QUANTITATION OF CHANGES IN CELL-SURFACE DETERMINANTS DURING SKELETAL-MUSCLE CELL-DIFFERENTIATION USING MONOSPECIFIC ANTIBODY JOURNAL OF SUPRAMOLECULAR STRUCTURE AND CELLULAR BIOCHEMISTRY GROVE, B. K., Schwartz, G., Stockdale, F. E. 1981; 17 (2): 147-152

Abstract

The differentiation of skeletal muscle is characterized by recognition, alignment, and subsequent fusion of myoblast cells at their surfaces to form large, multinucleated myotubes. Monoclonal antibodies were used to investigate antigenic changes in the cell surface membrane specific for various stages of myogenesis. Chick embryonic skeletal muscle cells were cultured in vitro to the desired stage of differentiation and then injected into BALB/c mice. Spleen cells from the immunized mice were hybridized with NS-1 or P3 8653 mouse myeloma cells. Hybrid cell clones were selected in HAT medium and screened using an indirect radioimmunoassay for the production of monoclonal antibodies specific to myogenic cell surfaces. Target cells for the radioimmunoassay included three stages of myogenesis (myoblasts, midfusion, myoblasts, and myotubes) and chick lung cells as a control for polymorphic antigens. Sixty-one clones were obtained which produced antibodies specific for myogenic cells. Thirty-five of these clones were generated from mice immunized with midfusion myoblast stages of myogenesis and 26 were obtained from mice immunized with the later myotube stage of myogenesis. Quantitative measurements by RIA of myogenic determinants per cell surface area on each target cell type revealed that most of the determinants decrease during myogenesis when midfusion myoblasts are used as the immunogen. When myotube stages are used as the immunogen, more determinants increase with cell differentiation. Therefore, the most common pattern of determinant change is for them to be present at all stages of myogenesis but to vary quantitatively through development. There are determinants unique to each stage of myogenesis and marked quantitative differences within a cell stage for each determinant.

View details for Web of Science ID A1981MW67700004

View details for PubMedID 6172592