Stay Connected. Manage Your Care.
Access your health information anytime and anywhere, at home or on the go, with MyHealth.
- Message your clinic
- View your lab results
- Schedule your next appointment
- Pay your bill
The MyHealth mobile app from Stanford Health Care puts all your health information at your fingertips and makes managing your health care simple and quick.
Guest Services
24/7
We are available to assist you
whenever you need it. Give us a call at
650-498-3333 or
PHYSICIAN HELPLINE
Have a question? We're here to help! Call 1-866-742-4811
Monday - Friday, 8 a.m. - 5 p.m.
REFER A PATIENT
Fax 650-320-9443
Track your patients' progress and communicate with Stanford providers conveniently and securely.
Abstract
Genetic risk scores are an increasingly popular tool for summarizing the cumulative risk of a set of Single Nucleotide Polymorphisms (SNPs) with disease. Typically only the set of the SNPs that have reached genome-wide significance compose these scores. However recent work suggests that including additional SNPs may aid risk assessment. In this paper, we used the Atherosclerosis Risk in Communities (ARIC) Study cohort to illustrate how one can choose the optimal set of SNPs for a genetic risk score (GRS). In addition to P-value threshold, we also examined linkage disequilibrium, imputation quality, and imputation type. We provide a variety of evaluation metrics. Results suggest that P-value threshold had the greatest impact on GRS quality for the outcome of coronary heart disease, with an optimal threshold around 0.001. However, GRSs are relatively robust to both linkage disequilibrium and imputation quality. We also show that the optimal GRS partially depends on the evaluation metric and consequently the way one intends to use the GRS. Overall the implications highlight both the robustness of GRS and a means to empirically choose the best set of GRSs.
View details for DOI 10.1002/gepi.21912
View details for PubMedID 26198599