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Abstract

When can reliable inference be drawn in the “Big Data” context? This paper presents a
framework for answering this fundamental question in the context of correlation mining,
with implications for general large scale inference. In large scale data applications like
genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-
starved: a regime where the number n of acquired samples (statistical replicates) is far fewer
than the number p of observed variables (genes, neurons, voxels, or chemical constituents).
Much of recent work has focused on understanding the computational complexity of proposed
methods for “Big Data”. Sample complexity however has received relatively less attention,
especially in the setting when the sample size n is fixed, and the dimension p grows without
bound. To address this gap, we develop a unified statistical framework that explicitly quanti-
fies the sample complexity of various inferential tasks. Sampling regimes can be divided into
several categories: 1) the classical asymptotic regime where the variable dimension is fixed
and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable
dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional
asymptotic regime where the variable dimension goes to infinity and the sample size is fixed.
Each regime has its niche but only the latter regime applies to exa-scale data dimension.
We illustrate this high dimensional framework for the problem of correlation mining, where
it is the matrix of pairwise and partial correlations among the variables that are of interest.
Correlation mining arises in numerous applications and subsumes the regression context as
a special case. We demonstrate various regimes of correlation mining based on the unifying
perspective of high dimensional learning rates and sample complexity for different structured
covariance models and different inference tasks.

Keywords: large scale inference, Big Data, sample complexity, asymptotic regimes,
purely high dimensional, unifying learning theory, triple asymptotic framework, correlation
mining, correlation estimation, correlation selection, correlation screening, graphical models.
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1 Introduction

The increasing availability of large scale and high dimensional data is driving a major resur-
gence of data science, recently rebranded under the moniker “Big Data” [90]. There has
been a preponderance of catch phrases such as “big-data-biology,” “ecoinformatics,” “pre-
cision medicine,” “data-driven decision-making,” “Big Data business analytics” in scientific
publications and the media. However, until recently, most of the research in Big Data has
concentrated on issues of data management, data warehousing, computational data analysis,
and end-user data utilization [129], [93], [96]. While the data management research commu-
nity has made progress on the problem of quality assurance, e.g., associated with provenance
and computer errors [80], the issue of limited sample size and statistical reproducibility re-
mains largely open. This issue has been recognized as one of the principal hurdles that stand
in the way of success of the scientific enterprise [154], [116]. The negative consequences of
insufficient samples can be especially dire when the data is high dimensional, heterogenous
and uncalibrated [26], [91]. It is therefore both important and timely to address the problem
of inference on Big Data from the point of view of statistical reproducibility.

The statistical reproducibility point of view is founded on a non-monolithic notion of Big
Data: the data should be considered as a matrix with p columns and n rows indexed by,
respectively, p variables over each of the data fields and n independent samples of these vari-
ables. If there is only a single sample then the matrix collapses to a vector and no statistical
analysis of reproducibility can be performed. With larger sample size, the probability of
reproducibility can be studied in the context of the statistical theory of random matrices.

Here we develop this perspective for a particular Big Data problem: correlation mining
in high dimension where the number of samples is much smaller than the dimension, a
setting that we call “sampled starved.” Correlation mining is an area of data mining where
the objective is to discover patterns of correlation between a large number (p) of observed
variables based on a limited number (n) of samples. Correlation mining can be framed as the
mathematical problem of reliably reconstructing different attributes of the correlation matrix
of the population from the sample covariance matrix that is empirically constructed from
the p× n data matrix. The inference task depends on the attributes of the correlation that
are of interest, while the performance of a correlation mining algorithm for a particular task
depends on the number of samples and the underlying structure of the population covariance.
In high dimensional settings where p� n, correlation mining presents significant challenges
to the practitioner, both in terms of unavailability of computationally tractable algorithms
and in terms of lack theory that could be used to specify sample size requirements. This
paper will provide some perspective on the latter challenges.

Covariance matrices arise in a very diverse set of Big Data applications including: em-
pirical finance and econometrics [84], [85], [86], [127], [14], [44]; MIMO radar and commu-
nications [54], [51], [77], [13], [48], [89],[62], [12]; image analysis [49],[92],[18],[152]; network
sensing [137], [17], [102], [103], [19], [21]; life and biomedical sciences [94], [136], [2], [118],
[79], [156], [106]; and climate science [55], [145], [119], [122], to name just a few. However,
covariance matrices are used differently depending on the application and the task. For
tracking of targets from space-time-adaptive-radar (STAP) the task is to estimate the entire
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covariance matrix in so far as it yields estimates of eigenvectors that span the signal (target)
subspace [53]. For exploring functional gene regulation networks the task is to determine the
matrix locations of the largest pairwise correlations or inverse correlations, often obtained
by thresholding the sample correlation matrix [61] or by performing sparsity constrained op-
timization [7], [47]. In linear discriminant analysis the task is to estimate a quadratic form
of the inverse covariance matrix [19], [97]. In anomaly detection, it is the Schur complement
of the covariance matrix that is of interest as it is related to residual prediction error covari-
ance [150]. In independence screening one is interested in the support of the non-zero rows
of the covariance [36]. In variable selection for prediction it is the support of the regression
coefficient vector that is of interest [37] (a setting in which correlation mining subsumes the
regression context as a special case).

Of central importance for all of these applications are the sample size requirements, which
can differ from task to task. Reliably performing some of these correlation mining tasks might
require relatively few samples, e.g., screening for the presence of variables that are hubs of
high correlation in a sparsely correlated population, while other tasks might require many
more samples, e.g., accurately estimating all entries of the inverse covariance matrix in a
densely correlated population. A theoretical framework has been emerging for predicting
these sampling requirements as a function of the population correlation structure and as a
function of the inference task. The principal aim of this paper is to present building blocks
of this framework with an emphasis on the high dimensional setting where the number p
of variables is much larger than the number n of samples (p � n), a setting relevant to
correlation mining in massive data sets.

Several real-world examples of this high dimensional setting are given below:

• In studies of correlation networks of the annotated human genome p is on the order
of tens of thousands of genes while n is typically fewer than a hundred samples, e.g.,
corresponding to a population of human subjects. In these studies correlation levels
of magnitude as low as 0.2 are sometimes considered significant [30], though some of
them may actually be spurious.

• In space-time-adaptive-processing (STAP) radar a spatio-temporal covariance matrix
is used to filter out clutter in order to better detect a moving target at a particular
range and Doppler frequency. For full degrees-of-freedom (DOF) STAP the estimator
of the spatio-temporal clutter covariance can have dimension p = rq on the order of
hundreds of thousands and the number of samples n under a hundred. Here r is the
number of radar pulses (time), q is the number of elements in the radar array (space),
and n is the number of range bins in the vicinity of the target [53],[89].

• For spambot network discovery from honeypot data, correlation of spamming profiles
is performed between p = hundreds of thousands of known IP addresses while the
number of time points in each profile may only be on the order of n = 30 [153].

• In recommender systems preference vectors of p = millions of subscribers are correlated
with other subscribers on the basis of n = a few hundred preference categories, e.g.,
movies or music, to predict future user preferences [78], [64].
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• In fMRI connectomics a long term goal is to correlate brain activations across individual
brain neurons, i.e., p = 1011. Currently connectome researchers might parcel the
brain into p regions, with p = several thousand, and estimate correlation by averaging
over n = hundreds of repeated activation stimuli. The objective is to use the sample
correlation matrix to study patterns of activation in order to reveal the “brain network”
[125], [133].

Therefore, it is not an exaggeration to say that correlation mining practitioners face a
deluge of variables with very limited sample size. With so few samples one is bound to find
spurious correlations between some pairs of the many variables. It is therefore essential to
understand the intrinsic sampling requirements of such statistical inference problems. The
study of sampling requirements falls into several different asymptotic regimes. Classical
statistical error prediction and control methods are based on an asymptotic regime where
the dimension p is fixed and the sample size n goes to infinity. Such a regime is obviously
inapplicable to the case of n < p. Recently, statisticians have developed theory that applies
to the regime where p goes to infinity. This theory is in the realm of high dimensional
statistical inference, often called the “large p small n regime” [148], [15]. This theory covers
the case where both n and p go to infinity, which, as contrasted to the classical fixed p
regime, is a setting that we called the mixed asymptotic regime and includes the so-called
“high dimensional,” “very-high dimensional” or “ultra-high dimensional” settings [15], [36].
Each of these denote regimes where the speed at which n goes to infinity as a function of p
becomes progressively slower. However, since the theory requires that both p and n go to
infinity it may not be very useful in applications where the availability of samples is limited
and finite. In such a case a more useful and relevant regime is the “purely-high dimensional”
setting where the number of samples n remains fixed while the number of variables p goes
to infinity. This setting applies, for example, to the correlation screening application [61],
discussed in Sec. 5, where the correlation threshold ρ approaches one as p becomes large.
This regime is in fact the highest possible dimensional regime, short of having no samples at
all. Thus it is appropriate to call this purely-high dimensional regime the “ultimately-high
dimensional regime,” and we shall use these two terms interchangeably in the sequel. A
table comparing these asymptotic regimes is given below (Table 1).

The purely-high dimensional regime of large p and fixed n is a mathematical character-
ization of the extremely big data problem. Evidently, this regime poses several challenges
to correlation mining practitioners. These include both computational challenges and the
challenge of error control and performance prediction. Yet this regime also holds some rather
pleasant surprises. Remarkably, there are surprising benefits to having few samples in terms
of computation and scaling laws. There is a scalable computational complexity advantage
relative to other high dimensional regimes where both n and p are large. In particular,
correlation mining algorithms can take advantage of numerical linear algebra shortcuts and
approximate k nearest neighbor search to compute large sparse correlation or partial corre-
lation networks. Another benefit of purely-high dimensionality is an advantageous scaling
law of the false positive rates as a function of n and p. Even small increases in sample size
can provide significant gains in this regime. For example, when the dimension is p = 10, 000
and the number of samples is n = 100, the experimenter only needs to double the number
of samples in order to accommodate an increase in dimension by six orders of magnitude
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Asymptotic Terminology Sample Model Application References
framework (“setting”) size dimension domain (selected)

n p

Large

sample

asymptotics

(Classical)

small
dimensional

−→ ∞ fixed “small data”

Fisher [42, 43], Rao [108, 109],
Neyman and Pearson [99], Wilks [151],

Wald [141, 142, 143, 144],
Cramér [24, 23], Le Cam [82, 83],

Chernoff [20], Kiefer and Wolfowitz[76],
Bahadur [6], Efron [35]

Mixed
asymptotics

high

to
ultra high

dimensional

−→ ∞ −→ ∞
“medium sized” data
(mega or giga scales)

Donoho [33], Zhao and Yu [155],

Meinshausen and Bühlmann [95],

Candès and Tao [16], Wainwright [138, 139],

Bickel, Ritov, and Tsybakov[10],

Peng, Wang, Zhou, and Zhu [104],

Khare, Oh, and Rajaratnam, [72],

Fan and Lv [36]

Large

dimension
asymptotics

purely high

dimensional
fixed −→ ∞

Sample Starved

“Big Data”

(tera to exascales)

Hero and Rajaratnam [61],

Hero and Rajaratnam [58],

Firouzi, Hero and Rajaratnam [38]

Table 1: Overview of different asymptotic regimes of statistical data analysis. These regimes are
determined by the relation between the number n of samples drawn from the population and the
number p, called the dimension, of variables. In the classical asymptotic regime the number p is
fixed while n goes to infinity. This is the regime where most of the well known classical statistical
testing procedures, such as student t tests of the mean, Fisher F tests of the variance, and Pearson
tests of the correlation, can be applied reliably. Mixed asymptotic regimes where n and p both go to
infinity have received much attention in modern statistics. However, in this era of big data where
p is exceedingly large, the mixed asymptotic regime is inadequate since it still requires that n go
to infinity. The recently introduced “purely high dimensional regime” [61], [58] addressed in this
paper, is more suitable to big data problems where n is limited and finite (adapted from [63])

.

(p = 10, 000, 000, 000) without increasing the false positive rate [58].

The unifying comparative tool used in this paper is sample complexity analysis. We will
use this analysis to place different statistical models and different inference tasks into the
various asymptotic regimes shown Table 1 (see Tables 2-3). Sample complexity analysis
has been widely applied to study the performance of inference procedures. In supervised
computational learning sample complexity is defined as the number of training samples
necessary to maintain a given level of generalization error as a function of the complexity of
the statistical model or algorithm [9] [57], [100], [28], [67]. Similar notions arise in the context
of high dimensional convergence rates [15], Bayesian model complexity [124], and stochastic
complexity (minimum description length - MDL) [111]c1. There is always a tradeoff between
statistical sample complexity and statistical model complexity. The nature of this tradeoff
is specific to the model and to the task. This specificity forms the basis for the unifying the
theory of large scale inference that is developed in this paper.

The outline of the paper is as follows. Sec. 2 reviews the definitions of covariance,
precision, correlation, partial correlation, and Gaussian graphical models. Section 3 treats
the problem of covariance estimation. Section 4 develops the problem of model selection and
support estimation. In Sec. 5 the problem of correlation screening is discussed. In Sec. 6
sample complexity comparisons of various types of correlation inference tasks are presented.
Concluding remarks are given in Sec. 7.

c1Stochastic complexity is different from the notion of statistical complexity in statistical mechanics [25]
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2 Correlation matrices and correlation networks

2.1 Covariance and precision matrices

Let X = [x1, . . . , xp]
T ∈ IRp be a real-valued random (column) vector having a distribution

whose second order moments exist. The mean vector µ = E[X] ∈ IRp and the covariance
matrix Σ = cov(X) = E[(X − µ)(X − µ)T ] ∈ IRp×p are defined in terms of the statistical
expectation operator E[·] associated with the distribution of X. The matrix Σ is symmetric
positive semidefinite and its ij’th entry is the covariance cov(Xi, Xj) = E[(Xi−µi)(Xj−µj)],
with µi the i-th element of µ. It will be assumed throughout that Σ is in fact positive definite,
which is generally true when the p components of X are non-redundant random variables,
i.e., no variable can be predicted without error using linear combinations of the other vari-
ables. The inverse of the covariance matrix is called the precision matrix Ω = Σ−1. The
covariance and precision matrices capture marginal dependency and conditional dependency,
respectively, in the joint distribution of X. In particular, when Σ (Ω) is sparse, i.e., it has
only a few non-zero elements, there are many variables that are marginally (conditionally)
independent of the other variables. More will be said about this in Sec. 2.2.

The matrices Σ and Ω are not invariant to scaling of the component variables of X. Scale
invariance is important when one is interested in a measure of dependency that is not a
function of the units used to represent different variables. The correlation matrix R and
partial correlation matrix P are respective versions of Σ and Ω that are scale invariant

R = diag(Σ)−1/2Σdiag(Σ)−1/2 (1)

P = diag(Ω)−1/2Ωdiag(Ω)−1/2 (2)

where, for a p× p matrix B, diag(B) is the p× p diagonal matrix formed from the diagonal
elements of B and, for a diagonal matrix D with non-zero valued entries {dii}pi=1 along the
diagonal, D−1/2 denotes the diagonal matrix with entries {1/

√
dii}pi=1 along the diagonal.

The diagonal elements of R and P are equal to 1 and the off-diagonal elements are between
−1 and 1. An important property of R and P is that they retain any zero patterning in Σ
and Ω, respectively, if Σ or Ω are sparse.

Let {Xk}nk=1 be a set of n i.i.d. realizations from the distribution of X. The sample
covariance matrix is the p× p positive semidefinite matrix

Sn =
1

n− 1

n∑
k=0

(Xk − µ̂)(Xk − µ̂)T (3)

where µ = n−1
∑n

k=0 Xk is the sample mean vector. The sample covariance Sn is a sta-
tistically consistent estimator of Σ, i.e., it converges to Σ with probability one as n → ∞
if p is fixed. Furthermore, the plug-in estimator R̂ = diag(Sn)−1/2Sndiag(Sn)−1/2 can be
used to estimate R. The matrix Sn is positive definite with probability one if n ≥ p and
if the distribution of X is Lebesgue continuous. In this case, plug-in estimators Ω̂ = S−1

n

and P̂ = diag(Ω̂)−1/2Ω̂diag(Ω̂)−1/2 can be used to consistently estimate Ω and P. In the
case n < p, which is the main focus of this paper, alternative estimation strategies must be
adopted.
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2.2 The Gaussian graphical model

Assume that the data is a set of n i.i.d. realizations {Xk}nk=1 of a random vector X ∈ IRp

that has a multivariate Gaussian distribution with positive definite covariance matrix Σ.
When the precision matrix Ω is sparse such data is said to be a Gauss Markov random field
(GMRF) or, equivalently, is said to be distributed according to a Gaussian graphical model
(GGM). The log-likelihood function for Σ and Ω can be expressed as

l(Σ) = −n
2

tr{Σ−1Sn} −
n

2
logdet(Σ), (4)

l(Ω) = −n
2

tr{ΩSn}+
n

2
logdet(Ω), (5)

up to unimportant additive constants. In the GGM Ω is a more natural parameterization
than Σ in the sense that it is sparse while Σ may not be sparse. In addition, the Gaussian
Graphical model corresponds to a natural exponential family with Ω as the canonical param-
eter. Furthermore, the sparse structure of Ω is directly related to conditional independencies
specified by the pairwise, local and global Markov properties of undirected graphical models
and also by the factorization of the joint density of X [81],[140].

The GGM is a “graphical model” in the following sense. Define a graph G whose p vertices
(or nodes) correspond to the p variables X1, . . . , Xp in X. Assign an edge between node i
and node j if and only if the ij-th entry of the sparse precision matrix Ω is non-zero. The
edges of the so-constructed graph G, often called a correlation or partial correlation graph,
are specified by an adjacency matrix A. A is a binary matrix that indicates the support
of the matrix Ω; specifically the non-zero entries of A indicate the locations the non-zero
entries of Ω. The degree of node i is the number of neighboring nodes in the graph and
corresponds to the number of non-zero entries in the i-th row of Ω. In GMRFs it is typically
assumed that the graph G has only a small number (O(p)) of edges, corresponding to the
property Ω is row sparsec1 [81].

Observe that in a GGM it is the inverse covariance Ω and not the covariance itself that
is important. There are many other reasons for the wide interest in Ω and its scaled version
P, the partial correlation matrix (2) [98], [3], [81], [15],[128], [70], [69]. First, given predictor
variables X = [X1, . . . , Xn]T , the optimal linear predictor of a response variable Y depends
on cov(X) only through its inverse. Second, when X is Gaussian, the Bayes-optimal test
between two hypothesized covariances similarly depends only on the inverse covariances.
Third, many classical multivariate procedures such as linear discriminant analysis (LDA)
and multivariate analysis of variance (MANOVA) depend directly on the inverse covariance
matrix. Fourth, the ij-th entry of P is equal to the conditional correlation between Xi and
Xj given the rest of the variables {Xk}k 6=i,j. Fifth, if X̂i is the optimal linear predictor of Xi

given {Xk}k 6=i, the ij-th entry of the partial correlation matrix P is equal to the correlation

coefficient between the prediction error residuals associated with X̂i and X̂j. Finally, many
physical random processes have a sparse inverse covariance matrix while the covariance
matrix is not sparse. We illustrate this last point by the following example.

c1A p×p matrix is row sparse with sparsity coefficient s if no row has more than s non-zero entries, where
s = o(p).
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2.3 Illustrative example of a GGM

We illustrate the differences between the covariance and inverse covariance matrices in a
GGM using an example motivated by statistical physics. Let X(u1, u2) be a function on the
unit square [0, 1]2 ⊂ IR2 that satisfies the Poisson partial differential equation

∆X(u1, u2) = W (u1, u2), u1, u2 ∈ (0, 1)2

X(u1, u2) = 0, u1, u2 6∈ (0, 1)2

where W (u1, u2) is a fixed integrable function. Here ∆X = ∂2X
∂u2

1
+ ∂2X

∂u2
2

is the Laplacian differ-

ential operator. Solutions X to the Poisson equation arise in heat transfer, electromagnetics,
and fluid dynamics [123].

We extract a Gaussian graphical model from the Poisson equation by discretizing it to
a finite difference equation and setting the discretized W to be a Gaussian random matrix.
This will convert the continuous domain function X over [0, 1]2 to a vector X with p = N1N2

elements, where N1 = 1/δ1 and N2 = 1/δ2 and δ1, δ2 are the u1 and u2 increments used in the
finite difference approximation. Specifically, discretize u1 and u2 to the sets u1 ∈ {kδ1}N1

k=0

and u2 ∈ {kδ2}N2
k=0. Then, assuming smoothW , the discretizedX satisfies the finite difference

equation:

Xi,j =
(Xi+1,j +Xi−1,j)δ

2
2 + (Xi,j+1 +Xi,j−1)δ2

1 −Wi,jδ1δ2

2(δ2
1 + δ2

2)
. (6)

Second, arrange the {Xi,j}N1,N2

i,j=1 into the vector X ∈ IRN2

in lexicographic order. This results
in an equivalent matrix form of the equation (6)

[I−A]X = W

where A is a sparse tri-diagonal matrix.

Under the assumption that W is a i.i.d. zero mean spatio temporal Gaussian driving
noise, i.e., cov(W) = σ2

W I, the covariance Σ and the inverse covariance Ω of X have the
form

Σ = Ω−1, Ω = [I−A][I−A]T/σ2
W .

As A is sparse tri-diagonal, the inverse covariance Ω and partial correlation P are both sparse
penta-diagonal matrices with support set shown in Fig. 1 for N1 = N2 = 5. Therefore, the
random vector X is a Gauss Markov random field with GGM spatial dependency structure
specified by the non-zero entries of Ω, equivalently of P. Note that the covariance matrix Σ
is not sparse as the inverse of the penta-diagonal matrix is a full matrix. Thus, as is usually
the case for a GGM, the inverse covariance is a more parsimonious model description than
is the covariance.

For visualization, two realizations of X are shown in Fig. 2 for a simulation of the
discretized Poisson equation (6) on a 30× 30 spatial grid (p = 900). While general methods
of support set estimation are discussed in Sec. 4, Fig. 3 illustrates a simple empirical
estimator of the support set of Ω based on n = 1500 samples of X. This simple estimator
is constructed by thresholding an estimate P̂ of the partial correlation matrix P at a level
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ρ ∈ [0, 1], which is user defined. The non-zero entries of the adjacency matrix associated with
the thresholded P̂ specifies the support set estimator. Here P̂ = diag(Ω̂)−1/2Ω̂diag(Ω̂)−1/2,
where Ω̂ = Ŝ−1

n is the inverse of the sample covariance Sn defined in (3). Figure 3 shows
the support set estimator for six different values of the applied threshold ρ. Note that when
ρ = 0.26114 the true support set, illustrated in Fig. 1 for a 5 × 5 grid, is recovered. When
ρ decreases below a critical value there is an abrupt increase in the number of false edges.
Below this critical value (top left panel of Fig. 3) the number of false edges approaches the
number

(
p
2

)
of edges in the complete graph.

Figure 1: The Gaussian graphical model obtained from a finite difference approximation to the
Poisson equation has only local spatial dependency (left panel) resulting in a pentadiagonal inverse
covariance matrix (right panel).

3 Correlation mining: estimation

An ambitious correlation mining objective is to empirically estimate each and every one of
the entries of the covariance Σ or inverse covariance matrix Ω from the n samples. The
accuracy of these estimators is often measured by the Frobenius norm of the estimation
error. Other common criteria for gauging estimator accuracy are the matrix `2 norm, also
called the operator norm, and the matrix `1 norm. For example, in estimation of Ω the
Frobenius norm difference between Ω and its empirical estimate Ω̂ is:

‖Ω− Ω̂‖F =

√√√√ p∑
i,j=1

(ωij − ω̂ij)2,

where ωij denotes the ij-th entry of Ω. When the objective is to estimate the entries of
the covariance, the correlation or the partial correlation matrix, the Frobenius norm error is
defined similarly. Covariance and inverse covariance estimation arise in many applications
including: finance [86], [50]; gene expression modeling [157], [115]; sensor array processing
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Figure 2: Two (n = 2) independent realizations of the discretized Poisson random field obtained
from the finite difference approximation (6) with N1 = N2 = 90. Here the driving process W is a
zero mean spatio-temporally white Gaussian noise.

[60],[71], [66]; space-time-adaptive processing (STAP) radar [149], [53] [126]; spatio-temporal
classification [52] and prediction [130]; brain connectomics [22],[134]; and sensor network
anomaly detection [19].

When the data are multivariate Gaussian, the maximum likelihood (ML) estimator of Ω
maximizes the log-likelihood function (5). In the case when n ≥ p the ML estimator of the
covariance Σ is equal to Σ̂ = n−1

n
Sn, where Sn is the sample covariance matrix defined in (3),

and the ML estimator of Ω is Ω̂ = Σ̂−1. In high dimensional situations where n < p, Sn is not
positive definite and these ML estimators do not exist. Estimator regularization is commonly
used in this situation in order to yield a positive definite solution. Model-based regularization
methods add a suitable penalty function c(Ω) to the log-likelihood function resulting in the
so-called penalized ML estimator. When the penalty is interpreted as a log prior on Ω
the penalized ML estimator is equivalent to the maximum a posteriori (MAP) estimator,
also known as the posterior mode estimator. Commonly used regularization penalties are
the quadratic penalty λ‖Ω‖2

F and the non-sparsity penalty λ‖Ω‖1 = λ
∑p

i 6=j |ωij|, where
λ > 0 is called the regularization parameter, and pushes the penalized ML solution towards
a diagonal matrix as λ increases to ∞. Other penalties shrink the penalized ML solution
towards more highly structured matrices, e.g., block sparse, Toeplitz, banded, circulant, or
Kronecker matrix structure. We call the latter structured penalties as contrasted to the
un-structured penalties that encourage the estimator to be diagonal. When the true inverse
covariance Ω has the same structure as the structure induced by the penalty we say that the
penalty of the penalized ML estimator is matched to the model.

The effect of different structured models for Ω on the asymptotic convergence rate of the
penalized ML error can be of interest to practitioners. In large scale settings the high dimen-
sional convergence rate is a natural comparative performance measure. High dimensional
rates of convergence have been obtained under a large range of structured and unstructured
penalties (and matched models). Often, when the penalty is matched to the model, the
Frobenius norm estimation error decreases at asymptotic rate of the form

√
P (log p)/n as

p, n → ∞ where P is the (effective) number of free parameters in the model. We illustrate
for the case of spatio-temporal multivariate Gaussian graphical models; a poster child for
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Figure 3: The support of the thresholded sample partial correlation matrix, rendered as a graph
over spatial locations in the plane, for a Gaussian random field generated by the Poisson equation
on a 30× 30 grid (p = 900). The sample partial correlation P̂ = diag(Ω̂)−1/2Ω̂diag(Ω̂)−1/2, where
Ω̂ = S−1

n the inverse of the sample covariance matrix, was computed using n = 1500 samples. The
graph is shown for six different threshold levels ρ applied to P̂. The true cartesian support set is
recovered for ρ = 0.26114. There is a sharp increase in the number of false edges as the threshold
ρ decreases below a certain threshold, somewhere between 0.0791 and 0.13978. The location of this
threshold appears well approximated by the theory [61] that predicts a critical threshold value 0.091
(See equation (9) in Sec. 5 of this paper).
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high dimensional inference.

3.1 Illustration: estimation of a spatio-temporal precision matrix

Consider the case where a set of q sensors acquires r time samples (a snapshot) of a spatio-
temporal random field, e.g., the STAP radar example [53],[89] discussed in the introduction.
There are n snapshots of this random field. Each snapshot generates a multivariate Gaus-
sian distributed random matrix X with q rows (spatial) and r columns (temporal). Define
the lexicographically ordered vectorization X = vec(X) ∈ IRqr of X. The spatio-temporal
covariance cov(X) = Σ of a snapshot is an unknown p× p matrix where p = qr. The task is
to estimate the precision matrix Ω = Σ−1. When there is no additional information about
Σ, beyond that it is symmetric and positive definite, the precision matrix Ω is completely
unknown and there are P =

(
p
2

)
= O(p2) unknown parameters to be estimated, which is

the number of distinct entries of the matrix. The base case of no information is often called
the saturated model. If the experimenter is given additional contextual information about
the structure of the precision matrix the value of this information can often be quantified in
terms of sample complexity. We give several examples below.

Spatio-temporal contextual information: sparse precision matrix: Contextual in-
formation specifying that X is a GGM with sparse inverse covariance matrix results in a
significant reduction in the number of free parameters in Ω: from P = O(p2) to P = O(p).
The problem of sparse covariance estimation has been of significant interest [95], [8], [47].
When the spatio-temporal matrix X represents the outputs of sensor network, an example
of contextual information is the knowledge that the physical environment is a time-varying
random field whose amplitudes obey the laws of Lagrangian classical mechanics, e.g., fluid
flow, heat flow, or electro-magnetic wave fields that satisfy Poisson or Navier-Stokes partial
differential equations [117]. The contextual information may simply be an upper bound on
the sparsity parameter s or it may actually specify the sparsity pattern, i.e., fix the graph G
specifying the support of Ω.

Spatio-temporal contextual information: Kronecker covariance: Any spatio-temporal
covariance has some degree of Kronecker structure that can be captured by the Kronecker
sum decomposition of Pitsianis and Van Loan [135], [130]. When applied to the inverse
covariance, this decomposition is Ω =

∑k
k=1 Ai ⊗ Bi where k is the Kronecker rank and

Ai,Bi are linearly independent q × q and r × r matrices, called Kronecker factors. When
the contextual information is that Ω has Kronecker rank k the number of free parameters
in Ω is reduced from O(p2) to O(k(q2 + r2)). The simplest case occurs when Ω is known to
have Kronecker rank 1: Ω = A

⊗
B, where A and B are symmetric positive definite q × q

(spatial) and r× r (temporal) covariance matrices. Covariance estimation in this Kronecker
model, also known as the matrix normal model, has been widely studied [34], [147], [131]. A
physical example of Kronecker-structured covariance is the case that X are outputs of a pas-
sive antenna array that is sensing the EM emissions of k wide-sense-stationary non-moving
targets in the far field of the array. In particular, if k = 1 there is a single target and the
spatial and temporal components of the covariance are completely decoupled. In this case,
the contextual information could be the number of targets.
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Spatio-temporal contextual information: Kronecker+sparse precision matrix:
Consider the case that the contextual information specifies that X has a precision matrix Ω
that is both Kronecker structured and has sparse Kronecker factors. When the Kronecker
rank is k = 1 then Ω factors into A⊗B and there are P = O(qsA + rsB) unknown param-
eters, where sA and sB specify the sparsity in each of the Kronecker factors A and B [131],
[1].

The value of the different types of contextual information can be studied in terms of
estimation of Ω using theory developed recently in [131], which discusses estimators and
estimator convergence rates for the cases that Ω is, respectively, sparse, Kronecker, and
sparse-Kronecker structured. These structural constraints are incorporated into the estima-
tor Ω̂ of Ω using penalized maximum likelihood methods, which can be interpreted as MAP
covariance estimators when the prior distributions on the entries of Ω are specified by the
penalty functions. For each case denote the mean-squared error of the MAP estimator as the
expectation of the Frobenius norm difference squared: MSE= E[‖Ω − Ω̂‖2

F ]. The relative
decrease in the associated MSE due to any of the above pieces of contextual information is
a function of the sample complexity for the inverse covariance estimation task. The forms of
these MAP estimators, their asymptotic log MSE, and their asymptotic sample complexity
can be obtained directly from [131], [130] and are summarized below and in Table 2.

For the saturated model (no side information about Ω) the maximum likelihood estimator
is equal to the inverse of the sample covariance Σ̂ = n−1

∑n
i=1(xi − x)(xi − x)T , where x is

the sample mean of {xi}ni=1 [97]. This is the MAP estimator under the uniform estimator-
loss function and a uninformative (constant) prior on Ω. When contextual information
specifies that Ω is in fact sparse, the Glasso penalized ML estimator [47] adds an l1-norm
penalty on Ω to the log-likelihood function. The Glasso precision estimator is the MAP
estimator under a Laplacian-like prior on Ω and it can be determined using an iterative
maximization algorithm. When contextual information is that Ω has Kronecker structure,
again an iterative algorithm must be used to find the maximum likelihood estimator under
the Kronecker model [146]. This is the Bayes optimal estimator under a Kronecker covariance
model and non-informative priors on the Kronecker factors. Finally, when the contextual
information is that Ω is both Kronecker and sparse the Kronecker log-likelihood model can
be penalized by l1-norms on each of the Kronecker factors, resulting in a MAP estimator
under a Laplacian-type prior on each of the factors [1], [131].

The value-added brought to estimator performance by each of these contextual informa-
tion sources can be assessed by studying the asymptotic sample complexity. The asymptotic
sample complexity is defined by the number n = np of samples, as a function of the di-
mension p, required to maintain a given level of performance as p goes to infinity. Under
general conditions on the MAP spatio-temporal covariance estimators, the log MSE takes
the high dimensional (large q, r and large n) asymptotic form shown in the 3rd row of Table
2 [131]. The second row of the table gives the form for the prior on Ω as (from left to right):
1) uniform prior in the case of no contextual information; 2) sparse `1 prior in the case of
sparsity information on Ω; 3) Kronecker structured Ω in the case of contextual information
that decouples space and time (the prior δ(rankR(Ω) − 1) is a delta function that forces
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Information None Sparse Kronecker Kronecker+sparse

Model saturated Ω sparse Ω Ω = A⊗B sparse Ω = A⊗B

log f(Ω) constant λ‖Ω‖1 δ (rankR(Ω)− 1) δ (rankR(Ω)− 1) + λ1‖A‖1 + λ2‖B‖2
Bound 1

2 log
(
q2r2

n

)
1
2 log

(
qr log qr

n

)
1
2 log

(
(q2+r2) logM

n

)
1
2 log

(
(q+r) logM

n

)
Regime q2r2

n → α qr log qr
n → α (q2+r2) logM

n → α (q+r) logM
n → α

Table 2: Expressions for performance of MAP estimators (4th row) and the associated regimes
of asymptotic sample complexity (5th row) for estimating the qr × qr spatio-temporal inverse cor-
relation matrix Ω = Σ−1 = (cov(X))−1, associated with the q × r space-time Gaussian random
matrix X, for different types of models of Ω representing prior contextual information (2nd and
3rd rows). The contextual information specifies patterns of sparsity and/or dependency between the
q spatial coordinates and the r temporal coordinates. The bound is the asymptotic (large q, r and
n) log Frobenius norm error of the Bayes-optimal MAP estimator of Ω, for the different types of
contextual information (1st row). The four rightmost columns of the table correspond respectively
to: no contextual information about Ω (None); information that Ω is sparse, corresponding to X
being a Gauss Markov random field (GMRF), with λ > 0 sufficiently large so that the sparsity factor
is of order o(qr); information that Ω has (rank k = 1) Kronecker product structure (Kronecker),
corresponding to decoupled rows and columns of X; and information that Ω has (rank k = 1)
Kronecker product structure with sparse Kronecker factors (Kronecker GMRF), with λ1, λ2 > 0 uf-
ficicently large so that sparsity factors are of order o(max{q, r}). Comparing the sample complexity
regimes (4th row) between the various types of contextual information quantifies the value of taking
additional samples (See Fig. 4).

kronecker structure Ω = A⊗B)c1; 4) Kronecker plus sparse Ω.

By quantifying the change in log MSE associated with different types of contextual in-
formation (sparse, Kronecker, Kronecker+sparse) the value of taking additional samples can
be determined across the contextual information regimes shown in Table 2. For the pur-
pose of comparison we assume that q = r =

√
p, i.e., the spatial and temporal dimensions

are identical. For the different categories of contextual information we fix the number of
variables p and the log MSE. Figure 4 plots the level sets of constant log MSE over the
number of samples and the number of variables. These curves indicate that the knowledge
of both sparse and Kronecker structure is more valuable than knowledge of either sparse or
Kroenecker structure alone. To illustrate, assume that X is a 100× 10 matrix corresponding
to 10 shapshots of 100 sensors. Then p = 1000 and, from the right panel of Fig. 4, if the con-
textual information specified that the inverse covariance has Kronecker and sparse structure
the MAP estimator requires only n = 75 samples as compared to 4000 or 8000 samples if
Kronecker or sparse structure is specified, and n = 1, 000, 000 samples if no information were
available. The value of the information that the covariance is both sparse and Kronecker
structure is that it decreases sampling requirements by more than 4 orders of magnitude
relative to no contextual information!

c1R is the permutation-rearrangement operator [130] that maps qr× qr matrix Ω into the q2 × r2 matrix
R(Ω), which has rank 1 if and only if Ω = A⊗B for some q × q matrix A and r × r matrix B.
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Figure 4: Sample complexity for estimating the qr × qr spatio-temporal correlation matrix for
different types of prior contextual information shown in the 1st row of Table 2 for the case q =
r =
√
p, where

√
p is a positive integer. The curves show asymptotic sample complexity (5th row

in the Table), which are constant contours of the proxies (4th row of the Table) over the plane of
the number p of variables and the number of samples n. The asymptotic proxies are equal over
all the curves and along each curve. Curves to the left represent lower sample complexity and
indicate the reduction in the required number of samples to attain a given level of log MSE for
specified number of parameters. Here the contextual information represents knowledge that the
inverse covariance has sparse structure alone (curve labeled “GMRF”), Kronecker structure alone
(curve labeled “Kronecker”), vs Kronecker+GMRF structure. The curve labeled “No information”
represents the case where there is no contextual side information about the inverse covariance.
The curve labeled Kronecker GMRF dominates all of the others since information that the inverse
covariance has both Kronecker and GMRF structure achieves maximal reduction in the number of
free parameters and provides the highest value per sample.

4 Correlation mining: model selection

One of the primary goals of model selection in the correlation mining setting is to identify the
support of the correlation or partial correlation matrix, i.e., identify the pairs of variables with
non-zero correlations or partial correlations, from n measurements of the set of p variables [8],
[47], [65], [56], [27], [95], [104], [113], [46], [87], [72], [101]. Model selection should be easier
than estimating the values of all the correlations, discussed in Sec. 3. The original covariance
selection problem [31] considers estimating inverse covariance matrices with zero entries
under a multivariate Gaussian model for the observations. In recent years, the problem of
estimating the support of sparse inverse covariance matrices has become a popular topic in
the high dimensional statistics and machine learning literature.

As discussed in Sec. 2.1, the problem of identifying the sparse patterning structure in
the inverse covariance matrix Ω is equivalent to identifying the graph G associated with the
non-zero entries of Ω, and is thus also popularly known as graphical model selection. Various
approaches have been proposed for identifying graphical models from high dimensional data.
They can be categorized broadly into penalized likelihood methods and Bayesian methods.
Popular Bayesian methods entail specifying priors on the space of sparse covariance or inverse
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covariance matrices [29], [88], [107], [75] and using Bayesian scoring rules to undertake model
selection. Penalized likelihood methods in the context of (partial) correlation mining can be
further categorized into a) Gaussian-based penalized likelihood methods [8], [47], [65], [56],
[27], and b) Pseudo-likelihood based or regression based methods [95], [104], [113], [46], [87],
[72], [101].

Recent work on penalized likelihood methods have focused on understanding both the
computational complexity and sample complexity of model selection approaches. The for-
mer entails computing the sparse inverse covariance estimate using `1-penalized likelihood
approaches and identifying the corresponding graph. This includes among others developing
fast iterative algorithms for maximizing `1-penalized likelihoods in order to obtain sparse
inverse covariance estimates, quantifying the computational complexity of these algorithms,
and deriving convergence rates of the iterative algorithms. In line with the main theme of
this paper, the focus of this section will be to understand the sample complexity of model
selection problems in the correlation mining context.

Sample complexity of model selection approaches are generally stated in terms of sign
consistency and estimation consistency (see [104], [72]). As in covariance estimation, the
set-up is to let both the sample size n, and the dimension p = pn tend to infinity and
establish large sample properties for a sequence of covariance parameters that is growing
in dimension. We shall illustrate the sample complexity of model selection via a concrete
example below. In particular, we present below a sample complexity result of a recently
proposed graphical model selection method proposed in [72] called CONCORD.

CONCORD seeks to maximize the following jointly convex objective function, called the
pseudo-likelihood, as proposed in [72]:

Qcon(Ω) =: −
p∑
i=1

n logωii +
1

2

p∑
i=1

‖ωiiYi +
∑
j 6=i

ωijYj‖2
2 + λ

∑
1≤i<j≤p

|ωij|, (7)

where ωij is the ij-th element of the p × p matrix Ω, and Yi denotes the i-th feature
vector. Iterative optimization algorithms, along with aspects of computational complexity
and algorithm convergence, are covered in [72], [74], [101]. For sample complexity results,
we shall follow very closely large sample results of the CONCORD graphical model selection
approach as given in [72]. Both estimation consistency and oracle properties under suitable
regularity conditions are stated below. The reader is referred to [72] for further technical
details.

Let {Ω̄n}n≥1 denote the sequence of true underlying inverse covariance matrices and let
the dimension p = pn vary with the sample size n. As in [104], assume the existence of
accurate estimates of the diagonal entries {α̂n,ii}1≤i≤pn such that for any η > 0, there exists
a constant C > 0 such that

max
1≤i≤pn

|α̂n,ii − ω̄ii| ≤ C

(√
log n

n

)
,

holds with probability larger than 1−O(n−η).
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For vectors ωo ∈ R
pn(pn−1)

2 and ωd ∈ Rpn
+ , let the notation Ln(ωo, ωd) denote Lcon

n
evaluated

at a matrix with off-diagonal entries ωo and diagonal entries ωd. Let ω̄on = ((ω̄n,ij))1≤i<j≤pn
denote the vector of off-diagonal entries of Ω̄n, and α̂pn ∈ Rpn

+ denotes the vector with entries
{α̂n,ii}1≤i≤pn . Let the sequence An denote the set of non-zero entries in the vector ω̄on, and
let qn = |An|. Let θ̄n,ij =

ω̄n,ij√
α̂n,iiα̂n,jj

for 1 ≤ i < j ≤ pn and define θ̄on = ((θ̄n,ij))1≤i<j≤pn ∈

Rpn(pn−1)/2. Also, let sn = min(i,j)∈An ω̄n,ij. Assume furthermore that the following three
regularity conditions are met (i) the spectrum of Ω̄n is uniformly bounded from above and
below, (ii) sub-Gaussianity of the data, (iii) the incoherence condition [95].

Under the above assumptions the following model selection result is established in [72].

Theorem 1 [72] Suppose that assumptions (i), (ii), (iii) are satisfied. Suppose pn = O(nκ)

for some κ > 0, qn = o
(√

n/ log n
)

,
√

qn logn
n

= o(λn), λn
√
n/ log n → ∞, sn√

qnλn
→ ∞

and
√
qnλn → 0, as n → ∞. Then there exists a constant C such that for any η > 0, the

following events hold with probability at least 1−O(n−η).

• There exists a minimizer ω̂on = ((ω̂n,ij))1≤i<j≤pn of the CONCORD objective function
Qcon(ωo, α̂n).

• Any minimizer ω̂on of Qcon(ωo, α̂n) satisfies ‖ω̂on − ω̄on‖2 ≤ C
√
qnλn and sign(ω̂n,ij) =

sign(ω̄n,ij), ∀ 1 ≤ i < j ≤ pn.

The above result in [72] establishes model selection consistency (or rather sign consistency
to be precise), and is in spirit similar to other model selection consistency results in the
literature (see also [95] and [104]). A few remarks are in order with regards to sample
complexity. First, note that model selection consistency requires that both the sample n and
dimension pn tend to infinity. Hence asymptotic guarantees require large sample sizes and
thus model selection consistency may not be valid in sample starved settings. Second, results
in model selection consistency are often proved under the assumption of sub-Gaussianity of
the tails, and thus may be restrictive in many applications with heavy-tailed data. Third,
note that the dimension pn can grow faster than the sample size n, but cannot grow faster
than a polynomial rate.

5 Correlation mining: screening

In correlation screening one seeks to discover patterns of high correlation or partial corre-
lation between p variables based on a set of n observations [61], [58]. Stated in terms of a
Gaussian graphical model, the objective is to infer topological characteristics of the graph
G associated with the zeros in the precision matrix Ω. In [61], we treated the problem of
screening for the presence of variables with high correlations to other variables. In [58],
we considered the setting of screening for the presence of connected nodes and hubs in G
with high partial correlation. Screening for such topology characteristics of G should be
easier than model selection or covariance estimation. Similarly to what was demonstrated
for covariance estimation (recall Table 2), contextual information can be of high value for
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screening. For example, one may be given information that specifies a certain sparsity level
or block diagonal structure of the inverse covariance, or information on the minimum level
of correlation that exists among the active variables in a block.

The correlation screening method of [58] finds edges, hubs, and other subgraph structures
of G by performing hypothesis testing. The method applies a threshold to an empirical
estimate P̂ of the partial correlation matrix P, defined in (2), placing an edge in G where
the magnitude of the entry of P̂ exceeds the threshold. When n ≥ p, P̂ may be the simple
plug-in estimator of the matrix inverse of the sample correlation estimator, while if n < p the
correlation screening methods developed in [58] uses the Moore-Penrose generalized inverse
of the sample correlation estimator. Correlation screening has been studied and applied to
hub discovery [58], edge discovery [63] and classification of local node degree [41] in a variety
of graphical model applications including: stationary Gaussian spatio-temporal processes
models [39], [40]; sparse regression models [37]; and multiple model testing for common
sparsity patterns [61].

The computational complexity of correlation screening is much lower than model selection
or covariance estimation, only of the order of O(n2), in the sample starved case of n � p.
To illustrate, the sample complexity of screening edges in G can be determined from the
following theorem (adapted from [58, Prop. 2], see also [63]):

Theorem 2 Assume that the n samples {Xk}nk=1 are i.i.d. random vectors in Rp with
bounded elliptically contoured density and block sparse p× p covariance matrix. Let ρ be the
threshold applied to the sample partial correlation matrix P̂. Assume that p goes to ∞ and
ρ = ρp goes to one at a rate specified by the relation limp→∞ p(p − 1)(1 − ρ2

p)
(n−2)/2 = en,

where en ∈ (0,∞) is given. Then the probability Pe that there exists at least one false edge
in G satisfies

lim
p→∞

Pe = 1− exp(−κn/2), (8)

where
κn = enan(n− 2)−1

where an is the volume of the n − 2 dimensional unit sphere in IRn−1 and is given by an =
Γ((n−1)/2)√
πΓ((n−2)/2)

.

As in other types of hypothesis testing problems, two types of correlation screening errors
can occur: false positives (Type I) and false negatives (Type II). It is common for an exper-
imenter to constrain the false positive rate to ensure a certain level of Type I error control.
Remarkably, Thm. 2 asserts that, under the stated conditions, the large p false positive rate
does not depend on the true covariance Σ. In this large p case the correlation threshold ρ can
be set to attain a given level of false positive control. This fortunate situation is analogous
to constant false alarm rate (CFAR) signal detection in radar processing [120], [112],[110]. In
[61] it was shown that, when screening a large number p of variables, the false positive rate
undergoes a fundamental phase transition as a function of the applied threshold: the rate
precipitously increases from almost to zero to one as the correlation threshold is decreased
beyond a critical threshold ρc. A direct consequence of Thm. 2 is that ρc has the form [58,
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Eq. (10)]:

ρc =
√

1− (an(p− 1))−2/(n−4), (9)

When the applied threshold is greater than ρc there will be few false positives while when it
is below ρc the system will be inundated by false positives.

Using (9), and a large p approximation [58, Eq. (22)] to the false positive rate following
directly from Thm. 2, we can quantify the intrinsic value of taking an additional sample
when the task is to detect variables that have true correlations exceeding a given threshold
ρ. Assume that p is fixed but large. Figures 5 and 6 gives a family of design curves that can
be used by the system designer to right-size n for given p and given desired correlation level
ρ.

Figure 5: Correlation screening curves quantifying value of information associated with acquiring
more samples n for different parameter dimensions (p = 100, 10, 000, and 10, 000, 000, 000) in terms
of the minimum detectable correlation value ρ. The screening task is to detect variables that have
high correlation (greater than ρ) to at least one other variable. These curves specify the minimum
required number of samples (n) for reliable detection of such variables at given family wise false
positive error rates. For example, for ten billion (1010) variables at least 200 samples are required to
reliably detect a variable having correlation greater than ρ = 0.6, while fewer than half the number
of samples would be needed to detect the same level of correlation if there were only ten thousand
variables. Thus, for the correlation screening task, the value of a sample is much higher when
there are fewer variables, and the displayed curves quantify this value. The curves in left panel
are isoclines on the probability of error surface for fixed family wise error rate (FWER) equal to
0.0001. The curves in the right panel are similar except that they are isoclinal for fixed mean false
positive rate of 1 (only 1 false positive node detected out of p nodes). The respective FWER’s of
false positive probability are designated on each curve in the right panel. The curves in the left
and right panel are very similar since the probability of error surface undergoes an abrupt phase
transition from 0 to 1.
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Figure 6: Correlation screening curves quantifying value of information associated with acquiring
more samples n for different minimal detectable correlation levels (ρ = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) in
terms of the parameter dimension p. The screening task is the same as in Fig. 5 but the phase
transition is plotted differently to reveal the value of information for detecting different fixed levels
of correlation for varying numbers of parameters p. Note that the number of samples n required
for reliably detecting variables with high correlations, e.g., ρ = 0.8, increases much more slowly as
p increases than it does for small correlations, e.g., ρ = 0.3. Thus, as the desired correlation level
increases, there is a diminishing return in the value of information delivered by acquiring additional
samples.

6 Correlation mining: intrinsic sample complexity regimes

The experimenter is often faced with several correlation mining tasks, possibly performed in
sequence. For example, detection of existence of high correlations among p variables may be
followed by identification of the set of highly correlated variables, followed by estimation of
the values of their correlations, followed by specification of the uncertainty (confidence inter-
vals) associated with these estimates. Reliable accomplishment of each task becomes more
difficult as one progresses from detection to uncertainty quantification, requiring progres-
sively larger numbers of samples and progressively smaller critical phase transition thresh-
olds ρc. Establishing the sampling regimes associated with each one of these tasks is one of
the fundamental problems of large scale inference and data science.

Recall that the asymptotic sample complexity associated with an inference task is the
number n = np of samples, as a function of the dimension p, required to maintain a given
value of risk as p goes to infinity. Table 3 summarizes the sample complexity regimes (3rd
row) and critical phase transition threshold regimes (4th row) for tasks relevant to correlation
mining. These are discussed below in order of increasing sample complexity.

• Screening: The screening task is to use the sample correlation to detect the existence
of high correlations, by which we mean large values in either the population correlation
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or partial correlation matrix; equivalently to detect the existence of an edge in the
correlation or partial correlation network, as discussed in Sec. 5. As such, it is a binary
hypothesis testing problem having risk function equal to the false positive probability
under the null hypothesis H0 of a sparse and invertible population covariance matrix
Σ. For the threshold-based correlation screening method of [61] the false positive
probability is P (Ne > 0), where Ne is the number of entries (edges) of the sample
partial correlation matrix that exceed a threshold ρ. The bound is the asymptotic
limiting value of the false positive edge probability specified in Thm. 2. The sample
complexity regime is: n=fixed (not a function of p) while p→∞, denoted in Table 3
as log p

n
→∞. The critical threshold (9) converges to 1 as p→∞.

• Detection: The detection task is the same as the screening task except that both high
and low correlations are of interest. The experimenter specifies a threshold ρ ∈ (0, 1)
and the objective is to find correlations of magnitude at least ρ. The sample complexity
regime for this problem is: n increases to infinity with p at the asymptotic rate log p

n
= α,

where α ∈ (0,∞) is a constant. The critical threshold (9) converges to a constant ρ∗

satisfying 0 < ρ∗ < ρ as p→∞.

• Support recovery: This is the problem of model selection discussed in Sec. 4 where
the objective is to identify the support set S ⊂ {1, . . . , p} of the population inverse
covariance Ω. If Ŝ denotes an estimator of this support set, the risk function is the
probability that indices in S are missing in Ŝ or that indices in {1, . . . , p} ⊂ S are
erroneously included in Ŝ, denoted P (card{S∆Ŝ} = φ) where A∆B is the symmetric
difference between sets A and B. Assume it is a priori known that the cardinality of
S is at most k, where 1 ≤ k ≤ p. A finite sample upper bound follows by applying
the union bound over the possible subsets of {1, . . . , p} of cardinality at most k to
obtain: P (card{S∆Ŝ} = φ) ≤

∑k
i=0

(
p
i

)
e−βn, where β is the minimum Kullback-

Liebler divergence between these subsets. The well known bound [4] on partial sums of
binomial coefficients

∑k
i=0

(
p
i

)
≤ 2H(k/p)p, where H(ε) = −ε log ε− (1−ε) log(1−ε), can

then be used along with the representation H(k/p)p = pν for some ν ∈ (0, 1] to obtain
the risk bound: 2p

ν
e−βn. Therefore, the limiting regime of values (n, p) for which this

bound is constant gives the sample complexity: n increases to infinity with p at the
asymptotic rate pν

n
= α, where ν ∈ (0, 1) and α ∈ (0,∞). Note that this is consistent

with the rate p = O(nκ) of the CONCORD support recovery algorithm, given in Thm.
1, for κ > 1, the regime of where the number of samples is sufficient for model selection
but not for parameter estimation. In this regime, the critical threshold (9) converges
to zero as p → ∞. Note that the asymptotic rates reported in Table 3 for support
recovery (or equivalently model selection) appear to be slower than what has been
derived in the statistics literature. In particular, results are available which assert that
provided (log p)/n→ 0, support recovery is possible with probability tending to 1 (see
[114] for more details). We note that the these faster rates are a direct consequence of
assuming that the variables are either Gaussian or sub-Gaussian, or by imposing some
tail condition [114]. When such conditions are relaxed, the asymptotic rates coincide
with the regimes given in Table 3 (see also [68, 11] for details on convergence in matrix
norms when Gaussianity is relaxed).
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• Parameter estimation: The problem of parameter estimation is to determine the
individual values of the

(
p
2

)
entries in Ω. The risk function is the MSE, defined as

the mean Frobenius norm squared error E[‖Ω− Ω̂‖2
F ] between the population inverse

covariance and an empirical estimator. The bound is the high dimensional limiting
value of this MSE as n→∞ and p→∞ [15]. The sample complexity for this problem
is: n increases to infinity with p at the asymptotic rate p log p

n
= α, where α ∈ (0,∞) is

a constant. Again the critical threshold (9) converges to zero as p→∞.

• Performance estimation: We consider the most general (and stringent) setting for
performance estimation where, for a specified Borel set B ⊂ IRp, the probability P (X ∈
B) must be accurately estimated. For example, assuming that X has a zero mean
elliptically contoured density f(x), if B is the set {x ∈ IRp : ‖x‖ > γ} for γ > 0,
P (X ∈ B) is the critical region for optimally rejecting outliers and detecting anomalies
[121], [59] and the value γ̂ = ‖X‖ can be used to estimate the p-value associated with
the null hypothesis that X is not an outlier. The sample complexity of estimation
of P (X ∈ B), for all B, is equivalent to that of estimation of the density function
f(x). Therefore, we adopt the mean integrated squared error (MISE) [132] as the risk
function:

∫
E[(fΩ(x)−f̂(x))2]dx where f̂ is an empirical density estimator. It is known

that if f is in the class of Lipschitz functions the minimax MISE risk is of the form
[32]: βn−2/(1+p), β > 0. Hence we use this minimax risk as a proxy for performance
and the sample complexity for this problem is: n increases to infinity with p at the
asymptotic rate p

logn
= α, where α ∈ (0,∞) is a constant. The critical threshold (9)

again converges to zero as p→∞.

We conclude this section with a comparison of computational complexity. Unlike pre-
diction and model selection, correlation screening methods are scalable to very high dimen-
sions both in terms of computation and memory scalability. Popular sparse optimization
approaches to covariance estimation and covariance selection are iterative and include pe-
nalized likelihood methods such as Glasso [45], SPACE [105] and CONCORD [73] . The
computational complexity of Glasso after t iterations is of order O(tp3). This can be reduced
when using regression based methods such as SPACE and CONCORD which have a com-
putational complexity of order min{O(tnp2), O(tp3)}. In contrast, correlation and partial
correlation screening are non-iterative algorithms and the computational complexity is only
of order O(np log p) which can be considerably less than its penalized likelihood counter-
parts. The lower order O(np log p) is due to the fact that building the thresholded sample
covariance is equivalent to constructing a Euclidean ball graph over p nodes in n− 1 dimen-
sional space, for which reliable approximate nearest neighbors (ANN) algorithms [5] can be
applied. Very fast and scalable C, Python and Matlab implementations of ANN algorithms
are available, e.g., FLANN, Gensim, and annoy, which have been implemented on datasets
with p in the millions and n in the hundreds.
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Task Screening Detection Support recovery Param. estimation Perform. estimation

Risk P (Ne > 0) P (Ne > 0) P (card{S∆Ŝ} = φ) E[‖Ω− Ω̂‖2F ]
∫
E[(fΩ(x)− f̂(x))2]dx

Bound 1− e−κn pe−nβ 2p
ν
e−nβ p log p

n β n−2/(1+p)β

Regimes log p
n →∞ log p

n → α pν

n → α p log p
n → α p

logn → α

Threshold ρc → 1 ρc → ρ∗ ρc → 0 ρc → 0 ρc → 0

Table 3: Different sample complexity regimes characterize the difficulty of performing different
inference tasks on the inverse covariance Ω. A similar table would hold for inference on the co-
variance Σ. Task (1st row) specified risk function (2nd row) for which we can use the upper bound
(3rd row). The sample complexity regimes (4th row) for which the bound remains constant depends
on the task: increasingly large sample sizes are required as the complexity of the task increases from
left to right. The limiting value of the critical threshold ρc, defined in (9), for screening (5th row) is
shown for each regime. For the screening task (detection of existence of large partial correlations)
the bound is the purely high dimensional (large p and fixed n) asymptotic limit of the probability of
false positives associated with the test that at least one variable is highly correlated (given by The-
orem 1). For the detection task (detection of existence of partial correlation of magnitude greater
than ρ ∈ (0, 1)) the bound is the mixed high dimensional (large p and large n) asymptotic limit of the
probability of false positives. In this regime, the critical threshold converges to ρ∗ where 0 < ρ∗ < ρ.
For the support recovery task (model selection) the bound is the mixed high dimensional asymptotic
probability of misclassification of the set of partial correlations using CONCORD. For this task
the parameter ν is specified by a priori knowledge on sparsity of the support set: ν ∈ (0, 1] and
as the sparsity increases ν → 0. For the estimation task the bound is the mixed high dimensional
asymptotic squared Frobenius norm error on the MAP estimator of sparse inverse covariance. Fi-
nally, for the performance estimation task, the bound is the mixed high dimensional asymptotic
minmax bound on estimation MSE of the probability of any (Borel) uncertainty set. The values of
the constants α and β are not necessarily the same over different columns of the table.
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7 Conclusions

Big data is not just lots of data. This monolithic characterization is overly simplistic and
ignores the issues of inference, limited samples, and reproducibility. Big data is of limited
utility without appropriate inferential tools, e.g., use of the dataset to produce empirical
estimates, classifications, or decisions on the population that generated the data. Inferences
in turn lack credibility without accounting for errors due to limited samples. Without credible
inferences there is no reproducibility: another random sample from the sample population
may produce completely different results.

This paper adopted a statistical perspective in which a large scale dataset is a set of n
random samples drawn from a population of p variables and p is large. We focused on the
problem of correlation mining where the objective is to infer properties of the population
covariance matrix from the samples. The reliability of the inferences from limited samples
can be mathematically characterized by the high dimensional learning rates and sample
complexity associated with the inference problem. These specify the relative rate at which
n must go to infinity as a function of p in order to ensure accurate performance. The sample
complexity falls into different high dimensional regimes including the classical regime, where
p is fixed and n goes to infinity, the mixed dimensional where both n and p goes to infinity,
and the purely high dimensional where n is fixed and p goes to infinity.

The comparative sampling complexity analysis illustrated in this paper unifies the prob-
lem of sample sizing for large scale inference problems and, in particular, for correlation
mining. Indeed, different sample complexity regimes each occupy a niche for different corre-
lation mining tasks. In particular, screening for high correlations is governed by purely high
dimensional rates while model selection, covariance estimation, and uncertainty quantifica-
tion require n to go to infinity at progressively larger rates as a function of p. This implies,
for example, that one can do screening with many fewer samples than are required for the
other tasks. Furthermore, in situations where samples are acquired sequentially our analysis
suggests that that one can adapt the inference task over time: starting with correlation
screening when samples are few, and progressing on through support detection, covariance
estimation, and uncertainty quantification as more and more samples are acquired. Such
a strategy is explored in the context of the sequential prediction and regression criterion
(SPARC) [37].
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