Abstract

    Patellofemoral (PF) pain is common among athletes and may be caused by increased subchondral bone stress as a result of increased stress in the cartilage of the femur or patella. This article presents a modeling pipeline to estimate in vivo cartilage stress in the PF joint.The modeling pipeline uses the finite element method to calculate stresses and strains in the PF joint cartilage. Model inputs include an accurate geometrical representation of the bones and cartilage from magnetic resonance imaging (MRI), cartilage material properties, and an estimate of muscle forces from an EMG-driven musculoskeletal model. Validation is performed using PF joint contact area and patellar orientation measured from upright, weight-bearing MRI. Preliminary data from an active, pain-free subject illustrate the modeling pipeline to calculate cartilage stress during a static squat.The quasistatic finite element simulation reproduced the orientation of the patella to within 2.1 mm and predicted the PF joint contact area to within 2.3%. Octahedral shear stresses were highest in the central, lateral aspect of the patella cartilage with a peak of 2.5 MPa. The corresponding stresses in the femoral cartilage reached only 2.0 MPa. However, peak hydrostatic pressures were higher within the femoral cartilage (3.5 MPa) than the patellar cartilage (2.3 MPa).The methods presented in this article offer a novel approach to calculate PF joint cartilage stress in vivo. Future efforts will use this modeling pipeline to further our knowledge of PF pain and potential rehabilitation strategies.

    View details for DOI 10.1249/01.mss.0000176686.18683.64

    View details for Web of Science ID 000233451000015

    View details for PubMedID 16286863

  • The variability of femoral rotational alignment in total knee arthroplasty. journal of bone and joint surgery. American volume Siston, R. A., Patel, J. J., Goodman, S. B., Delp, S. L., Giori, N. J. 2005; 87 (10): 2276-2280

    Abstract

    Several reference axes are used to establish femoral rotational alignment during total knee arthroplasty, but debate continues with regard to which axis is most accurately and easily identified during surgery. Computer-assisted navigation systems have been developed in an attempt to more accurately and consistently align implants during total knee arthroplasty, but it is unknown if navigation systems can improve the accuracy of femoral rotational alignment as compared with that achieved with more traditional techniques involving mechanical guides. The purposes of the present study were to characterize the variability associated with femoral rotational alignment techniques and to determine whether the use of a computer-assisted surgical navigation system reduced this variability.Eleven orthopaedic surgeons used five alignment techniques (including one computer-assisted technique and four traditional techniques) to establish femoral rotational alignment axes on ten cadaveric specimens, and the orientation of these axes was recorded with use of a navigation system. These derived axes were compared against a reference transepicondylar axis on each femur that was established after complete dissection of all soft tissues.There was no difference between the mean errors of all five techniques (p > 0.11). Only 17% of the knees were rotated <5 degrees from the reference transepicondylar axis, with alignment errors ranging from 13 degrees of internal rotation to 16 degrees of external rotation. There were significant differences among the surgeons with regard to their ability to accurately establish femoral rotational alignment axes (p < 0.001).All techniques resulted in highly variable rotational alignment, with no technique being superior. This variability was primarily due to the particular surgeon who was performing the alignment procedure. A navigation system that relies on directly digitizing the femoral epicondyles to establish an alignment axis did not provide a more reliable means of establishing femoral rotational alignment than traditional techniques did.

    View details for PubMedID 16203894

  • Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed PALEOBIOLOGY Hutchinson, J. R., Anderson, F. C., Blemker, S. S., Delp, S. L. 2005; 31 (4): 676-701
  • Evaluation of methods that locate the center of the ankle for computer-assisted total knee arthroplasty CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Siston, R. A., Daub, A. C., Giori, N. J., Goodman, S. B., Delp, S. L. 2005: 129-135

    Abstract

    Accurate alignment of the mechanical axis of the limb is important to the success of a total knee arthroplasty. Although computer-assisted navigation systems can align implants more accurately than traditional mechanical guides, the ideal technique to determine the distal end point of the mechanical axis, the center of the ankle, is unknown. In this study, we evaluated the accuracy, precision, objectivity, and speed of five anatomic methods and two kinematic methods for estimating the ankle center in 11 healthy subjects. Magnetic resonance images were used to characterize the shape of the ankle and establish the true ankle center. The most accurate and precise anatomic method was establishing the midpoint of the most medial and most lateral aspects of the malleoli (4.5 +/- 4.1 mm lateral error; 2.7 +/- 4.5 mm posterior error). A biaxial model of the ankle (2.0 +/- 6.4 mm medial error; 0.3 +/- 7.6 mm anterior error) was the most accurate kinematic method. Establishing the midpoint of the most medial and most lateral aspects of the malleoli was an accurate, precise, objective, and fast method for establishing the center of the ankle.

    View details for DOI 10.1097/01.blo.0000170873.88306.56

    View details for Web of Science ID 000232457700027

    View details for PubMedID 16205151

  • A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control ANNALS OF BIOMEDICAL ENGINEERING Holzbaur, K. R., Murray, W. M., Delp, S. L. 2005; 33 (6): 829-840

    Abstract

    Biomechanical models of the musculoskeletal system are frequently used to study neuromuscular control and simulate surgical procedures. To be broadly applicable, a model must be accessible to users, provide accurate representations of muscles and joints, and capture important interactions between joints. We have developed a model of the upper extremity that includes 15 degrees of freedom representing the shoulder, elbow, forearm, wrist, thumb, and index finger, and 50 muscle compartments crossing these joints. The kinematics of each joint and the force-generating parameters for each muscle were derived from experimental data. The model estimates the muscle-tendon lengths and moment arms for each of the muscles over a wide range of postures. Given a pattern of muscle activations, the model also estimates muscle forces and joint moments. The moment arms and maximum moment-generating capacity of each muscle group (e.g., elbow flexors) were compared to experimental data to assess the accuracy of the model. These comparisons showed that moment arms and joint moments estimated using the model captured important features of upper extremity geometry and mechanics. The model also revealed coupling between joints, such as increased passive finger flexion moment with wrist extension. The computer model is available to researchers at http://nmbl.stanford.edu.

    View details for DOI 10.1007/s10439-005-3320-7

    View details for Web of Science ID 000230075100011

    View details for PubMedID 16078622

  • Simulating the task-level control of human motion: a methodology and framework for implementation VISUAL COMPUTER De Sapio, V., Warren, J., Khatib, O., Delp, S. 2005; 21 (5): 289-302
  • Three-dimensional representation of complex muscle architectures and geometries ANNALS OF BIOMEDICAL ENGINEERING Blemker, S. S., Delp, S. L. 2005; 33 (5): 661-673

    Abstract

    Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55 degrees range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system.

    View details for DOI 10.1007/s10439-005-1433-7

    View details for Web of Science ID 000229740900010

    View details for PubMedID 15981866

  • A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii JOURNAL OF BIOMECHANICS Blemker, S. S., PINSKY, P. M., Delp, S. L. 2005; 38 (4): 657-665

    Abstract

    Biomechanical models generally assume that muscle fascicles shorten uniformly. However, dynamic magnetic resonance (MR) images of the biceps brachii have recently shown nonuniform shortening along some muscle fascicles during low-load elbow flexion (J. Appl. Physiol. 92 (2002) 2381). The purpose of this study was to uncover the features of the biceps brachii architecture and material properties that could lead to nonuniform shortening. We created a three-dimensional finite-element model of the biceps brachii and compared the tissue strains predicted by the model with experimentally measured tissue strains. The finite-element model predicted strains that were within one standard deviation of the experimentally measured strains. Analysis of the model revealed that the variation in fascicle lengths within the muscle and the curvature of the fascicles were the primary factors contributing to nonuniform strains. Continuum representations of muscle, combined with in vivo image data, are needed to deepen our understanding of how complex geometric arrangements of muscle fibers affect muscle contraction mechanics.

    View details for DOI 10.1016/j.jbiomech.2004.04.009

    View details for Web of Science ID 000227590400002

    View details for PubMedID 15713285

  • Patellofemoral joint contact area increases with knee flexion and weight-bearing JOURNAL OF ORTHOPAEDIC RESEARCH Besier, T. F., Draper, C. E., Gold, G. E., Beaupre, G. S., Delp, S. L. 2005; 23 (2): 345-350

    Abstract

    Patellofemoral pain is a common and debilitating disorder. Elevated cartilage stress of the patellofemoral joint is hypothesized to play a role in the onset of pain. Estimating cartilage stress requires accurate measurements of contact area. The purpose of this study was to estimate patellofemoral joint contact areas in a group of healthy, pain-free subjects during upright, weight-bearing conditions. Sixteen subjects (8 female, 8 male) were scanned in a GE Signa SP open configuration MRI scanner, which allowed subjects to stand or squat while reclining 25 degrees from vertical with the knee positioned at 0 degrees , 30 degrees , or 60 degrees of flexion. A custom-built backrest enabled subjects to be scanned without motion artifact in both weight-bearing (0.45 body weight per leg) and reduced loading conditions ('unloaded' at 0.15 body weight) at each knee flexion posture. Male subjects displayed mean unloaded patellofemoral joint contact areas of 210, 414, and 520 mm(2) at 0 degrees , 30 degrees and 60 degrees of knee flexion, respectively. Female subjects' unloaded contact areas were similar at full extension (0 degrees ), but significantly smaller at 30 degrees and 60 degrees (p<0.01), with mean values of 269 and 396 mm(2), respectively. When normalized by patellar dimensions (heightxwidth), contact areas were not different between genders. Under weight-bearing conditions, contact areas increased by an average of 24% (p<0.05). This study highlights the differences in patellofemoral joint contact area between gender, knee flexion postures, and physiologic loading conditions.

    View details for DOI 10.1016/j.orthres.2004.08.003

    View details for Web of Science ID 000227567100017

    View details for PubMedID 15734247

  • Weight-bearing MRI of patellofemoral joint cartilage contact area JOURNAL OF MAGNETIC RESONANCE IMAGING Gold, G. E., Besier, T. F., Draper, C. E., Asakawa, D. S., Delp, S. L., Beaupre, G. S. 2004; 20 (3): 526-530

    Abstract

    To measure contact area of cartilage in the patellofemoral joint during weight bearing using an open MRI scanner.We developed an MR-compatible back support that allows three-dimensional imaging of the patellofemoral cartilage under physiologic weight-bearing conditions with negligible motion artifact in an open MRI scanner. To measure contact areas, we trained observers using a phantom of known area and tested intra- and interobserver variability. We measured in vivo contact areas between the patella and femoral cartilage with the knee in 30 degrees of flexion, loaded and unloaded, in six volunteers.We were able to measure the contact area of the patellofemoral cartilage with small interobserver (CV 7.0%) and intraobserver (CV 3.0%) variation. At 30 degrees of knee flexion, mean contact area increased from 400 mm2 (unloaded) to 522 mm2(loaded to 0.45 times body weight per leg).Using an open magnet and specially designed apparatus, it is possible to image the patellar cartilage during physiologic loading. Knowledge of patellar cartilage contact area is needed to assess patellofemoral stress, which may be increased in patients with patellofemoral pain syndrome.

    View details for DOI 10.1002/jmri.20146

    View details for Web of Science ID 000223522200024

    View details for PubMedID 15332263

  • Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait JOURNAL OF BIOMECHANICS Goldberg, S. R., Anderson, F. C., Pandy, M. G., Delp, S. L. 2004; 37 (8): 1189-1196

    Abstract

    Adequate knee flexion velocity at toe-off is important for achieving normal swing-phase knee flexion during gait. Consequently, insufficient knee flexion velocity at toe-off can contribute to stiff-knee gait, a movement abnormality in which swing-phase knee flexion is diminished. This work aims to identify the muscles that contribute to knee flexion velocity during double support in normal gait and the muscles that have the most potential to alter this velocity. This objective was achieved by perturbing the forces generated by individual muscles during double support in a forward dynamic simulation of normal gait and observing the effects of the perturbations on peak knee flexion velocity. Iliopsoas and gastrocnemius were identified as the muscles that contribute most to increasing knee flexion velocity during double support. Increased forces in vasti, rectus femoris, and soleus were found to decrease knee flexion velocity. Vasti, rectus femoris, gastrocnemius, and iliopsoas were all found to have large potentials to influence peak knee flexion velocity during double support. The results of this work indicate which muscles likely contribute to the diminished knee flexion velocity at toe-off observed in stiff-knee gait, and identify the treatment strategies that have the most potential to increase this velocity in persons with stiff-knee gait.

    View details for DOI 10.1016/j.jbiomech.2003.12.005

    View details for Web of Science ID 000222713100008

    View details for PubMedID 15212924

  • Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis JOURNAL OF BIOMECHANICS Anderson, F. C., Goldberg, S. R., Pandy, M. G., Delp, S. L. 2004; 37 (5): 731-737

    Abstract

    A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.

    View details for DOI 10.1016/j.jbiomech.2003.09.018

    View details for Web of Science ID 000220781600015

    View details for PubMedID 15047002

  • Three-dimensional muscle-tendon geometry after rectus femoris tendon transfer. journal of bone and joint surgery. American volume Asakawa, D. S., Blemker, S. S., Rab, G. T., Bagley, A., Delp, S. L. 2004; 86-A (2): 348-354

    Abstract

    Rectus femoris tendon transfer is performed in patients with cerebral palsy to improve knee flexion during walking. This procedure involves detachment of the muscle from its insertion into the quadriceps tendon and reattachment to one of the knee flexor muscles. The purpose of the present study was to evaluate the muscle-tendon geometry and to assess the formation of scar tissue between the rectus femoris and adjacent structures.Magnetic resonance images of the lower extremities were acquired from five subjects after bilateral rectus femoris tendon transfer. A three-dimensional computer model of the musculoskeletal geometry of each of the ten limbs was created from these images.The three-dimensional paths of the rectus femoris muscles after transfer demonstrated that the muscle does not follow a straight course from its origin to its new insertion. The typical muscle-tendon path included an angular deviation; this deviation was sharp (>35 degrees ) in seven extremities. In addition, scar tissue between the transferred rectus femoris and the underlying muscles was visible on the magnetic resonance images.The angular deviations in the rectus femoris muscle-tendon path and the presence of scar tissue between the rectus femoris and the underlying muscles suggest that the beneficial effects of rectus femoris tendon transfer are derived from reducing the effects of the rectus femoris muscle as a knee extensor rather than from converting the muscle to a knee flexor. These findings clarify our understanding of the mechanism by which rectus femoris tendon transfer improves knee flexion.

    View details for PubMedID 14960681

  • Magnetic resonance imaging findings after rectus femoris transfer surgery SKELETAL RADIOLOGY Gold, G. E., Asakawa, D. S., Blemker, S. S., Delp, S. L. 2004; 33 (1): 34-40

    Abstract

    We describe the magnetic resonance (MR) imaging appearance of the knee flexor and extensor tendons after bilateral rectus femoris transfer and hamstring lengthening surgery in five patients (10 limbs) with cerebral palsy. Three-dimensional models of the path of the transferred tendon were constructed in all cases. MR images of the transferred and lengthened tendons were examined and compared with images from ten non-surgical subjects. The models showed that the path of the transferred rectus femoris tendon had a marked angular deviation near the transfer site in all cases. MR imaging demonstrated irregular areas of low signal intensity near the transferred rectus femoris and around the hamstrings in all subjects. Eight of the ten post-surgical limbs showed evidence of fluid near or around the transferred or lengthened tendons. This was not observed in the non-surgical subjects. Thus, MR imaging of patients with cerebral palsy after rectus femoris transfer and hamstring-lengthening surgery shows evidence of signal intensity and contour changes, even several years after surgery.

    View details for DOI 10.1007/s00256-003-0702-5

    View details for Web of Science ID 000187505400005

    View details for PubMedID 14605768

  • Real-time imaging of skeletal muscle velocity JOURNAL OF MAGNETIC RESONANCE IMAGING Asakawa, D. S., Nayak, K. S., Blemker, S. S., Delp, S. L., Pauly, J. M., Nishimura, D. G., Gold, G. E. 2003; 18 (6): 734-739

    Abstract

    To test the feasibility of using real-time phase contrast (PC) magnetic resonance imaging (MRI) to track velocities (1-20 cm/second) of skeletal muscle motion.To do this we modified a fast real-time spiral PC pulse sequence to accommodate through-plane velocity encoding in the range of -20 to +20 cm/second. We successfully imaged motion of the biceps brachii and triceps brachii muscles during elbow flexion and extension in seven unimpaired adult subjects using real-time PC MRI.The velocity data demonstrate that the biceps brachii and the triceps brachii, antagonistic muscles, move in opposite directions during elbow flexion and extension with velocity values in the muscle tissue ranging from -10 to +10 cm/second.With further development, real-time PC MRI may provide a means to analyze muscle function in individuals with neurologic or movement disorders who cannot actively complete the repeated motions required for dynamic MRI techniques, such as cine PC MRI, that are more commonly used in musculoskeletal biomechanics applications.

    View details for DOI 10.1002/jmri.10422

    View details for Web of Science ID 000186844200013

    View details for PubMedID 14635159

  • Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. Seminars in musculoskeletal radiology Asakawa, D. S., Pappas, G. P., Blemker, S. S., Drace, J. E., Delp, S. L. 2003; 7 (4): 287-295

    Abstract

    In recent years, biomechanics researchers have increasingly used dynamic magnetic resonance imaging techniques, such as cine phase contrast (cine PC), to study muscle and bone motion in vivo. Magnetic resonance imaging provides a non-invasive tool to visualize the anatomy and measure musculoskeletal tissue velocities during joint motion. Current application of cine PC magnetic resonance imaging in biomechanics includes study of knee joint kinematics, tendon strain, and skeletal muscle displacement and shortening. This paper article reviews the use of cine PC magnetic resonance imaging for quantification of skeletal muscle motion. The imaging studies presented examine the relative motion of the knee flexor and extensor muscles after orthopedic surgery and examine the uniformity of shortening within the biceps brachii muscle. The current challenges and limitations of using cine PC magnetic resonance imaging in biomechanics research are addressed as well as opportunities for future studies of skeletal muscle motion using dynamic magnetic resonance imaging.

    View details for PubMedID 14735427

  • Biomechanics of the Steindler flexorplasty surgery: a computer simulation study. journal of hand surgery Saul, K. R., Murray, W. M., Hentz, V. R., Delp, S. L. 2003; 28 (6): 979-986

    Abstract

    Our goal was to investigate the capacity of a Steindler flexorplasty to restore elbow flexion to persons with C5-C6 brachial plexus palsy. In this procedure the origin of the flexor-pronator mass is moved proximally onto the humeral shaft. We examined how the choice of the proximal attachment site for the flexor-pronator mass affects elbow flexion restoration, especially considering possible side effects including limited wrist and forearm motion owing to passive restraint from stretched muscles.A computer model of the upper extremity was used to simulate the biomechanical consequences of various surgical alterations. Unimpaired, preoperative, and postoperative conditions were simulated. Seven possible transfer locations were used to investigate the effects of choice of transfer location.Each transfer site produced a large increase in elbow flexion strength. Transfer to more proximal attachment sites also produced large increases in passive resistance to wrist extension and forearm supination.To reduce detrimental side effects while achieving clinical goals our theoretical analysis suggests a transfer to the distal limit of the traditional transfer region.

    View details for PubMedID 14642514

  • The importance of swing-phase initial conditions in stiff-knee gait JOURNAL OF BIOMECHANICS Goldberg, S. R., Ounpuu, S., Delp, S. L. 2003; 36 (8): 1111-1116

    Abstract

    The diminished knee flexion associated with stiff-knee gait, a movement abnormality commonly observed in persons with cerebral palsy, is thought to be caused by an over-active rectus femoris muscle producing an excessive knee extension moment during the swing phase of gait. As a result, treatment for stiff-knee gait is aimed at altering swing-phase muscle function. Unfortunately, this treatment strategy does not consistently result in improved knee flexion. We believe this is because multiple factors contribute to stiff-knee gait. Specifically, we hypothesize that many individuals with stiff-knee gait exhibit diminished knee flexion not because they have an excessive knee extension moment during swing, but because they walk with insufficient knee flexion velocity at toe-off. We measured the knee flexion velocity at toe-off and computed the average knee extension moment from toe-off to peak flexion in 17 subjects (18 limbs) with stiff-knee gait and 15 subjects (15 limbs) without movement abnormalities. We used forward dynamic simulation to determine how adjusting each stiff-knee subject's knee flexion velocity at toe-off to normal levels would affect knee flexion during swing. We found that only one of the 18 stiff-knee limbs exhibited an average knee extension moment from toe-off to peak flexion that was larger than normal. However, 15 of the 18 limbs exhibited a knee flexion velocity at toe-off that was below normal. Simulating an increase in the knee flexion velocity at toe-off to normal levels resulted in a normal or greater than normal range of knee flexion for each of these limbs. These results suggest that the diminished knee flexion of many persons with stiff-knee gait may be caused by abnormally low knee flexion velocity at toe-off as opposed to excessive knee extension moments during swing.

    View details for DOI 10.1016/S0021-9290(03)00106-4

    View details for Web of Science ID 000184212900006

    View details for PubMedID 12831736

  • Abnormal coupling of knee and hip moments during maximal exertions in persons with cerebral palsy MUSCLE & NERVE Thelen, D. G., Riewald, S. A., Asakawa, D. S., Sanger, T. D., Delp, S. L. 2003; 27 (4): 486-493

    Abstract

    The motions of lower-limb extension, adduction, and internal rotation are frequently coupled in persons with cerebral palsy (CP) and are commonly referred to as an extension synergy. However, the underlying joint moments that give rise to these coupled motions are not well understood. We hypothesized that maximal voluntary exertions in a direction of one component of a synergy (e.g., hip extension) would result in the concurrent presence of other components of the synergy in subjects with CP but not in control subjects. To test this hypothesis, we measured three-dimensional moments about the hip and knee as nine subjects with spastic CP and six control subjects performed maximal isometric exertions of the hip and knee flexors and extensors. During maximal hip extension exertions, control subjects simultaneously generated a knee flexion moment, whereas CP subjects generated a knee extension moment (P < 0.05) and a larger hip internal rotation moment than did controls (P < 0.05). During maximal knee extension exertions, control subjects generated a hip flexion moment, whereas CP subjects generated a hip extension moment (P < 0.05). The patterns of joint moments generated by CP subjects are consistent with an extension synergy and may underlie the coupled motion patterns of the lower extremity in such persons.

    View details for DOI 10.1002/mus.10357

    View details for Web of Science ID 000181946000012

    View details for PubMedID 12661051

  • Generating dynamic simulations of movement using computed muscle control JOURNAL OF BIOMECHANICS Thelen, D. G., Anderson, F. C., Delp, S. L. 2003; 36 (3): 321-328

    Abstract

    Computation of muscle excitation patterns that produce coordinated movements of muscle-actuated dynamic models is an important and challenging problem. Using dynamic optimization to compute excitation patterns comes at a large computational cost, which has limited the use of muscle-actuated simulations. This paper introduces a new algorithm, which we call computed muscle control, that uses static optimization along with feedforward and feedback controls to drive the kinematic trajectory of a musculoskeletal model toward a set of desired kinematics. We illustrate the algorithm by computing a set of muscle excitations that drive a 30-muscle, 3-degree-of-freedom model of pedaling to track measured pedaling kinematics and forces. Only 10 min of computer time were required to compute muscle excitations that reproduced the measured pedaling dynamics, which is over two orders of magnitude faster than conventional dynamic optimization techniques. Simulated kinematics were within 1 degrees of experimental values, simulated pedal forces were within one standard deviation of measured pedal forces for nearly all of the crank cycle, and computed muscle excitations were similar in timing to measured electromyographic patterns. The speed and accuracy of this new algorithm improves the feasibility of using detailed musculoskeletal models to simulate and analyze movement.

    View details for DOI 10.1016/S0021-9290(02)00432-3

    View details for Web of Science ID 000181247600002

    View details for PubMedID 12594980

  • What causes increased muscle stiffness in cerebral palsy? MUSCLE & NERVE Delp, S. L. 2003; 27 (2): 131-132

    View details for DOI 10.1002/10284

    View details for Web of Science ID 000180792600001

    View details for PubMedID 12548519

  • Three-dimensional spatial tuning of neck muscle activation in humans EXPERIMENTAL BRAIN RESEARCH Vasavada, A. N., Peterson, B. W., Delp, S. L. 2002; 147 (4): 437-448

    Abstract

    The complex structure of the neck musculoskeletal system poses challenges to understanding central nervous system (CNS) control strategies. Examining muscle activation patterns in relation to musculoskeletal geometry and three-dimensional mechanics may reveal organizing principles. We analyzed the spatial tuning of neck muscle electromyographic (EMG) activity while subjects generated moments in three dimensions. EMG tuning curves were characterized by their orientation (mean direction) and focus (spread of activity). For the four muscles that were studied (sternocleidomastoid, splenius capitis, semispinalis capitis and trapezius), EMG tuning curves exhibited directional preference, with consistent orientation and focus among 12 subjects. However, the directional preference (orientation) of three of the four neck muscles did not correspond to the muscle's moment arm, indicating that maximizing a muscle's mechanical advantage is not the only factor in determining muscle activation. The focus of muscle tuning did not change with moment magnitude, demonstrating that co-contraction did not increase with load. Axial rotation was found to have a strong influence on neck muscle spatial tuning. The uniform results among subjects indicate that the CNS has consistent strategies for selecting neck muscle activations to generate moments in specific directions; however, these strategies depend on three-dimensional mechanics in a complex manner.

    View details for DOI 10.1007/s00221-002-1275-6

    View details for Web of Science ID 000179924800003

    View details for PubMedID 12444475

  • APONEUROSIS LENGTH AND FASCICLE INSERTION ANGLES OF THE BICEPS BRACHII JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY Asakawa, D. S., Pappas, G. P., Drace, J. E., Delp, S. L. 2002; 2 (3-4): 449-455
  • In vivo motion of the rectus femoris muscle after tendon transfer surgery JOURNAL OF BIOMECHANICS Asakawa, D. S., Blemker, S. S., Gold, G. E., Delp, S. L. 2002; 35 (8): 1029-1037

    Abstract

    Rectus femoris transfer surgery is performed to convert the rectus femoris muscle from a knee extensor to a knee flexor. In this surgery, the distal tendon of the rectus femoris is detached from the patella and reattached to one of the knee flexor tendons. The outcomes of this procedure are variable, and it is not known if the surgery successfully converts the muscle to a knee flexor. We measured the motion of muscle tissue within the rectus femoris and vastus intermedius during knee extension in 10 unimpaired control subjects (10 limbs) and 6 subjects (10 limbs) after rectus femoris transfer using cine phase-contrast magnetic resonance imaging. Displacements of the vastus intermedius during knee extension were similar between control and tendon transfer subjects. In the control subjects, the rectus femoris muscle consistently moved in the direction of the knee extensors and displaced more than the vastus intermedius. The rectus femoris also moved in the direction of the knee extensors in the tendon transfer subjects; however, the transferred rectus femoris displaced less than the vastus intermedius. These results suggest that the rectus femoris is not converted to a knee flexor after its distal tendon is transferred to the posterior side of the knee, but its capacity for knee extension is diminished by the surgery.

    View details for Web of Science ID 000177318000003

    View details for PubMedID 12126662

  • Nonuniform shortening in the biceps brachii during elbow flexion JOURNAL OF APPLIED PHYSIOLOGY Pappas, G. P., Asakawa, D. S., Delp, S. L., Zajac, F. E., Drace, J. E. 2002; 92 (6): 2381-2389

    Abstract

    This study tested the common assumption that skeletal muscle shortens uniformly in the direction of its fascicles during low-load contraction. Cine phase contrast magnetic resonance imaging was used to characterize shortening of the biceps brachii muscle in 12 subjects during repeated elbow flexion against 5 and 15% maximum voluntary contraction (MVC) loads. Mean shortening was relatively constant along the anterior boundary of the muscle and averaged 21% for both loading conditions. In contrast, mean shortening was nonuniform along the centerline of the muscle during active elbow flexion. Centerline shortening in the distal region of the biceps brachii (7.3% for 5% MVC and 3.7% for 15% MVC) was significantly less (P < 0.001) than shortening in the muscle midportion (26.3% for 5% MVC and 28.2% for 15% MVC). Nonuniform shortening along the centerline was likely due to the presence of an internal aponeurosis that spanned the distal third of the longitudinal axis of the biceps brachii. However, muscle shortening was also nonuniform proximal to the centerline aponeurosis. Because muscle fascicles follow the anterior contour and centerline of the biceps brachii, our results suggest that shortening is uniform along anterior muscle fascicles and nonuniform along centerline fascicles.

    View details for DOI 10.1152/japplphysiol.00843.2001

    View details for Web of Science ID 000175739200021

    View details for PubMedID 12015351

  • Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions JOURNAL OF BIOMECHANICS Murray, W. M., Buchanan, T. S., Delp, S. L. 2002; 35 (1): 19-26

    Abstract

    It is often assumed that moment arms scale with size and can be normalized by body segment lengths or limb circumferences. However, quantitative scaling relationships between moment arms and anthropometric dimensions are generally not available. We hypothesized that peak moment arms of the elbow flexor and extensor muscles scale with the shorter distance (D(s)) between the elbow flexion axis and a muscle's origin and insertion. To test this hypothesis, we estimated moment arms of six muscles that cross the elbow, digitized muscle attachment sites and bone surface geometry, and estimated the location of the elbow flexion axis in 10 upper extremity cadaveric specimens which ranged in size from a 5'0" female to a 6'4" male. D(s) accurately reflected the differences in peak moment arms across different muscles, explaining 93-99% of the variation in peaks between muscles in the same specimen. D(s) also explained between 55% and 88% of the interspecimen variation in peak moment arms for brachioradialis, biceps, and ECRL. Triceps peak moment arm was significantly correlated to the anterior-posterior dimension of the ulna measured at the olecranon (r(2)=0.61, p=0.008). Radius length provides a good measure of the interspecimen variation in peaks for brachioradialis, biceps, and ECRL. However, bone lengths were not significantly correlated to triceps moment arm or anterior-posterior bone dimensions. This work advances our understanding of the variability and scaling dimensions for elbow muscle moment arms across subjects of different sizes.

    View details for Web of Science ID 000173539000002

    View details for PubMedID 11747879

  • Three-dimensional dynamic simulation of total knee replacement motion during a step-up task JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME Piazza, S. J., Delp, S. L. 2001; 123 (6): 599-606

    Abstract

    A three-dimensional dynamic model of the tibiofemoral and patellofemoral articulations was developed to predict the motions of knee implants during a step-up activity. Patterns of muscle activity, initial joint angles and velocities, and kinematics of the hip and tinkle were measured experimentally and used as inputs to the simulation. Prosthetic knee kinematics were determined by integration of dynamic equations of motion subject to forces generated by muscles, ligaments, and contact at both the tibiofemoral and patellofemoral articulations. The modeling of contacts between implants did not rely upon explicit constraint equations; thus, changes in the number of contact points were allowed without modification to the model formulation. The simulation reproduced experimentally measured flexion-extension angle of the knee (within one standard deviation), but translations at the tibiofemoral articulations were larger during the simulated step-up task than those reported for patients with total knee replacements.

    View details for Web of Science ID 000172872100011

    View details for PubMedID 11783731

  • Three-dimensional isometric strength of neck muscles in humans SPINE Vasavada, A. N., Li, S. P., Delp, S. L. 2001; 26 (17): 1904-1909

    Abstract

    Three-dimensional moments were measured experimentally during maximum voluntary contractions of neck muscles in humans.To characterize the maximum moments with attention paid to subject size and gender, to calculate moments at different locations in the neck, and to quantify the relative magnitudes of extension, flexion, lateral bending, and axial rotation moments.Few studies of neck strength have measured moments in directions other than extension, and it is difficult to compare results among studies because moments often are resolved at different locations in the cervical spine. Further, it is not clear how subject size, gender, and neck geometry relate to variations in the moment-generating capacity of neck muscles.Maximum moments were measured in 11 men and 5 women with an average age of 31 years (range, 20-42 years). Anatomic landmarks were digitized to resolve moments at different locations in the cervical spine.When moments were resolved about axes through the midpoint of the line between the C7 spinous process and the sternal notch, the maximum moments were as follows: extension (men, 52 +/- 11 Nm; women, 21 +/- 12 Nm), flexion (men, 30 +/- 5 Nm; women, 15 +/- 4 Nm), lateral bending (men, 36 +/- 8 Nm; women, 16 +/- 8 Nm), and axial rotation (men 15 +/- 4; women, 6 +/- 3) Nm). The magnitudes of extension, flexion, and lateral bending moments decreased linearly with vertical distance from the lower cervical spine to the mastoid process.Moments in three dimensions were quantified with regard to subject size and location along the cervical spine. These data are needed to characterize neck strength for biomechanical analysis of normal and pathologic conditions.

    View details for Web of Science ID 000170914000015

    View details for PubMedID 11568704

  • Rotational moment arms of the medial hamstrings and adductors vary with femoral geometry and limb position: implications for the treatment of internally rotated gait JOURNAL OF BIOMECHANICS Arnold, A. S., Delp, S. L. 2001; 34 (4): 437-447

    Abstract

    Persons with cerebral palsy frequently walk with a crouched, internally rotated gait. Spastic medial hamstrings or adductors are presumed to contribute to excessive hip internal rotation in some patients; however, the capacity of these muscles to produce internal rotation has not been adequately investigated. The purpose of this study was to determine the hip rotation moment arms of the medial hamstrings and adductors in persons with femoral anteversion deformities who walk with a crouched, internally rotated gait. A musculoskeletal model with a "deformable" femur was developed. This model was used, in conjunction with kinematic data obtained from gait analysis, to calculate the muscle moment arms for combinations of joint angles and anteversion deformities exhibited by 21 subjects with cerebral palsy and excessive hip internal rotation. We found that the semimembranosus, semitendinosus, and gracilis muscles in our model had negligible or external rotation moment arms when the hip was internally rotated or the knee was flexed -- the body positions assumed by the subjects during walking. When the femur was excessively anteverted, the rotational moment arms of the adductor brevis, adductor longus, pectineus, and proximal compartments of the adductor magnus in our model shifted toward external rotation. These results suggest that neither the medial hamstrings nor the adductors are likely to contribute substantially to excessive internal rotation of the hip and that other causes of internal rotation should be considered when planning treatments for these patients.

    View details for Web of Science ID 000168088700004

    View details for PubMedID 11266666

  • Architecture of the rectus abdominis, quadratus lumborum, and erector spinae JOURNAL OF BIOMECHANICS Delp, S. L., Suryanarayanan, S., Murray, W. M., Uhlir, J., Triolo, R. J. 2001; 34 (3): 371-375

    Abstract

    Quantitative descriptions of muscle architecture are needed to characterize the force-generating capabilities of muscles. This study reports the architecture of three major trunk muscles: the rectus abdominis, quadratus lumborum, and three columns of the erector spinae (spinalis thoracis, longissimus thoracis and iliocostalis lumborum). Musculotendon lengths, muscle lengths, fascicle lengths, sarcomere lengths, pennation angles, and muscle masses were measured in five cadavers. Optimal fascicle lengths (the fascicle length at which the muscle generates maximum force) and physiologic cross-sectional areas (the ratio of muscle volume to optimal fascicle length) were computed from these measurements. The rectus abdominis had the longest fascicles of the muscles studied, with a mean (S.D.) optimal fascicle length of 28.3 (4.2)cm. The three columns of the erector spinae had mean optimal fascicle lengths that ranged from 6.4 (0.6)cm in the spinalis thoracis to 14.2 (2.1)cm in the iliocostalis lumborum. The proximal portion of the quadratus lumborum had a mean optimal fascicle length of 8.5 (1.5)cm and the distal segment of this muscle had a mean optimal fascicle length of 5.6 (0.9)cm. The physiologic cross-sectional area of the rectus abdominis was 2.6 (0.9)cm(2), the combined physiologic cross-sectional area of the erector spinae was 11.6 (1.8)cm(2), and the physiologic cross-sectional area of the quadratus lumborum was 2.8 (0.5)cm(2). These data provide the basis for estimation of the force-generating potential of these muscles.

    View details for Web of Science ID 000167482500011

    View details for PubMedID 11182129

  • Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait ANNALS OF BIOMEDICAL ENGINEERING Arnold, A. S., Blemker, S. S., Delp, S. L. 2001; 29 (3): 263-274

    Abstract

    The hamstrings and psoas muscles are often lengthened surgically in an attempt to correct crouch gait in persons with cerebral palsy. The purpose of this study was to determine if, and under what conditions, medial hamstrings and psoas lengths estimated with a "deformable" musculoskeletal model accurately characterize the lengths of the muscles during walking in individuals with crouch gait. Computer models of four subjects with crouch gait were developed from magnetic resonance (MR) images. These models were used in conjunction with the subjects' measured gait kinematics to calculate the muscle-tendon lengths at the body positions corresponding to walking. The lengths calculated with the MR-based models were normalized and were compared to the lengths estimated using a deformable generic model. The deformable model was either left undeformed and unscaled, or was deformed or scaled to more closely approximate the femoral geometry or bone dimensions of each subject. In most cases, differences between the normalized lengths of the medial hamstrings computed with the deformable and MR-based models were less than 5 mm. Differences in the psoas lengths computed with the deformable and MR-based models were also small (<3 mm) when the deformable model was adjusted to represent the femoral geometry of each subject. This work demonstrates that a deformable musculoskeletal model, in combination with a few subject-specific parameters and simple normalization techniques, can provide rapid and accurate estimates of medial hamstrings and psoas lengths in persons with neuromuscular disorders.

    View details for Web of Science ID 000168012800009

    View details for PubMedID 11310788

  • Do hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy (vol 11, pg 181, 2000) GAIT & POSTURE Arnold, A. S., Asakawa, D. J., Delp, S. L. 2000; 12 (1): 81-81
  • A computational framework for simulating and analyzing human and animal movement COMPUTING IN SCIENCE & ENGINEERING Delp, S. L., Loan, J. P. 2000; 2 (5): 46-55
  • The isometric functional capacity of muscles that cross the elbow JOURNAL OF BIOMECHANICS Murray, W. M., Buchanan, T. S., Delp, S. L. 2000; 33 (8): 943-952

    Abstract

    We hypothesized that muscles crossing the elbow have fundamental differences in their capacity for excursion, force generation, and moment generation due to differences in their architecture, moment arm, and the combination of their architecture and moment arm. Muscle fascicle length, sarcomere length, pennation angle, mass, and tendon displacement with elbow flexion were measured for the major elbow muscles in 10 upper extremity specimens. Optimal fascicle length, physiological cross-sectional area (PCSA), moment arm, operating range on the force-length curve, and moment-generating capacity were estimated from these data. Brachioradialis and pronator teres had the longest (17.7cm) and shortest (5.5cm) fascicles, respectively. Triceps brachii (combined heads) and brachioradialis had the greatest (14.9cm(2)) and smallest (1.2cm(2)) PCSAs, respectively. Despite a comparable fascicle length, long head of biceps brachii operates over a broader range of the force-length curve (length change=56% of optimal length, 12.8cm) than the long head of triceps brachii (length change=28% of optimal length, 12. 7cm) because of its larger moment arm (4.7cm vs. 2.3cm). Although brachioradialis has a small PCSA, it has a relatively large moment-generating capacity (6.8cm(3)) due to its large moment arm (average peak=7.7cm). These results emphasize the need to consider the interplay of architecture and moment arm when evaluating the functional capabilities of a muscle.

    View details for Web of Science ID 000087474600005

    View details for PubMedID 10828324

  • The use of basis functions in modelling joint articular surfaces: application to the knee joint JOURNAL OF BIOMECHANICS Dhaher, Y. Y., Delp, S. L., Rymer, W. Z. 2000; 33 (7): 901-907

    Abstract

    This article introduces a new method to represent bone surface geometry for simulations of joint contact. The method uses the inner product of two basis functions to provide a mathematical representation of the joint surfaces. This method guarantees a continuous transition in the direction of the surface normals, an important property for computation of joint contact. Our formulation handles experimental data that are not evenly distributed, a common characteristic of digitized data of musculoskeletal morphologies. The method makes it possible to represent highly curved surfaces, which are encountered in many anatomical structures. The accuracy of this method is demonstrated by modeling the human knee joint. The mean relative percentage error in the representation of the patellar track surface was 0.25% (range 0-1.56%) which corresponded to an absolute error of 0.17mm (range 0-0.16mm).

    View details for Web of Science ID 000087392900014

    View details for PubMedID 10831766

  • Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? GAIT & POSTURE Arnold, A. S., Asakawa, D. J., Delp, S. L. 2000; 11 (3): 181-190

    Abstract

    Children with cerebral palsy frequently walk with excessive internal rotation of the hip. Spastic medial hamstrings or adductors are presumed to contribute to the excessive internal rotation in some patients; however, the capacity of these muscles to produce internal rotation during walking in individuals with cerebral palsy has not been adequately investigated. The purpose of this study was to determine the hip rotation moment arms of the medial hamstrings and adductors in persons who walk with a crouched, internally-rotated gait. Highly accurate computer models of three subjects with cerebral palsy were created from magnetic resonance images. These subject-specific models were used in conjunction with joint kinematics obtained from gait analysis to calculate the rotational moment arms of the muscles at body positions corresponding to each subject's internally-rotated gait. Analysis of the models revealed that the medial hamstrings, adductor brevis, and gracilis had negligible or external rotation moment arms throughout the gait cycle in all three subjects. The adductor longus had an internal rotation moment arm in two of the subjects, but the moment arm was small (<4 mm) in each case. These findings indicate that neither the medial hamstrings nor the adductor brevis, adductor longus, or gracilis are likely to be important contributors to excessive internal rotation of the hip. This suggests that these muscles should not be lengthened to treat excessive internal rotation of the hip and that other factors are more likely to cause internally-rotated gait in these patients.

    View details for Web of Science ID 000087261900002

    View details for PubMedID 10802430

  • Length changes of the hamstrings and adductors resulting from derotational osteotomies of the femur JOURNAL OF ORTHOPAEDIC RESEARCH Schmidt, D. J., Arnold, A. S., Carroll, N. C., Delp, S. L. 1999; 17 (2): 279-285

    Abstract

    Derotational osteotomies of the femur are frequently performed to treat persons with cerebral palsy who walk with excessive internal rotation of the hip. However, whether these procedures stretch or slacken the surrounding muscles appreciably is unknown. Determination of how muscle lengths are altered by derotational osteotomies is difficult because the length changes depend not only on the osteotomy site and the degree of derotation, but also on the anteversion angle of the femur and the rotational position of the hip. We have developed a three-dimensional computer simulation of derotational osteotomies, tested by anatomical experiments, to examine how femoral anteversion, hip internal rotation, and derotation affect the lengths of the semitendinosus, semimembranosus, biceps femoris long head, adductor longus, adductor brevis, and gracilis muscles. Simulation of derotational osteotomies at the intertrochanteric, subtrochanteric, or supracondylar levels decreased the origin-to-insertion lengths of the hamstrings and gracilis in our model by less than 8 mm (1.8%). Hence, the lengths of the hamstrings and gracilis are not likely to be altered substantially by these procedures. The origin-to-insertion lengths of the adductor longus and adductor brevis decreased less than 4 mm (1.9%) with subtrochanteric correction in our model, but the length of adductor brevis increased 8 mm (6.3%) with 60 degrees of intertrochanteric derotation. These muscles are also unlikely to be affected by derotational osteotomies, unless a large degree of intertrochanteric derotation is performed.

    View details for Web of Science ID 000079838500017

    View details for PubMedID 10221846

  • Muscular resistance to varus and valgus loads at the elbow JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME Buchanan, T. S., Delp, S. L., Solbeck, J. A. 1998; 120 (5): 634-639

    Abstract

    Although the contributions of passive structures to stability of the elbow have been well documented, the role of active muscular resistance of varus and valgus loads at the elbow remains unclear. We hypothesized that muscles: (1) can produce substantial varus and valgus moments about the elbow, and (2) are activated in response to sustained varus and valgus loading of the elbow. To test the first hypothesis, we developed a detailed musculoskeletal model to estimate the varus and valgus moment-generating capacity of the muscles about the elbow. To test the second hypothesis, we measured EMGs from 11 muscles in four subjects during a series of isometric tasks that included flexion, extension, varus, and valgus moments about the elbow. The EMG recordings were used as inputs to the elbow model to estimate the contributions of individual muscles to flexion-extension and varus-valgus moments. Analysis of the model revealed that nearly all of the muscles that cross the elbow are capable of producing varus or valgus moments; the capacity of the muscles to produce varus moment (34 Nm) and valgus moment (35 Nm) is roughly half of the maximum flexion moment (70 Nm). Analysis of the measured EMGs showed that the anconeus was the most significant contributor to valgus moments and the pronator teres was the largest contributor to varus moments. Although our results show that muscles were activated in response to static varus and valgus loads, their activations were modest and were not sufficient to balance the applied load.

    View details for Web of Science ID 000076377600012

    View details for PubMedID 10412442

  • Computer assisted knee replacement CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Delp, S. L., Stulberg, S. D., Davies, B., Picard, F., Leitner, F. 1998: 49-56

    Abstract

    Accurate alignment of knee implants is essential for the success of total knee replacement. Although mechanical alignment guides have been designed to improve alignment accuracy, there are several fundamental limitations of this technology that will inhibit additional improvements. Various computer assisted techniques have been developed to examine the potential to install knee implants more accurately and consistently than can be done with mechanical guides. For example, computer integrated instrumentation incorporates highly accurate measurement devices to locate joint centers, track surgical tools, and align prosthetic components. Image guided knee replacement provides a three-dimensional preoperative plan that guides the placement of the cutting blocks and prosthetic components. Robot assisted knee replacement allows one to machine bones accurately without the use of standard cutting blocks. The rationale for the development of computer assisted knee replacement systems is presented, the operation of several different systems is described, the advantages and disadvantages of different approaches are discussed, and areas for future research are suggested.

    View details for Web of Science ID 000075898000007

    View details for PubMedID 9755763

  • Posterior tilting of the tibial component decreases femoral rollback in posterior-substituting knee replacement: A computer simulation study JOURNAL OF ORTHOPAEDIC RESEARCH Piazza, S. J., Delp, S. L., Stulberg, S. D., Stern, S. H. 1998; 16 (2): 264-270

    Abstract

    Posterior tilting of the tibial component is thought to increase the range of motion in posterior cruciate-retaining total knee replacement, but its effect on implant motion in posterior cruciate-substituting total knee replacement is unknown. This issue has become of interest recently because manufacturers have introduced instrumentation that produces a posteriorly tilted tibial cut for both implant types. The purpose of this study was to investigate how motion of posterior cruciate-substituting total knee replacement is affected when the tibial component is installed with posterior tilt. Sagittal plane implant motions were predicted from prosthesis geometry with use of a computer simulation in which the femoral condyles were assumed to sit in the bottoms of the tibial condylar wells when the knee was in extension. Rollback of the femoral component was produced by a cam-spine mechanism at higher angles of flexion. The simulations revealed that even small degrees of posterior tilt reduced rollback by limiting the interaction between the cam and spine. Tilting the component posteriorly by 5 degrees caused the cam to contact the spine at a knee flexion angle that was 18 degrees higher than with the untilted component. The results suggest that posterior tilting of the tibial component in posterior cruciate-substituting knee replacement may not produce the same beneficial effects that have been reported for the tilting of tibial components in posterior cruciate-retaining knee replacement.

    View details for Web of Science ID 000073905500013

    View details for PubMedID 9621901

  • Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles SPINE Vasavada, A. N., Li, S. P., Delp, S. L. 1998; 23 (4): 412-422

    Abstract

    The function of neck muscles was quantified by incorporating experimentally measured morphometric parameters into a three-dimensional biomechanical model.To analyze how muscle morphometry and moment arms influence moment-generating capacity of human neck muscles in physiologic ranges of motion.Previous biomechanical analyses of the head-neck system have used simplified representations of the musculoskeletal anatomy. The force- and moment-generating properties of individual neck muscles have not been reported.A computer graphics model was developed that incorporates detailed neck muscle morphometric data into a model of cervical musculoskeletal anatomy and intervertebral kinematics. Moment arms and force-generating capacity of neck muscles were calculated for a range of head positions.With the head in the upright neutral position, the muscles with the largest moment arms and moment-generating capacities are sternocleidomastoid in flexion and lateral bending, semispinalis capitis and splenius capitis in extension, and trapezius in axial rotation. The moment arms of certain neck muscles (e.g., rectus capitis posterior major in axial rotation) change considerably in the physiologic range of motion. Most neck muscles maintain at least 80% of their peak force-generating capacity throughout the range of motion; however, the force-generating capacities of muscles with large moment arms and/or short fascicles (e.g., splenius capitis) vary substantially with head posture.These results quantify the contributions of individual neck muscles to moment-generating capacity and demonstrate that variations in force-generating capacity and moment arm throughout the range of motion can alter muscle moment-generating capacities.

    View details for Web of Science ID 000072276600002

    View details for PubMedID 9516695

  • Building biomechanical models based on medical image data: An assessment of model accuracy MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI'98 Murray, W. M., Arnold, A. S., Salinas, S., Durbhakula, M. M., Buchanan, T. S., Delp, S. L. 1998; 1496: 539-549
  • Graphics-based modeling and analysis of gait abnormalities BIO-MEDICAL MATERIALS AND ENGINEERING Delp, S. L., Arnold, A. S., Piazza, S. J. 1998; 8 (3-4): 227-240

    View details for Web of Science ID 000078402500013

    View details for PubMedID 10065889

  • A bipedal, closed-chain dynamic model of the human lower extremities and pelvis for simulation-based development of standing and mobility neuroprostheses PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6 Zhao, W. F., Kirsch, R. F., Triolo, R. J., Delp, S. 1998; 20: 2605-2608
  • How muscle architecture and moment arms affect wrist flexion-extension moments JOURNAL OF BIOMECHANICS Gonzalez, R. V., Buchanan, T. S., Delp, S. L. 1997; 30 (7): 705-712

    Abstract

    The purpose of this investigation was to determine how the moment arms and architecture of the wrist muscles influence their isometric moment-generating characteristics. A three-dimensional computer graphic model was developed that estimates the moment arms, maximum isometric forces, and maximum isometric flexion-extension moments generated by 15 muscles about the wrist over a range of wrist flexion angles. In combination with measurements of muscle strength, we used this model to answer three questions: (1) why is peak wrist flexion moment greater than peak extension moment, (2) why does flexion moment vary more with wrist flexion angle than does extension moment, and (3) why does flexion moment peak with the wrist in a flexed position? Analysis of the model revealed that the peak flexion moment is greater than the peak extension moment primarily because of the larger (110%) summed physiologic cross-sectional area of the flexors. The larger variation of flexion moment with flexion angle is caused mainly by greater variation of the moment arms of the major wrist flexors with flexion angle. The location of the peak flexion moment is determined by the wrist flexion moment arms (which tend to increase with wrist flexion) in combination with the force-length characteristics of these muscles.

    View details for Web of Science ID A1997XK22300006

    View details for PubMedID 9239550

  • Kinematics of the freely moving head and neck in the alert cat EXPERIMENTAL BRAIN RESEARCH Keshner, E. A., Statler, K. D., Delp, S. L. 1997; 115 (2): 257-266

    Abstract

    In this study we examined connections between the moment-generating capacity of the neck muscles and their patterns of activation during voluntary head-tracking movements. Three cats lying prone were trained to produce sinusoidal (0.25 Hz) tracking movements of the head in the sagittal plane, and 22.5 degrees and 45 degrees away from the sagittal plane. Radio-opaque markers were placed in the cervical vertebrae, and intramuscular patch electrodes were implanted in five neck muscles, including biventer cervicis, complexus, splenius capitis, occipitoscapularis, and rectus capitis posterior major. Videofluoroscopic images of cervical vertebral motion and muscle electromyographic responses were simultaneously recorded. A three-dimensional biomechanical model was developed to estimate how muscle moment arms and force-generating capacities change during the head-tracking movement. Experimental results demonstrated that the head and vertebrae moved synchronously, but neither the muscle activation patterns nor vertebral movements were constant across trials. Analysis of the biomechanical model revealed that, in some cases, modification of muscle activation patterns was consistent with changes in muscle moment arms or force-generating potential. In other cases, however, changes in muscle activation patterns were observed without changes in muscle moment arms or force-generating potential. This suggests that the moment-generating potential of muscles is just one of the variables that influences which muscles the central nervous system will select to participate in a movement.

    View details for Web of Science ID A1997XG49000006

    View details for PubMedID 9224854

  • Surgical simulation: An emerging technology for training in emergency medicine PRESENCE-TELEOPERATORS AND VIRTUAL ENVIRONMENTS Delp, S. L., Loan, P., Basdogan, C., Rosen, J. M. 1997; 6 (2): 147-159
  • The action of the rectus femoris muscle following distal tendon transfer: Does it generate knee flexion moment? DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Riewald, S. A., Delp, S. L. 1997; 39 (2): 99-105

    Abstract

    Rectus femoris transfer surgery involves detaching the rectus femoris from the patella and reattaching it posterior to the knee. While this procedure is thought to convert the rectus femoris from a knee extensor to a knee flexor, the moments generated by this muscle after transfer have never been measured. We used intramuscular electrodes to stimulate the rectus femoris in four subjects, two after transfer to the semitendinosus and two after transfer to the iliotibial band, while measuring the resultant knee moment. Electromyographic activity was monitored in the quadriceps, hamstrings, and gastrocnemius muscles to verify that the rectus femoris was the only muscle activated by the stimulus. We found that the rectus femoris generated a knee extension moment in all of the subjects tested. This finding suggests that transfer surgery does not convert the rectus femoris to a knee flexor, and that a mechanism exists which may transmit the force generated by the rectus femoris anterior to the knee joint center after distal tendon transfer.

    View details for Web of Science ID A1997WM28200006

    View details for PubMedID 9062424

  • Internal rotation gait: A compensatory mechanism to restore abduction capacity decreased by bone deformity? DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Arnold, A. S., KOMATTU, A. V., Delp, S. L. 1997; 39 (1): 40-44

    Abstract

    Children with excessive femoral anteversion frequently walk with abnormal internal rotation of the hip. The authors hypothesized that excessive anteversion decreases the abduction moment arm of the gluteus medius and that this moment arm is restored with internal rotation; hence internal rotation may be a compensatory mechanism to preserve abduction capacity. To test this hypothesis a three-dimensional computer model of an adult lower limb was developed to determine how changes in femoral anteversion angle, neck-shaft angle, and hip internal rotation angle affect the abduction moment arm of the gluteus medius. Analysis of the model revealed that anteversion and valgus deformities of the femur can decrease the abduction moment arm of the gluteus medius substantially. In particular, increasing the anteversion angle of the model by 30 to 40 degrees caused a 40 to 50% decrease in the abduction moment arm of the gluteus medius - enough to impair walking. Internal rotation of the hip by 30 degrees restored the abduction moment arm of the gluteus medius to within 5% of the moment arm of the model in its normal, undeformed state. These results support the authors' hypothesis and are consistent with the theory that internal rotation may be a compensatory mechanism adopted by children with femoral deformities to achieve the abduction moment arm needed for walking.

    View details for Web of Science ID A1997WA30100008

    View details for PubMedID 9003728

  • Maximum isometric moments generated by the wrist muscles in flexion-extension and radial-ulnar deviation JOURNAL OF BIOMECHANICS Delp, S. L., Grierson, A. E., Buchanan, T. S. 1996; 29 (10): 1371-1375

    Abstract

    Maximum isometric and passive moments about the wrist were measured for a range of flexion-extension and radial-ulnar deviation angles in 10 healthy adult males. Each subject was seated in a test apparatus with his shoulder abducted 90 degrees, elbow flexed 90 degrees, and body and forearm constrained. Peak flexion moments ranged from 5.2 to 18.7 N m (mean = 12.2, SD = 3.7), while peak extension moments ranged from 3.4 to 9.4 N m (mean = 7.1, SD = 2.1). The average flexion moment peaked at 40 degrees of flexion, whereas the average extension moment was relatively constant from 30 degrees flexion to 70 degrees extension. Peak moments generated by the radial and ulnar deviators ranged from 7.9 to 15.3 N m (mean = 11.0, SD = 2.0) and 5.9 to 11.9 N m (mean = 9.5, SD = 2.2), respectively. Passive moments in flexion-extension were near zero in the central 150 degrees of motion, but increased at the end of the range of motion. The average passive moment was 0.5 N m in 90 degrees flexion and 1.2 N m in 90 degrees extension. Average passive moments about the radial-ulnar deviation axis were near zero with the wrist radially deviated and at neutral, but increased to 0.9 N m in full ulnar deviation.

    View details for Web of Science ID A1996VH06300015

    View details for PubMedID 8884484

  • How superior placement of the joint center in hip arthroplasty affects the abductor muscles CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Delp, S. L., Wixson, R. L., KOMATTU, A. V., KOCMOND, J. H. 1996: 137-146

    Abstract

    This study examines the effects of a superiorly placed hip center on the strength of the abductor muscles. A 3-dimensional computer model of the hip and the surrounding musculature was used to calculate the moment arms, forces, and moments generated when the hip abductor muscles are maximally activated. A representation of a hip prosthesis was implanted into the computer model with altered hip center positions and a range of prosthetic neck lengths. Analysis of these simulated hip replacements demonstrated that superolateral placement of the hip center (2 cm superior and 2 cm lateral) decreases the moment arms of the hip abductor muscles by an average of 28%. This decrease in moment arm cannot be restored by increasing prosthetic neck length, resulting in an unrecoverable loss of abduction strength with superolateral displacement. By contrast, a 2-cm superior displacement of the hip center changes the moment arms and force generating capacities of the abductors by less than 10% if prosthetic neck length is increased to compensate for decreased muscle length. The results of this study suggest that superior positioning of the hip center, without lateral placement, does not have major, adverse effects on abduction moment arms or force generating capacities when the neck length is appropriately increased.

    View details for Web of Science ID A1996UV55600022

    View details for PubMedID 8653946

  • The influence of muscles on knee flexion during the swing phase of gait JOURNAL OF BIOMECHANICS Piazza, S. J., Delp, S. L. 1996; 29 (6): 723-733

    Abstract

    Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.

    View details for Web of Science ID A1996UK44200003

    View details for PubMedID 9147969

  • Virtual reality and medicine: From training systems to performance machines PROCEEDINGS OF THE IEEE 1996 VIRTUAL REALITY ANNUAL INTERNATIONAL SYMPOSIUM Rosen, J. M., Laub, D. R., Pieper, S. D., Mecinski, A. M., Soltanian, H., McKenna, M. A., Chen, D., Delp, S. L., Loan, J. P., Basdogan, C. 1996: 5-13
  • Hamstrings and psoas lengths during normal and crouch gait: Implications for muscle-tendon surgery JOURNAL OF ORTHOPAEDIC RESEARCH Delp, S. L., Arnold, A. S., Speers, R. A., Moore, C. A. 1996; 14 (1): 144-151

    Abstract

    Crouch gait, one of the most common movement abnormalities among children with cerebral palsy, is characterized by persistent flexion of the knee during the stance phase. Short hamstrings are thought to be the cause of crouch gait; thus, crouch gait is often treated by surgical lengthening of the hamstrings. In this study, a graphics-based model of the lower extremity was used in conjunction with three-dimensional kinematic data obtained from gait analysis to estimate the lengths of the hamstrings and psoas muscles during normal and crouch gaits. Only three of 14 subjects with crouch gait (four of 20 limbs with knee flexion of 20 degrees or more throughout stance) had hamstrings that were shorter than normal by more than 1 SD during walking. Most (80%) of the subjects with crouch gait had hamstrings of normal length or longer, despite persistent knee flexion during stance. This occurred because the excessive knee flexion was typically accompanied by excessive hip flexion throughout the gait cycle. All of the subjects with crouch gait had a psoas that was shorter than normal by more than 1 SD during walking. These results emphasize the need to consider the geometry and kinematics of multiple joints before performing surgical procedures aimed at correcting crouch gait.

    View details for Web of Science ID A1996UA58800022

    View details for PubMedID 8618157

  • TRADEOFFS BETWEEN MOTION AND STABILITY IN POSTERIOR SUBSTITUTING KNEE ARTHROPLASTY DESIGN JOURNAL OF BIOMECHANICS Delp, S. L., KOCMOND, J. H., Stern, S. H. 1995; 28 (10): 1155-?

    Abstract

    The purpose of this study was to examine how changes in component geometry of posterior substituting knees affect tibiofemoral kinematics and prosthesis stability. Most posterior cruciate ligament substituting prostheses rely on an articulation between a femoral cam and tibial spine to provide anterior-posterior stability of the knee. Failure of this ligament substitution mechanism has resulted in knee dislocations with several different posterior substituting designs. A computer model of a generic posterior substituting prosthesis was altered to analyze the effects of five design parameters (tibial spine height, spine anterior-posterior position, femoral component posterior radius, and femoral cam anterior-posterior and distal-proximal position) on prosthesis stability, tibiofemoral kinematics, and maximum obtainable knee flexion. Prosthesis stability was characterized by a 'dislocation safety factor', defined as the vertical distance from the bottom of the femoral cam to the top of the tibial spine. Computer simulations revealed that posterior substituting knees are most likely to dislocate at maximum knee flexion. Prosthesis stability can be improved by increasing the tibial spine height and moving the femoral cam posteriorly. Our results suggest there is a tradeoff between maximum knee flexion and prosthesis stability. We found that relatively small gains in maximum knee flexion, made through design changes, may cause substantial decreases in prosthesis stability.

    View details for Web of Science ID A1995RT92200002

    View details for PubMedID 8550634

  • STABILITY AND RANGE OF MOTION OF INSALL-BURSTEIN CONDYLAR PROSTHESES - A COMPUTER-SIMULATION STUDY JOURNAL OF ARTHROPLASTY KOCMOND, J. H., Delp, S. L., Stern, S. H. 1995; 10 (3): 383-388

    Abstract

    The Insall-Burstein Posterior Stabilized Prosthesis (Zimmer, Warsaw, IN) uses an articulation between a femoral cam and tibial spine to provide anteroposterior stability to the knee. Dislocation can occur if the femoral cam translocates anteriorly and over the tibial spine. A computer model was used to examine the effects of design changes made between the Insall-Burstein I (IB I), Insall-Burstein II (IB II), and revised Insall-Burstein II (IB IIR) knees. The effects of these design changes were determined from their influence on knee stability and maximum obtainable knee flexion. Knee stability was characterized by a dislocation safety factor, defined as the vertical distance from the top of the tibial spine to the bottom of the femoral cam. Our analysis showed that the dislocation safety factor is greatest at approximately 70 degrees of knee flexion for all IB knees. As knee flexion is increased from this angle, the dislocation safety factor decreases, reducing knee stability. The simulations highlighted a trade-off between improving knee flexion and improving knee stability. The geometry of the IB II knee allowed greater knee flexion. The maximum flexion achieved with the IB II knee was 125 degrees compared with 115 degrees and 117 degrees for the IB I and IB IIR knees, respectively. However, the simulations indicate that the IB I and IB IIR knees are less likely to dislocate because they have greater dislocation safety factors than the IB II knees.

    View details for Web of Science ID A1995RE00700019

    View details for PubMedID 7673919

  • VARIATION OF MUSCLE MOMENT ARMS WITH ELBOW AND FOREARM POSITION JOURNAL OF BIOMECHANICS Murray, W. M., Delp, S. L., Buchanan, T. S. 1995; 28 (5): 513-525

    Abstract

    We hypothesized that the moment arms of muscles crossing the elbow vary substantially with forearm and elbow position and that these variations could be represented using a three-dimensional computer model. Flexion/extension and pronation/supination moment arms of the brachioradialis, biceps, brachialis, pronator teres, and triceps were calculated from measurements of tendon displacement and joint angle in two anatomic specimens and were estimated using a computer model of the elbow joint. The anatomical measurements revealed that the flexion/extension moment arms varied by at least 30% over a 95 degrees range of motion. The changes in flexion/extension moment arm magnitudes with elbow flexion angle were represented well by the computer model. The anatomical studies and the computer model demonstrate that the biceps flexion moment arm peaks in a more extended elbow position and has a larger peak when the forearm is supinated. Also, the peak biceps supination moment arm decreases as the elbow is extended. These results emphasize the need to account for the variation of muscle moment arms with elbow flexion and forearm position.

    View details for Web of Science ID A1995QM87800003

    View details for PubMedID 7775488

  • A GRAPHICS-BASED SOFTWARE SYSTEM TO DEVELOP AND ANALYZE MODELS OF MUSCULOSKELETAL STRUCTURES COMPUTERS IN BIOLOGY AND MEDICINE Delp, S. L., Loan, J. P. 1995; 25 (1): 21-34

    Abstract

    We have created a graphics-based software system that enables users to develop and analyze musculoskeletal models without programming. To define a model using this system one specifies the surfaces of the bones, the kinematics of the joints and the lines of action and force-generating parameters of the muscles. Once a model is defined, the function of each muscle can be analyzed by computing its length, moment arms, force and joint moments. The software has been implemented on a computer graphics workstation so that users can view the model from any perspective and graphically manipulate the joint kinematics and musculoskeletal geometry. Models can also be animated to visualize the results of motion analysis experiments. Since the software can be used to study models of many different musculoskeletal structures, it can enhance the productivity of investigators working on diverse problems in biomechanics.

    View details for Web of Science ID A1995QV12500002

    View details for PubMedID 7600758

  • PRESERVING PLANTAR FLEXION STRENGTH AFTER SURGICAL-TREATMENT FOR CONTRACTURE OF THE TRICEPS SURAE - A COMPUTER-SIMULATION STUDY JOURNAL OF ORTHOPAEDIC RESEARCH Delp, S. L., STATLER, K., Carroll, N. C. 1995; 13 (1): 96-104

    Abstract

    Contractures of the triceps surae commonly are treated by surgical lengthening of the gastrocnemius aponeurosis or the Achilles tendon. Although these procedures generally relieve contractures, patients sometimes are left with dramatically decreased plantar flexion strength (i.e., decreased capacity to generate plantar flexion moment). The purpose of this study was to examine the trade-off between restoring range of motion and maintaining plantar flexion strength after surgical treatment for contracture of the triceps surae. A computer model representing the normal moment-generating characteristics of the triceps surae was altered to represent two conditions: isolated contracture of the gastrocnemius and contracture of both the gastrocnemius and the soleus. The effects of lengthening the gastrocnemius aponeurosis and the Achilles tendon were simulated for each condition. The simulations showed that nearly normal moment-generating characteristics could be restored when isolated gastrocnemius contracture was treated with lengthening of the gastrocnemius aponeurosis. However, when isolated gastrocnemius contracture was treated with lengthening of the Achilles tendon, the moment-generating capacity of the plantar flexors decreased greatly. This suggests that lengthening of the Achilles tendon should be avoided in persons with isolated gastrocnemius contracture. Our simulations also suggest that neither lengthening of the gastrocnemius aponeurosis nor lengthening of the Achilles tendon by itself is an effective treatment for combined contracture of the gastrocnemius and soleus. Lengthening the gastrocnemius aponeurosis did not decrease the excessive passive moment developed by the contracted soleus. Lengthening the Achilles tendon restored the normal passive range of motion but substantially decreased the active force-generating capacity of the muscles.(ABSTRACT TRUNCATED AT 250 WORDS)

    View details for Web of Science ID A1995QG26900014

    View details for PubMedID 7853110

  • SUPERIOR DISPLACEMENT OF THE HIP IN TOTAL JOINT REPLACEMENT - EFFECTS OF PROSTHETIC NECK LENGTH, NECK-STEM ANGLE, AND ANTEVERSION ANGLE ON THE MOMENT-GENERATING CAPACITY OF THE MUSCLES JOURNAL OF ORTHOPAEDIC RESEARCH Delp, S. L., KOMATTU, A. V., Wixson, R. L. 1994; 12 (6): 860-870

    Abstract

    The purpose of this study was to determine the effects of superior displacement of the hip center and changes in three prosthetic parameters (neck length, neck-stem angle, and anteversion angle) on the capacity of muscles to generate force and moment about the hip. A three-dimensional model that calculates the maximum isometric forces and moments generated by 25 muscles crossing the hip over a wide range of body positions was used to evaluate the effects of a 2 cm elevation of the hip center and changes in the prosthetic parameters. After superior displacement of the hip center, the neck length was increased from 0 to 3 cm, the neck-stem angle was varied between 110 and 150 degrees, and the anteversion angle was varied between 0 and 40 degrees. Our analysis showed that a 2 cm superior displacement of the hip center would decrease the moment-generating capacity of the four muscle groups studied (abductors, adductors, flexors, and extensors) if neck length were not increased to compensate for decreased muscle length. In the computer model of an adult man that we used, a 2 cm increase in neck length restored the moment-generating capacity of the muscles by increasing muscle length and force-generating capacity. However, a 3 cm increase in neck length increased passive muscle forces substantially, which potentially could limit joint motion. An increased neck-stem angle (i.e. a valgus neck) decreased the abduction moment arm but increased the moment-generating capacity of the other muscle groups. A change in the anteversion angle from 0 to 40 degrees had a relatively small effect on the isometric moment-generating capacity of the muscles studied.

    View details for Web of Science ID A1994PW53900013

    View details for PubMedID 7983561

  • TRANSFER OF THE RECTUS FEMORIS - EFFECTS OF TRANSFER SITE ON MOMENT ARMS ABOUT THE KNEE AND HIP JOURNAL OF BIOMECHANICS Delp, S. L., RINGWELSKI, D. A., Carroll, N. C. 1994; 27 (10): 1201-?

    Abstract

    Decreased range of knee motion during gait is often treated by surgically releasing the rectus femoris from the patella and transferring it to one of four sites: semitendinosus, gracilis, sartorius, or the iliotibial tract. This study was conducted to determine if there are differences between these four tendon transfer sites in terms of post-surgical moment arms about the knee and hip. A graphics-based model of the lower extremity was used to simulate the origin-to-insertion path of the rectus femoris after transfer. Anatomical studies were conducted to evaluate the accuracy of the simulated tendon transfers by comparing knee flexion moment arms calculated with the computer model to moment arms measured in two anatomical specimens. The computer simulations and anatomical studies revealed substantial differences in the knee moment arms between the four sites. We found that the rectus femoris has the largest peak knee flexion moment arm (4-5 cm) after transfer to the semitendinosus. In contrast, after transfer to the iliotibial tract the rectus femoris has a slight (0-5 mm) knee extension moment arm. None of the transfers to muscle-tendon complexes on the medial side of the knee (semitendinosus, gracilis, sartorius) substantially affect the hip rotation moment arm of the rectus femoris. Transferring to the iliotibial tract increases hip internal rotation moment arm of the rectus femoris, but only when the hip is externally rotated.

    View details for Web of Science ID A1994PD27800001

    View details for PubMedID 7962008

  • COMPENSATING FOR CHANGES IN MUSCLE LENGTH IN TOTAL HIP-ARTHROPLASTY - EFFECTS ON THE MOMENT GENERATING CAPACITY OF THE MUSCLES CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Vasavada, A. N., Delp, S. L., Maloney, W. J., Schurman, D. J., Zajac, F. E. 1994: 121-133

    Abstract

    Alterations in the location of the hip center may change the lengths and moment arms of the muscles, and thereby affect their capacity to generate force and moment about the hip. This study demonstrates some of the differences between compensating and not compensating for changes in muscle length that arise from displacement of the hip center. A computer model was developed to estimate the maximum isometric moment generating capacity of the hip muscles under two conditions. In the compensated condition, the hip center was displaced, but the muscles were restored to their original lengths and orientations by altering proximal femoral geometry. In the uncompensated condition, femoral geometry remained constant; thus, muscle lengths and orientations changed with displacement of the hip center. The computer simulations showed large differences between the two conditions. For example, a 2-cm superior displacement of the hip center decreased the moment generating capacity of the hip abductors 18% with compensation and 49% without compensation. Similarly, a 1-cm medial displacement of the hip center increased the moment generating capacity of the abductors 17% with compensation, but decreased it 4% without compensation. In contrast, a 1-cm inferior displacement decreased the moment generating capacity of flexors 6% with compensation, but increased it 12% without compensation. The results presented here demonstrate that compensating for changes in muscle length can be important in terms of preserving the moment generating capacity of the muscles when the hip center is displaced superiorly and medially, but not when the hip center is displaced in the inferior direction.

    View details for Web of Science ID A1994NL07400020

    View details for PubMedID 8168289

  • EFFECTS OF HIP CENTER LOCATION ON THE MOMENT-GENERATING CAPACITY OF THE MUSCLES JOURNAL OF BIOMECHANICS Delp, S. L., Maloney, W. 1993; 26 (4-5): 485-499

    Abstract

    We have developed a three-dimensional biomechanical model of the human lower extremity to study how the location of the hip center affects the moment-generating capacity of four muscle groups: the hip abductors, adductors, flexors, and extensors. The model computes the maximum isometric force and the resulting joint moments that each of 25 muscle-tendon complexes develops at any body position. Abduction, adduction, flexion, and extension moments calculated with the model correspond closely with isometric joint moments measured during maximum voluntary contractions. We used the model to determine (1) the hip center locations that maximize and minimize the moment-generating capacity of each muscle group and (2) the effects of superior-inferior, anterior-posterior, and medial-lateral displacement of the hip center on the moment arms, maximum isometric muscle forces, and maximum isometric moments generated by each muscle group. We found that superior-inferior displacement of the hip center has the greatest effect on the force- and moment-generating capacity of the muscles. A 2 cm superior displacement decreases abduction force (44%), moment arm (12%), and moment (49%), while a 2 cm inferior displacement increases abduction force (20%), moment arm (7%) and moment (26%). Similarly, a 2 cm superior displacement decreases flexion force (27%), moment arm (6%), and moment (22%), while inferior displacement increases all three variables. Anterior-posterior displacement alters the moment-generating capacity of the flexors and extensors considerably, primarily due to moment arm changes. Medial-lateral displacement has a large effect on the moment-generating capacity of the adductors only. A 2 cm medial displacement decreases adduction moment arm (20%), force (26%) and moment (40%). These results demonstrate that the force- and moment-generating capacities of the muscles are sensitive to the location of the hip center.

    View details for Web of Science ID A1993KX57600011

    View details for PubMedID 8478351

  • FORCE-GENERATING AND MOMENT-GENERATING CAPACITY OF LOWER-EXTREMITY MUSCLES BEFORE AND AFTER TENDON LENGTHENING CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Delp, S. L., Zajac, F. E. 1992: 247-259
  • Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clinical orthopaedics and related research Delp, S. L., Zajac, F. E. 1992: 247-259

    Abstract

    A computer model of the human lower extremity was developed to study how surgical lengthening of tendon affects the force- and moment-generating capacity of the muscles. This model computes the maximum isometric force and the resulting joint moments that each muscle-tendon complex can develop at any body position. Tendon lengthenings were simulated by increasing the tendon length of each muscle-tendon complex and computing the change in the maximum isometric muscle force and joint moments at a specific body position. These simulations showed that the forces and moments developed by the ankle plantarflexors are extremely sensitive to changes in tendon length. For example, at a body position corresponding to the midstance phase of gait, the maximum isometric moment generated by soleus decreased 30% with a 1-cm increase in tendon length, and 85% with a 2-cm increase in tendon length. In contrast, 1- and 2-cm increases in iliopsoas tendon length decreased its hip flexion moment by only 4% and 9%, respectively. This article quantifies the sensitivity of muscle force and joint moments to changes in tendon length for the most commonly lengthened lower-extremity tendons. These results indicate how much each of these tendons should be lengthened to achieve an incremental decrease in muscle force or joint moment.

    View details for PubMedID 1395302

  • AN INTERACTIVE GRAPHICS-BASED MODEL OF THE LOWER-EXTREMITY TO STUDY ORTHOPEDIC SURGICAL-PROCEDURES IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Delp, S. L., Loan, J. P., HOY, M. G., Zajac, F. E., Topp, E. L., Rosen, J. M. 1990; 37 (8): 757-767

    Abstract

    We have developed a model of the human lower extremity to study how surgical changes in musculoskeletal geometry and musculotendon parameters affect muscle force and its moment about the joints. The lines of action of 43 musculotendon actuators were defined based on their anatomical relationships to three-dimensional bone surface representations. A model for each actuator was formulated to compute its isometric force-length relation. The kinematics of the lower extremity were defined by modeling the hip, knee, ankle, subtalar, and metatarsophalangeal joints. Thus, the force and joint moment that each musculotendon actuator develops can be computed for any body position. The joint moments calculated with the model compare well with experimentally measured isometric joint moments. We developed a graphical interface to the model that allows the user to visualize the musculoskeletal geometry and to manipulate the model parameters to study the biomechanical consequences of orthopaedic surgical procedures. For example, tendon transfer and lengthening procedures can be simulated by adjusting the model parameters according to various surgical techniques. Results of the simulated surgeries can be analyzed quickly in terms of postsurgery muscle forces and other biomechanical variables. Just as interactive graphics have enhanced engineering design and analysis, we have found that graphics-based musculoskeletal models are effective tools for designing and analyzing surgical procedures.

    View details for Web of Science ID A1990DV77000003

    View details for PubMedID 2210784

  • BIOMECHANICAL ANALYSIS OF THE CHIARI PELVIC OSTEOTOMY - PRESERVING HIP ABDUCTOR STRENGTH CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Delp, S. L., BLECK, E. E., Zajac, F. E., Bollini, G. 1990: 189-198

    Abstract

    Although the Chiari osteotomy is usually effective in reducing pain, many patients are left with a long-term limp. The postoperative limp can at times be caused by hip abductors that have strength insufficient to counteract the torque from body weight during single-leg stance. To study how the surgical technique affects the hip abductor muscles, a biomechanical model was developed that computes the postsurgery pelvic geometry and the resulting hip abductor torque given three surgical parameters: angulation of the osteotomy, distance of medical displacement, and angle of internal rotation. The computer simulations of the Chiari osteotomy showed that some sets of surgical parameters conserve abductor torque while others greatly reduce it. Simulated surgeries with high angulation and large medial displacement reduce gluteus medius abductor torque by up to 65%. Therefore, this combination of surgical parameters may account for some instances of the postoperative limp. In the model, high angulation reduces the length of the gluteus medius and is the primary cause of reduced abductor strength. Simulated horizontal osteotomies (0 degrees to 10 degrees) were found to best conserve both muscle length and abductor torque.

    View details for Web of Science ID A1990DB35400027

    View details for PubMedID 2323130