NITRIC-OXIDE MEDIATES REDISTRIBUTION OF INTRARENAL BLOOD-FLOW DURING BACTEREMIA Garrison, R. N., Wilson, M. A., Matheson, P. J., Spain, D. A. LIPPINCOTT WILLIAMS & WILKINS. 1995: 90-97

Abstract

The normal or hyperdynamic circulatory response during the early phases of the systemic septic response is associated with renal microvascular constriction and can result in renal dysfunction. Intrarenal redistribution of blood flow from the outer cortex to the medulla appears to account for decreased glomerular filtration in spite of normal or elevated renal blood flow, but the mechanisms of this response are not well described. Nitric oxide is recognized as an important regulator of regional blood flow during both normal and pathologic conditions including sepsis, and we hypothesized that alterations in nitric oxide contribute to redistribution of renal blood flow during sepsis. The current study used laser Doppler fluximetry and clearance of p-aminohippuric acid (effective renal plasma flow, ERPF) to study intrarenal distribution of blood flow during basal conditions and during normodynamic Escherichia coli bacteremia, with and without inhibition of nitric oxide. Inhibition of nitric oxide in normal animals resulted in a decrease in ERPF (-19%) with a decrease in cortical flux (-39%) without alteration of medullary flux. Bacteremia resulted in a decrease in cortical flow (-17%), an increase in medullary flow (36%), and a modest reduction (-9%) in ERPF. Inhibition of nitric oxide synthase during bacteremia worsened cortical flow (-43%), reversed the increase in medullary flux (-42%), and further impaired ERPF (-28%). These data suggest that nitric oxide regulates renovascular tone during normal conditions and bacteremia, and indicate that it is a prime mediator of intrarenal redistribution of blood flow during sepsis.

View details for Web of Science ID A1995RM49500012

View details for PubMedID 7636915