Stay Connected. Manage Your Care.
Access your health information anytime and anywhere, at home or on the go, with MyHealth.
- Message your clinic
- View your lab results
- Schedule your next appointment
- Pay your bill
The MyHealth mobile app from Stanford Health Care puts all your health information at your fingertips and makes managing your health care simple and quick.
Guest Services
24/7
We are available to assist you
whenever you need it. Give us a call at
650-498-3333 or
PHYSICIAN HELPLINE
Have a question? We're here to help! Call 1-866-742-4811
Monday - Friday, 8 a.m. - 5 p.m.
REFER A PATIENT
Fax 650-320-9443
Track your patients' progress and communicate with Stanford providers conveniently and securely.
Abstract
A prolonged seizure, status epileptics (SE), is a potent stimulus for increased neurogenesis in the dentate gyrus of the hippocampus. Molecular mechanisms that regulate normal and pathologic cell birth in the dentate gyrus are poorly understood.Lithium-pilocarpine was used to induce SE in immature postnatal day 20 rats. Newborn cells in the dentate were labeled with bromo-deoxyuridine to determine a time-course of cell proliferation, and measure cell-cycle length. In addition, we studied expression by Western blot and immunohistochemistry of two known inhibitors of G(1)-S cell-cycle progression P27/Kip1 and P15/Ink4b following SE.Cell proliferation in the dentate gyrus increases starting 2 h after SE and is sustained for 40 days. Increased cell proliferation following SE is associated with a shortened dentate gyrus progenitor's cell cycle, 15 h in control to 12 h in the SE animals. To identify molecules responsible for the shortened progenitor cell cycle we studied inhibitors of cell-cycle progression P27/Kip1, and P15/Ink4b. We find decreased phosphorylation at P27/Kip1 Serine 10 and Threonine 187 following SE. Although total P27/Kip1 and P15/Ink4b levels were not altered after SE, P27/Kip1 immunoreactivity was minimal in newborn but increased with maturation of the dentate granule neurons.The sustained increase in dentate gyrus cell proliferation following SE provides a large pool of immature dentate granule cells prior to development of spontaneous seizures. A decrease in cell-cycle length of dentate gyrus progenitors is at least partially responsible for increased numbers of newborn cells following SE.
View details for DOI 10.1111/j.1528-1167.2009.02244.x
View details for Web of Science ID 000272128700016
View details for PubMedID 19674059