Stay Connected. Manage Your Care.
Access your health information anytime and anywhere, at home or on the go, with MyHealth.
- Message your clinic
- View your lab results
- Schedule your next appointment
- Pay your bill
The MyHealth mobile app from Stanford Health Care puts all your health information at your fingertips and makes managing your health care simple and quick.
Guest Services
24/7
We are available to assist you
whenever you need it. Give us a call at
650-498-3333 or
PHYSICIAN HELPLINE
Have a question? We're here to help! Call 1-866-742-4811
Monday - Friday, 8 a.m. - 5 p.m.
REFER A PATIENT
Fax 650-320-9443
Track your patients' progress and communicate with Stanford providers conveniently and securely.
Abstract
The regulation of gene expression by the tetracycline system has attracted a high level of interest in the recent past. However, expression of secreted proteins has not been evaluated precisely. In this study, we constructed two versions of a one-plasmid system containing the elements necessary for the regulation of gene expression. The regulatable elements and the selectable marker (Neor) were set up in two different configurations, pTRIN31 and pTRIN76. With these two regulatable versions, the levels of protein expression after transfection into the NIH/3T3 cell line were measured by insertion of three different genes encoding the secreted proteins (hGH, ApoE3, hGM-CSF). The maximum levels of gene expression obtained with the pTRIN76-derived plasmids were 100ng/24h/106 cells for hGH, 427ng/24h/106 cells for ApoE3 and 108ng/24h/106 cells for hGM-CSF. For the pTRIN31-derived plasmids the maximum levels were 2.7ng/24h/106 cells for hGH and 47ng/24h/106 for ApoE3. Both plasmids give rise to an expression of the transfected gene that can be tightly regulated by three different molecules: tetracycline, minocycline and doxycycline. The levels of the secreted proteins are below the detectable level when the reporter genes are repressed. This repression is reversible within 48h after the regulator has been removed from the medium.
View details for Web of Science ID 000077027300013
View details for PubMedID 9795241