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THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL

MATRICES

ZHOU FAN1 AND ANDREA MONTANARI1,2

Abstract. We study the spectra of p×p random matrices K with off-diagonal (i, j) entry equal to

n−1/2k(XT
i Xj/n

1/2), where Xi’s are the rows of a p× n matrix with i.i.d. entries and k is a scalar
function. It is known that under mild conditions, as n and p increase proportionally, the empirical
spectral measure of K converges to a deterministic limit µ. We prove that if k is a polynomial and
the distribution of entries of Xi is symmetric and satisfies a general moment bound, then K is the
sum of two components, the first with spectral norm converging to ‖µ‖ (the maximum absolute
value of the support of µ) and the second a perturbation of rank at most two. In certain cases,
including when k is an odd polynomial function, the perturbation is 0 and the spectral norm ‖K‖
converges to ‖µ‖. If the entries of Xi are Gaussian, we also prove that ‖K‖ converges to ‖µ‖ for
a large class of odd non-polynomial functions k. In general, the perturbation may contribute spike
eigenvalues to K outside of its limiting support, and we conjecture that they have deterministic
limiting locations as predicted by a deformed GUE model. Our study of such matrices is motivated
by the analysis of statistical thresholding procedures to estimate sparse covariance matrices from
multivariate data, and our results imply an asymptotic approximation to the spectral norm error
of such procedures when the population covariance is the identity.

1. Introduction

Let X ∈ Rp×n be a random matrix with i.i.d. entries of zero mean and unit variance, and let
XT

1 , . . . , X
T
p denote the rows of X. We study in this paper random matrices K(X) ∈ Rp×p having

entries (K(X))ii′ = 1√
n
k
(
XT
i Xi′√
n

)
for all i 6= i′ and (K(X))ii = 0 for all i, for a function k : R→ R.

Our main results pertain to the spectral properties of K(X), specifically its spectral norm, in the
asymptotic regime of random matrix theory where n, p→∞ proportionally with p

n → γ ∈ (0,∞),
and k is a fixed function independent of n and p. The study of such matrices K(X) in this regime
was initiated by Xiuyuan Cheng and Amit Singer in [9]. Following [9], we will call k a “kernel
function” and K(X) a “random inner-product kernel matrix”.

Our study of this random matrix model is motivated by the following statistical application:
Suppose Y1, . . . , Yn ∈ Rp represent n i.i.d. observations of a random vector with mean zero and
unknown covariance matrix Σ ∈ Rp×p, and we wish to estimate Σ from these observations. If p is
of comparable size to n, then the standard sample covariance matrix Σ̂ = 1

n

∑n
i=1 YiY

T
i is a poor

estimator of Σ, and in general one cannot hope to estimate Σ with high accuracy. However, if it is
known a priori that Σ is sufficiently sparse, i.e. most of its off-diagonal entries are zero, then it may
still be possible to estimate Σ accurately under this assumption. A popular procedure for performing
this estimation is to apply elementwise hard-thresholding to Σ̂, i.e. to preserve those entries of Σ̂
that are greater than τ in magnitude and to set the remaining entries to 0, for some threshold level
τ := τ(n, p) [4, 13]. Modifications of this procedure that apply continuous thresholding functions
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2 THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES

elementwise to Σ̂ have also been proposed and studied [25]. Such procedures have found application
not only in problems where covariance estimation is the end goal, but also as subroutines of other
statistical methods that require covariance estimation as an intermediate step, including procedures
for sparse principal components analysis [18, 10] and sparse linear discriminant analysis [26].

If the true covariance matrix Σ is truly sparse in a suitable sense, and if the threshold level is set

to τ = c
√

log p
n for a sufficiently large constant c > 0, then it may be shown that the spectral norm

error of such an estimator converges to zero as n, p→∞ [4, 13], and furthermore that the rate of
convergence is minimax optimal over certain classes of sparse matrices [5]. However, these results
do not provide an accurate estimate of how large one should expect this error to be for any specific
choice of threshold level τ . To study this question, it is more natural to consider the asymptotic
regime in which hard-thresholding is performed at the level τ = c√

n
for a constant c, so that τ is of

the same order as the typical “noise level” of the off-diagonal entries of Σ̂. Then the entries of this

thresholded covariance estimator are precisely given by 1√
n
k
(
XT
i X
′
i√

n

)
, where XT

i = (Y1i, . . . , Yni),

and k(x) is a thresholding function (e.g. k(x) = x1{|x| ≥ c} in the case of hard-thresholding). If
the true covariance matrix Σ is Idp×p, the p × p identity matrix, and Yji are in fact i.i.d., then

we are led to the matrix model K(X) studied in this paper. As the diagonal of Σ̂ (thresholded
or not) converges to Idp×p in spectral norm under weak conditions when Σ = Idp×p, we define
K(X) with zero diagonal, so that the spectral norm ‖K(X)‖ is asymptotically equivalent to the
spectral norm error of the thresholded covariance estimator. One of our main results, Theorem
2.10 below, will imply that for an odd and continuously differentiable thresholding function k, if
the data has standard Gaussian distribution and Σ = Idp×p, then the spectral norm error of the
thresholded covariance estimator converges almost surely to a positive deterministic constant in this
asymptotic regime. Our theorem characterizes the dependence of this constant on the thresholding
function k. For a given problem of size n and p and threshold level τ , this provides an asymptotic
approximation to the error of the covariance thresholding estimator. We believe that many of the
conditions of Theorem 2.10, such as the normality of the data and the continuous-differentiability
of the threshold function k, may be relaxed.

Whether ‖K(X)‖ converges is also a natural question to ask from the perspective of random
matrix theory, and it was posed as an open question in [9]. For the identity kernel k(x) = x, K(X)
is equal to the sample covariance matrix 1

nXX
T , excluding the diagonal. Under weak moment

conditions on the entries xij of X, it is easily verified when k(x) = x that ‖K(X) − ( 1
nXX

T −
Idp×p)‖ → 0 a.s. as n, p→∞. Hence, when k(x) = x, many asymptotic properties of the spectrum
ofK(X), including the limit of its empirical spectral measure and the limit of its largest and smallest
eigenvalues, match those of the matrix 1

nXX
T translated by −1. The asymptotic spectral behavior

of 1
nXX

T in the large n and p limit is, by now, well-understood. The empirical spectral measure

of 1
nXX

T converges weakly a.s. to a deterministic limit µMP,γ with compact support, known as

the Marcenko-Pastur law [23]. Almost-sure convergence of the largest eigenvalue of 1
nXX

T to the
upper endpoint of the support of µMP,γ was proven in [16] assuming certain moment conditions,
and these conditions were later weakened in [34] to existence of the fourth moment of xij . Almost
sure convergence of the smallest eigenvalue of 1

nXX
T to the lower endpoint of the support of µMP,γ ,

when γ < 1, was shown in [1]. The fluctuations of the extremal eigenvalues of 1
nXX

T around their
almost sure limits are also understood—for instance, assuming that xij ∼ N (0, 1), it was shown
in [17] that, after appropriate centering and rescaling, the distribution of the largest eigenvalue of
1
nXX

T converges weakly to the Tracy-Widom law of order 1, first introduced in [30] as the limiting
distribution of the largest eigenvalue of the Gaussian Orthogonal Ensemble. This result has been
extended to more general distributions of xij satisfying exponential decay conditions in [24].

For the case of a general kernel function k, the main theorem of [9] establishes that, if xij ∼
N (0, 1), then the empirical spectral measure of K(X) also converges weakly a.s. to a deterministic
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limit, under certain mild assumptions on k. This limit distribution, which we denote as µa,ν,γ
(c.f. Definition 2.3 below), depends on k through its orthogonal decomposition in the Hermite

polynomial basis of L2(q(x)dx), where q(x) = 1√
2π
e−

x2

2 is the standard Gaussian density. When

k(x) = x, µa,ν,γ coincides with the Marcenko-Pastur law µMP,γ translated by −1. Quite remarkably,
if k has no linear component in its Hermite polynomial decomposition, then the limiting spectral
distribution µa,ν,γ is an appropriately scaled version of Wigner’s semicircle law. In the general
setting, a characterization of the limiting measure µa,ν,γ was given in [9] in terms of an implicit
equation in its Stieltjes transform, restated as eq. (1) below. This result was shown to hold for
more general distributions of xij having moments of all orders in Theorem 3 of [11].

We observe that the limiting spectral distribution µa,ν,γ of K(X) is in fact the additive free
convolution, as defined by Dan Voiculescu in [32], of a scaled semicircle law and a scaled and
translated Marcenko-Pastur law. As such, it is also the limiting spectral distribution of a random
matrix W +V , for W ∈ Cp×p a real symmetric or complex Hermitian Wigner matrix and V ∈ Rp×p
a deterministic diagonal matrix whose empirical spectral measure converges to this scaled and
translated Marcenko-Pastur law [33, 12]. Such matrices have been referred to as “deformed Wigner
matrices” or “Wigner matrices with external source” in the random matrix theory literature, and
they have been the subject of much recent study. For instance, if W is distributed as the Gaussian
Unitary Ensemble and V does not have eigenvalues outside of the support of its limiting spectrum,
then the results of [6] and [22] imply that in the limit of large n and p, no eigenvalues of W + V
fall outside of supp(µa,ν,γ) + (−ε, ε) a.s. for any ε > 0, and in particular, the largest and smallest
eigenvalues of W + V converge to the upper and lower boundaries of supp(µa,ν,γ). More generally,
if V has a finite number of fixed “spike” eigenvalues outside of its limiting support, then W + V
may have corresponding spike eigenvalues outside of supp(µa,ν,γ) as well, and the conditions for
existence and the limiting locations of these spike eigenvalues of W + V are fully characterized in
[6]. Under various assumptions on W and V , more detailed results regarding the fluctuations of
the spike eigenvalues of W + V and the eigenvalues at the edges of supp(µa,ν,γ) have also been
obtained, see e.g. [27, 7, 20].

In comparison, the spectral norm and largest and smallest eigenvalues of the random inner-
product kernel matrix K(X) are not well-understood when the kernel function k is nonlinear.

In previous work, Lemma 4.2 of [9] showed that E‖K(X)‖ ≤ Od(n
1/4) when the kernel function

k(x) := kn(x) is the degree-d orthogonal polynomial with respect to the distribution of
XT
i Xi′√
n

, and

the authors conjectured that the true size of E‖K(X)‖ in this case should be Od(1). Proposition 6.2
of [10] used Gaussian concentration of measure results and a covering argument to show that, when
xij have Gaussian distribution, ‖K(X)‖ ≤ Oτ (1) with high probability when k(x) = sgn(x)(|x|−τ)+

is the soft-thresholding function at level τ > 0. We are not aware of existing results that establish
whether ‖K(X)‖, λmax(K(X)), and λmin(K(X)) converge to the respective quantities sup{|x| :
x ∈ supp(µa,ν,γ)}, sup{x : x ∈ supp(µa,ν,γ)}, and inf{x : x ∈ supp(µa,ν,γ)} for any nonlinear kernel
function k.

In this paper, we provide an analysis of the spectral norm ‖K(X)‖ for the case where k is a poly-
nomial function and the distribution of xij is symmetric and satisfies Assumption 2.1 below. Our
results imply (Corollary 2.7) that ‖K(X)‖ converges a.s. to ‖µa,ν,γ‖ := sup{|x| : x ∈ supp(µa,ν,γ)}
either when xij ∼ 1

2δ−1 + 1
2δ1 or when the Hermite polynomial decomposition of k has no degree-2

component. The latter condition holds, in particular, if k is an odd polynomial function. More
generally (Theorem 2.6), we exhibit a decomposition K(X) = K̃(X) + R̃(X), where the empirical

spectral distribution of K̃(X) converges weakly a.s. to µa,ν,γ , ‖K̃(X)‖ converges a.s. to ‖µa,ν,γ‖, and

R̃(X) is a rank-two perturbation matrix whose two nonzero eigenvalues converge to fixed quantities.

In the limit of large n and p, R̃(X) may contribute “spike” eigenvalues to K(X) that fall outside
of supp(µa,ν,γ) and in particular may be larger in magnitude than ‖µa,ν,γ‖, and we conjecture that
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these spike eigenvalues have deterministic limiting locations that match those of a deformed Wigner
model as characterized in [6].

We believe that our main result may be extended to certain classes of non-polynomial functions
k via polynomial approximation arguments, although the details are non-trivial. As one instance
of such an extension, we show that if k is an odd and continuously-differentiable function whose
derivative k′(x) grows at most exponentially in x, then ‖K(X)‖ converges to ‖µa,ν,γ‖ when xij
have Gaussian distribution (Theorem 2.10). Such an extension is important for the applicability
of our results to the statistical covariance estimation application previously discussed, and further
relaxations of the conditions imposed on k and the distribution of xij are an interesting avenue for
future work.

Let us remark that in order for the empirical spectrum of a kernel random matrix to converge
to a deterministic limit, the entries of the matrix must be scaled appropriately as n and p increase.
When k is nonlinear, scaling inside and outside of the kernel function k are not interchangeable
and can lead to very different asymptotic behaviors. When xij are independent with unit variance,
XT
i Xi′ is of typical size O(n) for i = i′ and O(

√
n) for i 6= i′. In [14], Nourredine El Karoui

first explored the spectral behavior of kernel random matrices in the large n and p limit under

the scaling (K̄(X))ii′ = k
(
XT
i Xi′
n

)
for a fixed function k. Under this scaling, k is applied to

diagonal entries of size O(1) and to off-diagonal entries of size O
(

1√
n

)
. Theorem 2.1 of [14]

implies that if k is locally smooth at 0 and 1, then ‖K̄(X) −M(X)‖ → 0 for the simpler matrix

M(X) =
(
k(0) + k′′(0)

2n

)
1p1

T
p + k′(0)XX

T

n + (k(1) − k(0) − k′(0)) Idp×p. In particular, the off-

diagonal entries of M(X) depend on k only through its Taylor expansion at 0. As a consequence of
this result, the limiting spectral distributions of K̄(X) and M(X) are identical, and it is given by
shifting and rescaling the Marcenko-Pastur law. Furthermore, the largest and smallest eigenvalues
of K̄(X) and M(X) have the same almost sure limits. It was concluded in [14] that the asymptotic
spectral properties of K̄(X) are “essentially linear”. In contrast, we remove the matrix diagonal and

apply the scaling (K(X))ii′ = 1√
n
k
(
XT
i Xi′√
n

)
to the off-diagonal entries, again for a fixed function

k. This scaling applies k to off-diagonal entries of typical size O(1) and yields the more interesting
“nonlinear” behavior discovered in [9]. Consideration of this scaling is strongly motivated by the
covariance thresholding application previously discussed.

A formal statement of our definitions, assumptions, theorems, and conjectures, as well as a
high-level outline of the proof, are provided in Section 2. The proof of our main result regarding
polynomial kernel functions k is given in Sections 3–5, with details deferred to two appendices.
Finally, the proof of our extension to odd and continuously-differentiable kernel functions in the
Gaussian case is given in Section 6.

2. Main theorems and discussion

2.1. Background and statement of results. Let X = (xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n) ∈ Rp×n be
a matrix whose entries xij are a collection of independent and identically distributed real random
variables, satisfying the following conditions:

Assumption 2.1. (1) E[xij ] = 0 and E[x2
ij ] = 1.

(2) E[|xij |k] ≤ kαk for all k ≥ 2 and some α > 0.

(3) The distribution of xij is symmetric, i.e. xij
L
= −xij.

Let XT
i = (xij : 1 ≤ j ≤ n) ∈ Rn denote the ith row of X.

Definition 2.2. For a kernel function k : R→ R, and X ∈ Rp×n, the random inner-product
kernel matrix associated to k and X is given by Kn,p(X) = (kii′ : 1 ≤ i, i′ ≤ p) ∈ Rp×p with
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entries

kii′ =

{
1√
n
k
(
XT
i Xi′√
n

)
, i 6= i′

0, i = i′.

Throughout, we will use capital variables to denote matrices and vectors, and lowercase variables
to denote (random or deterministic) scalars. We will use i, i′, i1, i2, . . . to denote indices in {1, . . . , p}
and j, j′, j1, j2, . . . to denote indices in {1, . . . , n}. The notation Kn,p refers to the a matrix whose
definition depends on n and p; kii′ refers to the (i, i′) entry of Kn,p, and for convenience we suppress
the dependence of kii′ on n, p.

Assumption 2.1 specifies conditions on the distribution of xij . The moment condition in part
(2) of Assumption 2.1 was also assumed in the analysis of the spectral norm of standard sample
covariance matrices in [16], and in particular, it is satisfied by any sub-Gaussian or sub-exponential
random variable (c.f. Definitions 5.7 and 5.13 of [31]). It is possible to weaken this assumption using
truncation arguments, and we have not made an attempt to do so here. Part (3) of Assumption 2.1,
that the distribution of xij is symmetric, is required for our subsequent combinatorial arguments,
although it is probably not a necessary condition for our main results to hold.

The study of matrices Kn,p(X) in Definition 2.2 in the asymptotic regime of large n and p was
initiated by Xiuyuan Cheng and Amit Singer in [9], in which it was shown that the empirical spectral
distribution of Kn,p(X) converges weakly a.s. to a deterministic limit. To describe this limit, recall
that for a probability measure µ on R, its Stieltjes transform is the function m : C+ → C+ given
by

m(z) =

∫
µ(dλ)

λ− z
,

where C+ = {z ∈ C : Im z > 0} is the upper-half complex plane. The measure µ is uniquely
determined by its Stieltjes transform and may be recovered from the inversion formula

µ([a, b]) = lim
ε→0

1

π

∫ b

a
Imm(λ+ iε)dλ

for any a, b that are continuity points of µ. (See Theorem B.8 of [2].)

Definition 2.3. For ν, γ > 0 and a ∈ [−
√
ν,
√
ν], let m(z) := ma,ν,γ(z) be the unique solution to

the equation

− 1

m(z)
= z + a

(
1− 1

1 + aγm(z)

)
+ γ(ν − a2)m(z), z ∈ C+ (1)

with m(z) ∈ C+. Let µa,ν,γ be the measure on R having Stieltjes transform m(z), let supp(µa,ν,γ)
denote its support, and let ‖µa,ν,γ‖ = sup{|x| : x ∈ supp(µa,ν,γ)}.

It was shown in [9] that m(z) is well-defined and that µa,ν,γ is a probability measure with
continuous density and compact support. (Note that in our notation, n and p are reversed from
their definitions in [9], and γ = limn,p→∞

p
n corresponds to 1

γ in [9].) The following result establishes

weak convergence of the empirical spectral measure of Kn,p(X) to µa,ν,γ ; it is implied by Theorem
3 of [11] and Remark 3.2 and Lemma C.2 of [9]. The result was first shown in [9] in the case
where xij ∼ N (0, 1) and was extended to more general distributions of xij in [11] via Lindeberg’s
swapping argument.

Definition 2.4. Let q(x) = 1√
2π
e−

x2

2 be the standard Gaussian density. Let {hd}∞d=0 be the Hermite

polynomials orthonormal with respect to L2(q(x)dx), i.e. hd is of degree d and, for ξ ∼ N (0, 1),
E[hd(ξ)h

′
d(ξ)] = 1 if d = d′ and 0 if d 6= d′.

Theorem 2.5 ([9, 11]). Suppose k : R→ R satisfies E[k(ξ)] = 0 and E[k(ξ)2] <∞ for ξ ∼ N (0, 1).
Let k(x) =

∑∞
d=1 adhd(x) be the expansion of k in the Hermite polynomial basis, where convergence
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of the sum is in the sense of L2(q(x)dx), and let a = a1 = E[ξk(ξ)] and ν =
∑∞

d=1 a
2
d = E[k(ξ)2].

Let X ∈ Rp×n be a random matrix with i.i.d. entries having finite moments of all orders, and let XT
i

denote the ith row of X. Suppose that

∣∣∣∣E [k(ξ)2
]
− E

[
k
(
XT

1 X2√
n

)2
]∣∣∣∣→ 0 as n→∞, let Kn,p(X) be

as in Definition 2.2 with kernel function k, and let λ1, . . . , λp be the eigenvalues of Kn,p(X). Then,
as n, p→∞ with p

n → γ ∈ (0,∞),

1

p

p∑
i=1

δλi ⇒ µa,ν,γ ,

where 1
p

∑p
i=1 δλi is the empirical spectral measure of Kn,p(X), µa,ν,γ is the measure in Definition

2.3, and the convergence holds weakly a.s.

This weak convergence result does not necessarily imply convergence of ‖Kn,p(X)‖ to ‖µa,ν,γ‖,
as it only ensures that there are at most o(n) eigenvalues of Kn,p(X) falling outside of the support
of µa,ν,γ . The following theorem, which is the first main result of this paper, examines this question
of convergence of spectral norm in the case where the kernel k(x) is a polynomial function.

Theorem 2.6. Suppose k(x) =
∑D

a=1 adhd(x) where hd is the Hermite polynomial of degree d
as in Definition 2.4 (so k(x) is a polynomial function with E[k(ξ)] = 0 for ξ ∼ N (0, 1)). Let
a = a1 = E[ξk(ξ)] and ν = a2

1 + . . .+ a2
D = E[k(ξ)2]. Let X satisfy Assumption 2.1, let Kn,p(X) be

as in Definition 2.2 with kernel function k, and suppose n, p → ∞ with p
n → γ. Then Kn,p(X) =

K̃n,p(X) + R̃n,p(X), where

(1) limn,p→∞ ‖K̃n,p(X)‖ = ‖µa,ν,γ‖ a.s.

(2) R̃n,p(X) is of rank at most two. Specifically, letting Vn,p(X) = (vi : 1 ≤ i ≤ p) ∈ Rp be the

vector with entries vi =
∑n

j=1

x2
ij−1
√
n

and denoting 1p = (1, . . . , 1) ∈ Rp,

R̃n,p(X) =
a2

n
√

2
(Vn,p(X)1Tp + 1pVn,p(X)T ).

Note that in this theorem, K̃n,p(X) also has µa,ν,γ as its limiting spectral measure, since this
limit is unaffected by perturbations of finite rank. (See Theorem A.43 of [2].) Hence this theorem
characterizes Kn,p(X) as the sum of two components, the first of which has spectral norm converging
to ‖µa,ν,γ‖ as expected, and the second of which might contribute additional spike eigenvalues to
Kn,p(X) that may be larger in magnitude than ‖µa,ν,γ‖. This theorem has the following immediate
corollaries.

Corollary 2.7. Under the assumptions of Theorem 2.6, if a2 = 0 or if xij ∼ 1
2δ−1 + 1

2δ1, then
limn,p→∞ ‖Kn,p(X)‖ = ‖µa,ν,γ‖ almost surely. In particular, if k is an odd polynomial function,
i.e. k(−x) = −k(x), then ‖Kn,p(X)‖ = ‖µa,ν,γ‖ almost surely.

Proof. If a2 = 0 or xij ∼ 1
2δ−1 + 1

2δ1, then R̃n,p(X) = 0, so the result follows from Theorem 2.6. If
k is an odd function, then a2 = 0. �

Corollary 2.8. Under the assumptions of Theorem 2.6, if a2 6= 0 and xij is not distributed as

1
2δ−1 + 1

2δ1, then the two non-zero eigenvalues of R̃n,p(X) converge a.s. to ±a2γ

√
Ex4

ij−1

2 .

Proof. Letting V := Vn,p(X) = {vi : 1 ≤ i ≤ p} be as in Theorem 2.6, we may compute

Tr R̃n,p(X) = a2

√
2

n

∑p
i=1 vi and Tr R̃n,p(X)2 =

a2
2
n2

(
(
∑p

i=1 vi)
2

+ p‖V ‖22
)

. If λ1 and λ2 are the

two non-zero eigenvalues of R̃n,p(X), then this implies λ1 + λ2 = a2

√
2

n

∑p
i=1 vi and λ1λ2 =
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(λ1+λ2)2−λ2
1−λ2

2
2 =

a2
2

2n2

(
(
∑p

i=1 vi)
2 − p‖V ‖22

)
, so λ1 and λ2 are the roots of the equation

λ2 −

(
a2

√
2

n

p∑
i=1

vi

)
λ+

a2
2

2n2

( p∑
i=1

vi

)2

− p‖V ‖22

 = 0.

By the law of large numbers, limn,p→∞
1
n

∑p
i=1 vi = 0 and limn,p→∞

p‖V ‖22
n2 → γ2(Ex4

ij − 1) almost
surely. Since the roots of a polynomial are continuous in its coefficients, the result follows. �

Corollary 2.9. Under the assumptions of Theorem 2.6,

lim sup
n,p→∞

‖Kn,p(X)‖ ≤ ‖µa,ν,γ‖+ |a2|γ

√
Ex4

ij − 1

2
<∞

almost surely.

Proof. As ‖Kn,p(X)‖ ≤ ‖K̃n,p(X)‖ + ‖R̃n,p(X)‖, this follows from Theorem 2.6 and Corollary
2.8. �

Corollary 2.7 implies that if k(x) is an odd polynomial function, then ‖Kn,p(X)‖ → ‖µa,ν,γ‖.
In the case where xij have Gaussian distribution, we extend this conclusion to more general odd
kernel functions in our second main result.

Theorem 2.10. Suppose k : R→ R is an odd function, i.e. k(−x) = −k(x), and that it is contin-

uously differentiable with lim sup|x|→∞
log |k′(x)|
|x| <∞. Let k(x) =

∑∞
d=1 adhd(x) be the expansion of

k in the Hermite polynomial basis of Definition 2.4, where convergence of the sum is in the sense of
L2(q(x)dx), and let a = a1 = E[ξk(ξ)] and ν =

∑∞
d=1 a

2
d = E[k(ξ)2] for ξ ∼ N (0, 1). Let X ∈ Rp×n

have entries xij
iid∼ N (0, 1), let Kn,p(X) be as in Definition 2.2 with kernel function k, and let

n, p→∞ with p
n → γ. Then, almost surely,

lim
n,p→∞

‖Kn,p(X)‖ = ‖µa,ν,γ‖.

Note that, by the assumptions of Theorem 2.10, |k(x)| ≤ CeC|x| for some constant C > 0 and
all x ∈ R, so ν = E[k(ξ)2] <∞ and the Hermite polynomial decomposition of k is well-defined.

2.2. Discussion and conjectures. We observe in the following proposition that the limiting
measure µa,ν,γ of Definition 2.3 is the additive free convolution [32] of a semicircle law and the
Marcenko-Pastur law translated by −1 and scaled by a. Recall that for a probability measure µ
with Stieltjes transform m(z), there exist η,M > 0 such that z 7→ − 1

m(z) is injective on {z ∈ C+ :

Im z > ηRe z, |z| > M}. Denoting the inverse of z 7→ − 1
m(z) on this domain as S(z), the Voiculescu

R-transform of µ is given by the function R(z) = S(1
z )− 1

z . For two probability measures µ and ν
on R with R-transforms Rµ and Rν , their free additive convolution µ�ν is the probability measure
whose R-transform is given by Rµ�ν(z) = Rµ(z) +Rν(z) [32, 21, 3].

Proposition 2.11. Let µsc be the semicircle law with density

µsc(dx) =
√

4γ(ν − a2)− x21[−2
√
γ(ν−a2),2

√
γ(ν−a2)

](x)dx.

Let µMP,shift be the Marcenko-Pastur law with parameter γ, translated by −1 and scaled by a. (If
γ ≤ 1 and a > 0, then µMP,shift has density

µMP,shift(dx) =
1

2π

√(
γ + 2

√
γ − x

a

) (
x
a − γ + 2

√
γ
)

γ(x+ a)
1[aγ−2a

√
γ,aγ+2a

√
γ](x)dx.
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If γ > 1 and a > 0, then µMP,shift is a mixture
(

1− 1
γ

)
δ0 + 1

γ µ̃MP,shift where µ̃MP,shift has the

above density. If a = 0, then µMP,shift = δ0.) Then µa,ν,γ given in Definition 2.3 is equal to the
free additive convolution µsc � µMP,shift.

Proof. The semicircle law µsc has Stieltjes transform

msc(z) = − 1

2γ(ν − a2)

(
z −

√
z2 − 4γ(ν − a2)

)
,

and when a > 0, µMP,shift has Stieltjes transform

mMP,shift(z) =
−γ − z

a +
√(

z
a − γ

)2 − 4γ

2γ(z + a)
.

Here, the branch of the square-root function is chosen to have positive imaginary part. (See Lemmas
2.11 and 3.11 of [2].) The first equation implies − 1

msc(z)
= z + γ(ν − a2)msc(z). When a = 0, this

is precisely eq. (1) defining µa,ν,γ , so µsc = µa,ν,γ . When a > 0, the second equation implies

− 1
mMP,shift(z)

= z + a
(

1− 1
1+aγmMP,shift(z)

)
, and the R-transforms of µsc and µMP,shift are given

by Rsc(z) = γ(ν − a2)z and RMP,shift(z) = −a
(

1− 1
1−aγz

)
, respectively. Then the R-transform

of µsc � µMP,shift is given by Rµsc�µMP,shift
(z) = −a

(
1− 1

1−aγz

)
+ γ(ν − a2)z, so the Stieltjes

transform mµsc�µMP,shift
(z) satisfies

z = −a
(

1− 1

1 + aγm(z)

)
− γ(ν − a2)m(z)− 1

m(z)
,

at least on an open sub-domain of C+. This agrees with eq. (2.3) defining the Stieltjes transform of
µa,ν,γ , and as the Stieltjes transform of any measure is analytic on C+, these functions must agree
on all of C+. Then µa,ν,γ = µsc � µMP,shift. �

In particular, if a = 0, then the measure µa,ν,γ is the semicircle law µsc, and if a2 = ν, then it
is the translated and scaled Marcenko-Pastur law µMP,shift. (See also Remarks 3.6 and 3.7 of [9].)
By Remark 2.2 of [6], when γ ≤ 1 or a = 0, the support of µa,ν,γ must be a single interval, and
when γ > 1 and a > 0, it must either be a single interval or the union of two disjoint intervals.
We observe that when a = 0, the measure µa,ν,γ is symmetric, and hence Theorem 2.6 implies the

almost sure convergence of both the largest and smallest eigenvalues of K̃n,p(X) to ±‖µa,ν,γ‖. In
general, µa,ν,γ is not symmetric, and Theorem 2.6 provides information on only one of these two
eigenvalues. Furthermore, when µa,ν,γ has two disjoint intervals of support, Theorem 2.6 does not

describe whether K̃n,p(X) has eigenvalues in between these two intervals of support. We conjecture

that, in fact, K̃n,p(X) has no eigenvalues outside of the limiting support, in the following sense.

Conjecture 2.12. Under the assumptions of Theorem 2.6, for any ε > 0,

lim
n,p→∞

P[∃i ∈ {1, . . . , p} : dist(λi(K̃n,p(X)), supp(µa,ν,γ)) > ε] = 0,

where dist(x,C) = inf{|x− y| : y ∈ C}.

Turning to the rank-two matrix R̃n,p(X) of Theorem 2.6, we note that R̃n,p(X) may contribute
“spike” eigenvalues to Kn,p(X) that fall outside of the support of the limiting spectral measure

µa,ν,γ . The entries of R̃n,p(X) and K̃n,p(X) are dependent, but let us momentarily consider the
simpler matrix W + V , where W is a Wigner Hermitian matrix with limiting empirical spectral
measure µsc and V is a deterministic diagonal matrix with limiting empirical spectral measure
µMP,shift, for µsc and µMP,shift as defined in Proposition 2.11. Then by [33], the empirical spectral
measure of W + V converges to µa,ν,γ . Suppose, in addition, that V has at most two “spike”
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Figure 1. Simulation results are shown for the empirical spectra and extremal eigenvalues of ma-
trices Kn,p(X), for various kernel functions, distributions of the matrix entries xij , and parameters
a, ν, and γ. The histogram of eigenvalues of Kn,p(X) is shown in red, with the (scaled) den-
sity function of the limiting empirical spectral measure µa,ν,γ shown in black. In settings where
Conjecture 2.13 predicts the presense of spike eigenvalues of Kn,p(X), the theoretical predictions
for the locations of these spikes according to Conjecture 2.13 are shown as black crosses, and the
locations of the corresponding largest and/or smallest empirically observed eigenvalues of Kn,p(X)
are indicated by red arrows. Panels (a)–(f) correspond to the kernel function k(x) = h2(x) +h3(x).
Panels (g)–(l) correspond to the kernel function k(x) = 0.9h1(x) + h2(x). Panels (a), (d), (g), and
(j) correspond to p = 4000, n = 12000, and γ = 1

3 . Panels (b), (e), (h), and (k) correspond to
p = 10000, n = 2000, and γ = 5. Panels (c), (f), (i), and (l) correspond to p = 10000, n = 1000,
and γ = 10. Panels (a)–(c) and (g)–(i) take xij ∼ N (0, 1), so E[x4

ij ] = 3, and panels (d)–(f) and

(j)–(l) take xij ∼ Laplace(0, 1√
2
), so E[x4

ij ] = 6.
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eigenvalues outside of supp(µMP,shift), and these eigenvalues are fixed and equal to ±a2γ

√
Ex4

ij−1

2 ,
as given in Corollary 2.8. Then Theorem 8.1 of [6] implies that W + V has at most two “spike”
eigenvalues outside of supp(µa,ν,γ) and gives a precise characterization of when such spikes occur
and the locations at which they appear. We conjecture that this characterization, summarized
below, holds also for the spike eigenvalues of Kn,p(X), even though K̃n,p(X) is not a deformed

Wigner matrix and R̃n,p(X) is not independent of K̃n,p(X).

Conjecture 2.13. Consider the setup of Theorem 2.6, and suppose a2 < ν. Let S = supp(µMP,γ)
and define H : R \ S → R by H(z) = z − γ(ν − a2)mMP,γ(z), where µMP,γ is the scaled and
translated Marcenko-Pastur law as in Proposition 2.11 and mMP,γ(z) is its Stieltjes transform. Let

λ1, λ2 = ±a2γ

√
Ex4

ij−1

2 . If λ1 /∈ S and H ′(λ1) > 0, then H(λ1) /∈ supp(µa,ν,γ) and there is one

eigenvalue of Kn,p(X) that converges a.s. to H(λ1). Similarly, if λ2 /∈ S and H ′(λ2) > 0, then
H(λ2) /∈ supp(µa,ν,γ) and there is one eigenvalue of Kn,p(X) that converges a.s. to H(λ2). The
remaining eigenvalues of Kn,p(X) are, for any ε > 0, within an ε-neighborhood of supp(µa,ν,γ), in
the sense of Conjecture 2.12.

Figure 1 depicts simulation results of the empirical spectrum of Kn,p(X) for the kernel functions
k(x) = h2(x) + h3(x) and k(x) = 0.9h1(x) + h2(x), various settings of γ = p

n , and Gaussian and
Laplace distributions for xij . For the parameter combinations for which Conjecture 2.13 predicts
the presence of spike eigenvalues in the limiting spectrum of Kn,p(X), we in fact observe such spike
eigenvalues in simulation. The predicted spike locations are shown together with the empirically
observed locations, and there is close agreement in all cases.

2.3. Outline of proof. In the remainder of the paper, we prove Theorems 2.6 and 2.10. Our proof
of Theorem 2.6 follows three high-level steps:

(1) If z1, . . . , zn are i.i.d. random variables with mean zero, variance one, and zero third moment,
we show that

√
d!hd

(∑n
i=1 zi√
n

)
≈
√

1

nd

n∑
j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
i=1

zji , (2)

where hd is the degree-d orthonormal Hermite polynomial as in Definition 2.4. We note
that

√
d!hd on the left side of eq. (2) is the monic Hermite polynomial of degree d, i.e.

√
d!hd(x) = xd+ . . . where the leading term has coefficient 1, and that

(∑n
i=1 zi√
n

)d
equals the

right side of eq. (2) except without the restriction that the indices of summation j1, . . . , jd
are distinct. The terms of the summation in which the indices j1, . . . , jd are not distinct
are essentially cancelled out by the lower degree terms of

√
d!hd(x). Intuition for this

cancellation comes from the observation that if z1, . . . , zn
iid∼ 1

2δ−1 + 1
2δ1, and if

√
d!hd is

replaced by the monic degree-d orthogonal polynomial with respect to the distribution of∑n
i=1 zi√
n

, then eq. (2) is actually an exact equality. This follows from the well-known fact

that

pd(z1, . . . , zn) :=

n∑
j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
i=1

zji

satisfies E[pd(z1, . . . , zn)pd′(z1, . . . , zn)] = 0 for any d 6= d′. When z1, . . . , zn are not
Bernoulli-distributed and hd is the Hermite polynomial, then eq. (2) is only an approxi-
mation, where the right side of eq. (2) may be considered as a first-order term of the left
side. In Proposition 3.1, we quantify the error of this approximation by also computing
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the second-order term, which is of size O
(

1√
n

)
with high probability, and showing that the

third and higher-order terms in this approximation are of size O
(

1
n

)
with high probability.

(2) As k(x) =
∑D

d=1 adhd(x), the decomposition in step (1) above yields a corresponding de-
composition Kn,p(X) = Qn,p(X) +Rn,p(X) + Sn,p(X) of the kernel random matrix, where
Q, R, and S correspond to the first-order, second-order, and third-and-higher-order terms,
respectively, of the decompositions in step (1) of the hermite polynomials h1, . . . , hD. The
bulk of our argument lies in establishing that lim supn,p→∞ ‖Qn,p(X)‖ ≤ ‖µa,ν,γ‖ almost
surely. To prove this result, we use the moment method [15, 16]: For even integers l,
‖Qn,p(X)‖l ≤ TrQn,p(X)l, and a sufficiently tight upper bound may be obtained by taking
l := l(n) � log n. Since µa,ν,γ is the free additive convolution of a semicircle law with a
scaled and translated Marcenko-Pastur law (Proposition 2.11), it is the limiting empirical

spectral measure of a deformed GUE matrix of the form Mñ,p̃ =
√

γ(ν−a2)
p̃ Wp̃ + a

ñVñ,p̃,

as ñ, p̃ → ∞ with p̃
ñ → γ, where Wp̃ is a p̃ × p̃ GUE matrix and Vñ,p̃ is an independent

p̃× p̃ sample covariance matrix based on ñ samples and having zero diagonal. We employ
combinatorial arguments to upper-bound the quantity E[TrQn,p(X)l] using E[TrM l

ñ,p̃] for
a suitable choice of ñ and p̃, and we bound the latter quantity using the known convergence
result limñ,p̃→∞ ‖Mñ,p̃‖ = ‖µa,ν,γ‖.

(3) Finally, we analyze the remainder matrices Rn,p(X) and Sn,p(X) from the decomposition
in step (2) above. It is easily shown that lim supn,p→∞ ‖Sn,p(X)‖ = 0. For Rn,p(X),

we may write Rn,p(X) =
∑D

d=2Rn,p,d(X) where Rn,p,d(X) is the contribution from the
Hermite polynomial hd of degree d. (The linear polynomial h1 does not have such a re-
mainder term in the decomposition from step (1).) Again using a moment bound, we
show that lim supn,p→∞ ‖Rn,p,d(X)‖ = 0 for each d ≥ 3. For d = 2, we show that

limn,p→∞ ‖Rn,p,2(X) − R̃n,p(X)‖ = 0, where R̃n,p(X) is the rank-two matrix in Theorem

2.6. This establishes that Kn,p(X) = K̃n,p(X)+ R̃n,p(X), where lim supn,p→∞ ‖K̃n,p(X)‖ ≤
‖µa,ν,γ‖. The reverse inequality lim infn,p→∞ ‖K̃n,p(X)‖ ≥ ‖µa,ν,γ‖ follows immediately
from Theorem 2.5, hence establishing Theorem 2.6.

Step (1) above is carried out in Section 3. Step (2) is carried out in Section 4, with many details
of the combinatorial argument deferred to Appendix A and the estimate of E[TrM l

ñ,p̃] deferred to

Appendix B. Step (3) and the conclusion of the proof of Theorem 2.6 are carried out in Section 5.
In Section 6, we prove Theorem 2.10 using Theorem 2.6. Our argument uses an approximation,

in a suitable sense, of the kernel function k(x) by a polynomial function q(x). The spectral norm of
the kernel matrix corresponding to q(x) is easily estimated by Theorem 2.6, and we use a concen-
tration of measure argument to control the spectral norm of the kernel matrix corresponding to the
remainder r(x) = k(x)−q(x). The concentration of measure argument relies on the construction of
a certain dyadic covering net of the unit ball in Rp and is inspired by a similar argument of Rafal
Latala [19].

3. Decomposition of Hermite polynomials of sums of IID random variables

The goal of this section is to prove the following proposition, which exhibits a three-term de-
composition of a Hermite polynomial applied to a normalized sum 1√

n

∑n
j=1 zj of i.i.d. random

variables with zero mean, unit variance, and zero third moment.

Proposition 3.1. Let Z = (zj : 1 ≤ j ≤ n) ∈ Rn, where the entries zj are a collection of
independent and identically distributed random variables such that E[zj ] = 0, E[z2

j ] = 1, E[z3
j ] = 0,

and E[|zj |l] <∞ for each l ≥ 1. Let hd denote the orthonormal Hermite polynomial of degree d as
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in Definition 2.4. Define

qd,n(Z) =

√
1

ndd!

n∑
j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
i=1

zji , (3)

rd,n(Z) =


0 d = 1√

1

ndd!

(
d

2

) n∑
j1,...,jd−1=1

j1 6=j2 6=... 6=jd−1

(
(z2
j1 − 1)

d−1∏
i=2

zji

)
d ≥ 2 , (4)

sd,n(Z) = hd

 1√
n

n∑
j=1

zj

− qd,n(Z)− rd,n(Z). (5)

Then, for each d ≥ 1 and any α, β > 0, P[|sd,n(Z)| > n−1+α] < n−β for all sufficiently large n (i.e.
for n ≥ N where N may depend on α, β, d, and the distribution of zj).

Our proof of Proposition 3.1 proceeds via induction on d, using the three-term recurrence satisfied
by the Hermite polynomials hd, and it is presented at the end of this section. By Lemma 3.4 below,

P [|qd,n(Z)| > nα] < n−β and P
[
|rd,n(Z)| > n−

1
2

+α
]
< n−β for any α, β > 0 and all sufficiently

large n. Hence Proposition 3.1 may be interpreted as decomposing hd

(
1√
n

∑n
j=1 zj

)
as the sum of

an “O(1) term”, an “O
(

1√
n

)
term”, and an “O

(
1
n

)
term”. Corresponding to this decomposition

of the Hermite polynomials, let us consider the following decomposition of the kernel inner product
matrix.

Definition 3.2. Suppose k(x) =
∑D

d=1 adhd(x), as in Theorem 2.6. Then let Qn,p(X) = (qii′ : 1 ≤
i, i′ ≤ p) ∈ Rp×p, with entries

qii′ =


1√
n

D∑
d=1

adqd,n(xi1xi′1, . . . , xinxi′n), i 6= i′

0, i = i′,

where qd,n is defined as in eq. (3). Let Rn,p ∈ Rp×p and Sn,p ∈ Rp×p be defined analogously using
the functions rd,n and sd,n, from eqs. (4) and (5), respectively, in place of qd,n.

Remark 3.3. By Definitions 2.2 and 3.2 and the definition of sd,n in eq. (5), it is evident that

Kn,p(X) = Qn,p(X) +Rn,p(X) + Sn,p(X),

where Kn,p(X) is as in Theorem 2.6.

Lemma 3.4. Suppose z1, . . . , zn are i.i.d. random variables, with E[|zj |l] < ∞ for all l ≥ 1. Let
p1, . . . , pd : R→ R be any polynomial functions such that E[pi(zj)] = 0 for each i = 1, . . . , d. Then
for any α, β > 0,

P

n− d2
∣∣∣∣∣∣∣∣

n∑
j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
i=1

pi(zji)

∣∣∣∣∣∣∣∣ > nα

 < n−β

for all sufficiently large n (i.e. n ≥ N where N may depend on α, β, d and the distribution of zj).
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Proof. Fix α, β > 0. Let

f(z1, . . . , zn) = n−
d
2

∣∣∣∣∣∣∣∣
n∑

j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
i=1

pi(zji)

∣∣∣∣∣∣∣∣ ,
and let l be an even integer such that αl > β. Then

P[f(z1, . . . , zn) > nα] ≤ E[f(z1, . . . , zn)l]

nαl
,

and it suffices to show E[f(z1, . . . , zn)l] ≤ C for a constant C independent of n. Note that

E[f(z1, . . . , zn)l] = n−
ld
2

n∑
j11 ,...,j

1
d=1

j11 6=... 6=j1d

. . .

n∑
jl1,...,j

l
d=1

jl1 6=... 6=jld

E

[
d∏
i=1

l∏
k=1

pi

(
zjki

)]
.

For each term of the above sum, if there is some j such that j = jki for exactly one pair of indices
i ∈ {1, . . . , d} and k ∈ {1, . . . , l}, then the expectation of that term is 0 as E[pi(zj)] = 0 and zj is
independent of z1, . . . , zj−1, zj+1, . . . , zn. Hence, for terms in the sum with non-zero expectation,

there are at most ld
2 distinct values of jki . Then the number of such terms is at most Cl,d

( n
ld
2

)
for

a combinatorial constant Cl,d not depending on n. Also, the magnitude of the expectation of each
such term is at most C ′ <∞ for a constant C ′ depending on l, d, the polynomials p1, . . . , pd, and

the absolute moments of zj (which are finite by assumption). As
( n
ld
2

)
≤ n

ld
2 , the result follows. �

Proof of Proposition 3.1. Let S = 1√
n

∑n
j=1 zj . It will be notationally convenient to work with the

monic Hermite polynomials h̃d = hd
√
d!, so that h̃d has leading coefficient 1. Let us accordingly

define q̃d,n = qd,n
√
d!, r̃d,n = rd,n

√
d!, and s̃d,n = sd,n

√
d!. Then

h̃d(S) = q̃d,n(Z) + r̃d,n(Z) + s̃d,n(Z),

and we wish to show for any α, β > 0, P
[
|s̃d(Z)| > n−1+α

]
< n−β for all sufficiently large n.

We proceed by induction on d. Note that h̃0(x) = 1, h̃1(x) = x, and h̃2(x) = x2 − 1. Then for

d = 1, h̃1(S) = S = q̃1,n(Z), and for d = 2,

h̃2(S) = S2 − 1 = n−1

 n∑
j1,j2=1

j1 6=j2

zj1zj2 +
n∑
j=1

(z2
j − 1)

 = q̃2,n(Z) + r̃2,n(Z).

Hence the proposition holds with s̃1,n(Z) = s̃2,n(Z) = 0.
Let us assume by induction that the proposition holds for d − 1 and d. Recall that the monic

Hermite polynomials satisfy the three-term recurrence h̃d+1(x) = xh̃d(x)−dh̃d−1(x) (c.f. eq. (5.5.8)
of [28]). We may compute

Sq̃d,n(Z) = n−
d+1

2

n∑
j=1

zj

n∑
j1,...,jd=1

j1 6=... 6=jd

d∏
i=1

zji

= n−
d+1

2


n∑

j1,...,jd+1=1

j1 6=... 6=jd+1

d+1∏
i=1

zji + d
n∑

j1,...,jd=1

j1 6=... 6=jd

z2
j1

d∏
i=2

zji
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= q̃d+1,n(Z) +
2

d+ 1
r̃d+1,n(Z) +

d(n− d+ 1)

n
q̃d−1,n(Z),

Sr̃d,n(Z) = n−
d+1

2

(
d

2

) n∑
j=1

zj

n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z2
j1 − 1)

d−1∏
i=2

zji

)

= n−
d+1

2

(
d

2

)
n∑

j1,...,jd=1

j1 6=... 6=jd

(
(z2
j1 − 1)

d∏
i=2

zji

)
+

n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z3
j1 − zj1)

d−1∏
i=2

zji

)

+(d− 2)
n∑

j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z2
j1 − 1)z2

j2

d−1∏
i=3

zji

)
=
d− 1

d+ 1
r̃d+1,n(Z) + n−

d+1
2

(
d

2

) n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z3
j1 − zj1)

d−1∏
i=2

zji

)

+ n−
d+1

2

(
d

2

)
(d− 2)

n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(z2
j1 − 1)(z2

j2 − 1)

d−1∏
i=3

zji +
d(n− d+ 2)

n
r̃d−1,n(Z).

Substituting these expressions into the three-term recurrence,

h̃d+1(S) = S (q̃d,n(Z) + r̃d,n(Z) + s̃d,n(Z))− d (q̃d−1(Z) + r̃d−1(Z) + s̃d−1(Z))

= q̃d+1,n(Z) + r̃d+1,n(Z) + s̃d+1,n(Z)

for

s̃d+1,n(Z) := −d(d− 1)

n
q̃d−1,n(Z) + n−

d+1
2

(
d

2

) n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z3
j1 − zj1)

d−1∏
i=2

zji

)

+ n−
d+1

2

(
d

2

)
(d− 2)

n∑
j1,...,jd−1=1

j1 6=... 6=jd−1

(
(z2
j1 − 1)(z2

j2 − 1)
d−1∏
i=3

zji

)
− d(d− 2)

n
r̃d−1,n(Z)

+ Ss̃d,n(Z)− ds̃d−1,n(Z)

=: I + II + III + IV + V + V I.

Fix α, β > 0. Note that E[zj ] = 0, E[z2
j − 1] = 0, and E[z3

j − zj ] = 0, so by Lemma 3.4,

max
(
P
[
|I| > n−1+α

2

]
,P
[
|II| > n−1+α

2

]
,P
[
|III| > n−1+α

2

]
,P
[
|IV | > n−1+α

2

])
< n−2β

for all large n. By the induction hypothesis, P
[
|s̃d,n| > n−1+α

4

]
< n−2β

2 for all large n, and also

P
[
|S| > n

α
4

]
< n−2β

2 for all large n by Lemma 3.4 (applied to the simple case where d = 1 and

p1(x) = x). Then P
[
|V | > n−1+α

2

]
< n−2β for all large n. Similarly, the induction hypothesis
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implies P
[
|V I| > n−1+α

2

]
< n−2β for all large n. Putting this together,

P
[
|s̃d+1,n(Z)| > n−1+α

]
≤ P

[
|I + II + III + IV + V + V I| > 6n−1+α

2

]
≤ P

[
|I| > n−1+α

2

]
+ . . .+ P

[
|V I| > n−1+α

2

]
< 6n−2β < n−β

for all large n, completing the induction. �

4. Bounding the dominant term ‖Qn,p(X)‖

In this section, we establish the following result.

Proposition 4.1. Let Qn,p(X) be as in Definition 3.2. Let µa,ν,γ be as in Definition 2.3, with
a, ν, γ as specified in Theorem 2.6. Then lim supn,p→∞ ‖Qn,p(X)‖ ≤ ‖µa,ν,γ‖ almost surely.

Our proof uses the moment method. The following definition of a multi-labeling of an l-graph
will correspond to the primary combinatorial object of interest in the subsequent analysis.

Definition 4.2. For any integer l ≥ 2, an l-graph is a graph consisting of a single cycle with 2l
vertices and 2l edges, with the vertices alternatingly denoted as p-vertices and n-vertices.

We will consider the vertices of the l-graph to be ordered by picking an arbitrary p-vertex as the
first vertex and ordering the remaining vertices according to a traversal along the cycle. A vertex
V “follows” or “precedes” another vertex W if V comes before or after W , respectively, in this
ordering, and the last vertex of the cycle (which is an n-vertex) is followed by the first p-vertex.

Definition 4.3. A multi-labeling of an l-graph is an assignment of a p-label in {1, 2, 3, . . .}
to each p-vertex and an ordered tuple of n-labels in {1, 2, 3, . . .} to each n-vertex, such that the
following conditions are satisfied:

(1) The p-label of each p-vertex is distinct from those of the two p-vertices immediately preceding
and following it in the cycle.

(2) The number ds of n-labels in the tuple for each sth n-vertex satisfies 1 ≤ ds ≤ D, and these
ds n-labels are distinct.

(3) For each distinct p-label i and distinct n-label j, there are an even number of edges in the
cycle (possibly 0) such that its p-vertex endpoint is labeled i and its n-vertex endpoint has
label j in its tuple.

A (p,n)-multi-labeling is a multi-labeling with all p-labels in {1, . . . , p} and all n-labels in
{1, . . . , n}.

Figure 2 shows an example of a (3, 5)-multi-labeling of an l-graph, for l = 4 and D = 3. In
Definition 4.3 and the subsequent combinatorial arguments, D corresponds to the degree of the
polynomial k in Theorem 2.6, which we will always treat as a fixed quantity. We will always
consider p-labels to be distinct from n-labels, even though (for notational convenience) we use the
same label set {1, 2, 3, . . .} for both.

A key bound on the number of possible distinct p-labels and n-labels that appear in a multi-
labeling of an l-graph is provided by the following lemma.

Lemma 4.4. Suppose a multi-labeling of an l-graph has d1, . . . , dl n-labels on the first through
lth n-vertices, respectively, and suppose that it has m total distinct p-labels and n-labels. Then

m ≤ l+
∑l
s=1 ds
2 + 1.

We defer the proof of Lemma 4.4 to Appendix A. The quantity
l+

∑l
s=1 ds
2 + 1−m will appear in

many of our subsequent combinatorial lemmas, and we give it a name.
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Figure 2. A (3, 5)-multi-labeling of an l-graph, for l = 4 and D = 3. p-vertices are depicted with
a circle and n-vertices are depicted with a square.

Definition 4.5. Suppose a multi-labeling of an l-graph has d1, . . . , dl n-labels on the first through lth

n-vertices, respectively, and suppose that it has m total distinct p-labels and n-labels. The excess

of the multi-labeling is ∆ :=
l+

∑l
s=1 ds
2 + 1−m.

Definition 4.6. Two multi-labelings of an l-graph are equivalent if there is a permutation πp of
{1, 2, 3, . . .} and a permutation πn of {1, 2, 3, . . .} such that one labeling is the image of the other
upon applying πp to all of its p-labels and πn to all of its n-labels. For any fixed l, the equivalence
classes under this relation will be called multi-labeling equivalence classes.

Note that Lemma 4.4 implies that the excess ∆ of a multi-labeling is always nonnegative. Under
these definitions, the number of distinct p-labels, number of distinct n-labels, number of n-labels
d1, . . . , dl for each of the l n-vertices, and excess ∆ are equivalence class properties, i.e. they are the
same for all labelings in the same multi-labeling equivalence class. The motivation for Definition
4.3 of a multi-labeling is provided by the following lemma.

Lemma 4.7. Let Qn,p(X) be as in Proposition 4.1, and let l ≥ 2 be an even integer. Let C denote
the set of all multi-labeling equivalence classes for an l-graph. For each multi-labeling equivalence
class L ∈ C, let ∆(L) be the excess, r(L) the number of distinct p-labels, and d1(L), . . . , dl(L) the
number of n-labels on the first to lth n-vertices, respectively. Then, with α > 0 as in Assumption
2.1 and with the convention 00 = 1,

E[TrQn,p(X)l] ≤ n
∑
L∈C

(
(12∆(L))12α

n

)∆(L) ( p
n

)r(L)
(

l∏
s=1

ads(L)

(ds(L)!)1/2

)
. (6)

Proof. By Definition 3.2, letting il+1 := i1 for notational convenience,

E[TrQn,p(X)l] =

p∑
i1,...,il=1

i1 6=i2,i2 6=i3,...,il 6=i1

E

[
l∏

s=1

qisis+1

]

=

p∑
i1,...,il=1

i1 6=i2,i2 6=i3,...,il 6=i1

n−
l
2E

 l∏
s=1

 D∑
d=1

ad

√
1

ndd!

n∑
j1,...,jd=1

j1 6=j2 6=... 6=jd

d∏
a=1

xisjaxis+1ja




=

p∑
i1,...,il=1

i1 6=i2,i2 6=i3,...,il 6=i1

D∑
d1,...,ds=1

n∑
j11 ,...,j

1
d1

=1

j11 6=... 6=j1d1

. . .
n∑

jl1,...,j
l
dl

=1

jl1 6=... 6=jldl

n−
l+

∑l
s=1 ds
2

(
l∏

s=1

ads
(ds!)1/2

)
E

[
l∏

s=1

ds∏
a=1

xisjsaxis+1jsa

]
.
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Note that as xij
L
= −xij by Assumption 2.1, E[xcij ] = 0 for any positive odd integer c. Hence, if

any xij appears an odd number of times in the expression
∏l
s=1

∏ds
a=1 xisjsaxis+1jsa , then, as xij is

independent of xi′j′ if j 6= j′ or i 6= i′, E
[∏l

s=1

∏ds
a=1 xisjsaxis+1jsa

]
= 0 for such a term. We identify

the combination of the sums above, over the remaining non-zero terms, as the sum over all possible
(p, n)-multi-labelings of an l-graph. Here, the first sum over i1, . . . , il is over all choices of p-labels,
with condition (1) in Definition 4.3 that any two consecutive p-vertices have distinct labels being
imposed by the constraints i1 6= i2, i2 6= i3, . . . , il 6= i1 in the sum. The sum over d1, . . . , ds is over
all possible choices of the number of n-labels in the n-label tuple for each n-vertex, and the sum
over js1, . . . , j

s
ds

is over all possible choices of ds n-labels for the sth n-vertex, with condition (2)
in Definition 4.3 that the p-labels for each p-vertex are distinct being imposed by the constraint

that js1, . . . , j
s
ds

are distinct. The product expression
∏l
s=1

∏ds
a=1 xisjsaxis+1jsa then corresponds to

a product, over all n-vertices, all ds n-labels for that n-vertex, and both p-vertices immediately
preceding and immediately following that n-vertex, of xij , where j ∈ {1, . . . , n} is the n-label and
i ∈ {1, . . . , p} is the p-label of the p-vertex. The condition that xij for each distinct pair (i, j)
appears an even number of times, so that this term has non-zero expectation, is precisely condition
(3) in Definition 4.3. Thus, to summarize,

E[TrQn,p(X)l] =
∑

l-graph (p,n)-multi-labelings

n−
l+

∑l
s=1 ds
2

(
l∏

s=1

ads
(ds!)1/2

)
E

[
l∏

s=1

ds∏
a=1

xisjsaxis+1jsa

]
,

where d1, . . . , dl are the numbers of n-labels for the first through lth n-vertices, respectively.

Consider a fixed (p, n)-multi-labeling and write
∏l
s=1

∏ds
a=1 xisjsaxis+1jsa =

∏n
j=1

∏p
i=1 x

bij
ij , where

bij is the number of times xij appears as a term in this product. Note that each bij is even (possibly

0). As E[x2
ij ] = 1, E[|xij |k] ≤ kαk, and xij is independent of xi′j′ if j′ 6= j or i′ 6= i,

E

[
l∏

s=1

ds∏
a=1

xisjsaxis+1jsa

]
=

∏
i,j:bij>2

E
[
x
bij
ij

]
≤

∏
i,j:bij>2

b
αbij
ij ≤

 ∑
i,j:bij>2

bij

α
∑
i,j:bij>2 bij

,

where the last inequality holds with the convention 00 = 1 if bij ≤ 2 for all (i, j). We show in Lemma

A.6 that
∑

i,j:bij>2 bij ≤ 12∆, so E
[∏l

s=1

∏ds
a=1 xisjsaxis+1jsa

]
≤ (12∆)12α∆. Eq. (6) then follows

upon noting that each (p, n)-multi-labeling with r distinct p-labels and m − r distinct n-labels

has p!
(p−r)!

n!
(n−m+r)! ≤ nm

( p
n

)r
(p, n)-multi-labelings in its equivalence class, and n−

l+
∑l
s=1 ds
2

+m =

n1−∆. �

To prove Proposition 4.1, it remains to control the upper bound in eq. (6). We do so by comparing
this quantity to an analogous quantity for a deformed GUE matrix, specified in the following
definition.

Definition 4.8. For ñ, p̃ ≥ 1, ν, γ > 0, and a ∈ [−
√
ν,
√
ν], let Wp̃ = (wii′ : 1 ≤ i, i′ ≤ p̃) ∈ Cp̃×p̃

be distributed according to the GUE, i.e. {wii : 1 ≤ i ≤ p̃}∪{
√

2 Rewii′ ,
√

2 Imwii′ : 1 ≤ i < i′ ≤ p̃}
are i.i.d. N (0, 1), and wii′ = wi′i for i > i′. Let Vñ,p̃ ∈ Rp̃×p̃ be standard real Wishart-distributed
with ñ degrees of freedom and zero diagonal, i.e. Vñ,p̃ = ZZT − diag(‖Zi‖22) where Z := Zñ,p̃ =

(zij : 1 ≤ i ≤ p̃, 1 ≤ j ≤ ñ) ∈ Rp̃×ñ, zij
iid∼ N (0, 1), and diag(‖Zi‖22) ∈ Rp̃×p̃ denotes the diagonal

matrix whose ith diagonal entry is the squared Euclidean norm of the ith row of Z. Take Vñ,p̃ and

Wp̃ to be independent, and let Mñ,p̃ =
√

γ(ν−a2)
p̃ Wp̃ + a

ñVñ,p̃ ∈ Cp̃×p̃.

As ñ, p̃→∞ with p̃
ñ → γ, the limiting spectral distribution of Mñ,p̃ is given by the free additive

convolution of a scaled semicircle law and a scaled and translated Marcenko-Pastur law. We have
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chosen the scaling factors for Wp̃ and Vñ,p̃ so that this free convolution is exactly the measure µa,ν,γ
in Definition 2.3. It follows from the results of [6] that, in fact, a norm convergence result holds for
Mñ,p̃, i.e. limñ,p̃→∞ ‖Mñ,p̃‖ = ‖µa,ν,γ‖, from which we may deduce the following Proposition.

Proposition 4.9. Let Mñ,p̃ be as in Definition 4.8. Suppose l is an even integer and ñ, p̃, l → ∞
with p̃

ñ → γ and l ≤ C log ñ for some constant C > 0. Then, for any ε > 0,

E[‖Mñ,p̃‖l] ≤ (‖µa,ν,γ‖+ ε)l

for all sufficiently large ñ.

The proof of Proposition 4.9 is deferred to Appendix B. (Let us remark that our combinatorial
argument would be somewhat simplified if, in Definition 4.8, we could replace the GUE matrix by
a GOE matrix, but we cannot find a rigorous statement of the result limn,p→∞ ‖Mñ,p̃‖ = ‖µa,ν,γ‖
a.s. for the GOE case in the literature.) As 1

p̃E[TrM l
ñ,p̃] ≤ E[‖Mñ,p̃‖l], our strategy for proving

Proposition 4.1 will be to show that the upper bound in eq. (6) can in turn be bounded above
using the quantity E[TrM l

ñ,p̃], for some choices of p̃ and ñ. To analyze the quantity E[TrM l
ñ,p̃], we

consider the following notion of a simple-labeling of an l-graph.

Definition 4.10. A simple-labeling of an l-graph is an assignment of a p-label in {1, 2, 3, . . .}
to each p-vertex and either one n-label in {1, 2, 3, . . .} or the empty label ∅ to each n-vertex, such
that the following conditions are satisfied:

(1) The p-label of each p-vertex is distinct from those of the two p-vertices immediately preceding
and following it in the cycle.

(2) For each distinct p-label i and distinct non-empty n-label j, there are an even number of
edges in the cycle (possibly 0) such that its p-vertex endpoint is labeled i and its n-vertex
endpoint is labeled j.

(3) For any two distinct p-labels i and i′, the number of occurrences (possibly 0) of the three
consecutive labels i, ∅, i′ on a p-vertex, its following n-vertex, and its following p-vertex,
respectively, is equal to the number of occurrences of the three consecutive labels i′, ∅, i.

A (p,n)-simple-labeling is a simple-labeling with all p-labels in {1, . . . , p} and all non-empty
n-labels in {1, . . . , n}.

Analogous to Lemma 4.4, the following lemma provides a key bound on the number of possible
distinct p-labels and n-labels that appear in a simple-labeling of an l-graph.

Lemma 4.11. Suppose a simple-labeling of an l-graph has k̃ n-vertices with non-empty label and

m̃ total distinct p-labels and distinct non-empty n-labels. Then m̃ ≤ l+k̃
2 + 1.

The proof of Lemma 4.11 is deferred to Appendix A. We may then define the excess of a
simple-labeling, analogous to Definition 4.5, and note that the excess is always nonnegative.

Definition 4.12. Suppose a simple-labeling of an l-graph has k̃ n-vertices with non-empty label
and m̃ total distinct p-labels and distinct non-empty n-labels. The excess of the simple-labeling is

∆̃ := l+k̃
2 + 1− m̃.

Definition 4.13. Two simple-labelings of an l-graph are equivalent if there is a permutation πp
of {1, 2, 3, . . .} and a permutation πn of {1, 2, 3, . . .} such that one labeling is the image of the other
upon applying πp to all of its p-labels and πn to all of its n-labels. (The empty n-label remains
empty under any such permutation πn.) For any fixed l, the equivalence classes under this relation
will be called simple-labeling equivalence classes.

Motivation for Definition 4.10 of a simple labeling is provided by the following lemma, which
gives a lower bound for the quantity E[TrM l

ñ,p̃] analogous to the upper bound for E[TrQn,p(X)l]
in Lemma 4.7.
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Lemma 4.14. Let Mñ,p̃ be as in Definition 4.8, and let l ≥ 2 be an even integer. Let C̃ denote
the set of all simple-labeling equivalence classes for an l-graph. For each simple-labeling equivalence
class L̃ ∈ C̃, let ∆̃(L̃) be its excess, k̃(L̃) be the number of n-vertices with non-empty label, and r̃(L̃)
be the number of distinct p-labels. Then, with the convention 00 = 1,

E[TrM l
ñ,p̃] ≥ ñ

(
p̃− l
p̃

)l ( ñ− l
ñ

)l∑
L̃∈C̃

(
1

ñ

)∆̃(L̃)( p̃
ñ

)r̃(L̃)− l−k̃(L̃)
2

|a|k̃(L̃)(γ(ν − a2))
l−k̃(L̃)

2 . (7)

Proof. By Definition 4.8, letting il+1 := i1 for notational convenience,

E
[
TrM l

ñ,p̃

]
= E

Tr

(√
γ(ν − a2)

p̃
Wp̃ +

a

ñ
Vñ,p̃

)l
=

p̃∑
i1,...,il=1

E

[
l∏

s=1

(√
γ(ν − a2)

p̃
wisis+1 +

a

ñ
visis+1

)]

=

p̃∑
i1,...,il=1

∑
S⊆{1,...,l}

(a
ñ

)|S|(γ(ν − a2)

p̃

) l−|S|
2

E

[∏
s∈S

visis+1

]
E

[∏
s/∈S

wisis+1

]

=
∑

S⊆{1,...,l}

p̃∑
i1,...,il=1

is 6=is+1∀s∈S

ñ−
l+|S|

2

(
p̃

ñ

)− l−|S|
2

a|S|(γ(ν − a2))
l−|S|

2 E

[∏
s∈S

visis+1

]
E

[∏
s/∈S

wisis+1

]

=
∑

S⊆{1,...,l}

p̃∑
i1,...,il=1

is 6=is+1∀s∈S

∑
(js:s∈S)∈{1,...,ñ}|S|

ñ−
l+|S|

2

(
p̃

ñ

)− l−|S|
2

a|S|(γ(ν − a2))
l−|S|

2 E

[∏
s∈S

zisjszis+1js

]
E

[∏
s/∈S

wisis+1

]
.

In the fourth line above, we restricted the summation to is 6= is+1 ∀s ∈ S, as vii = 0 for each
i = 1, . . . , p̃ by Definition 4.8.

Let us write
∏
s∈S zisjszis+1js =

∏p̃
i=1

∏ñ
j=1 z

cij
ij where cij is the number of times zij appears in this

product, and let us write
∏
s/∈S wisis+1 =

∏p̃
i=1w

aii
ii

∏p̃−1
i=1

∏p̃
i′=i+1w

aii′
ii′ w

bii′
i′i , where aii′ and bii′ are

the numbers of times wii′ and wi′i appear in this product, respectively. Recall {zij : 1 ≤ i ≤ p̃, 1 ≤
j ≤ ñ} iid∼ N (0, 1), so E[

∏p̃
i=1

∏ñ
j=1 z

cij
ij ] 6= 0 only if each cij is even (possibly zero), in which case this

quantity is at least 1. Similarly, recall that {wii : 1 ≤ i ≤ p̃} ∪ {
√

2 Rewii′ ,
√

2 Imwii′ : 1 ≤ i < i′ ≤
p̃} iid∼ N (0, 1), and wii′ = wi′i for i > i′. If w = reiθ such that

√
2 Rew,

√
2 Imw

iid∼ N (0, 1), then

r and θ are independent with r2 ∼ χ2
2/2 and θ ∼ Unif[0, 2π). Then E[wawb] = E[ra+b]E[ei(a−b)θ]

for all nonnegative integers a, b, and this is 0 if a 6= b and at least 1 if a = b ≥ 0. Hence

E[
∏p̃
i=1w

aii
ii

∏p̃−1
i=1

∏p̃
i′=i+1w

aii′
ii′ w

bii′
i′i ] = 0 unless aii′ = bii′ for each i′ > i and aii is even (possibly

zero) for each 1 ≤ i ≤ p̃, in which case this quantity is also at least 1.
The above arguments imply, in particular, that E

[∏
s/∈S wisis+1

]
= 0 unless l − |S| is even. As l

is even by assumption, l − |S| is even if and only if |S| is also even, in which case a|S| = |a||S| ≥ 0.
Hence each term of the sum in the above expression for E[TrM l

ñ,p̃] is nonnegative, so a lower bound
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is obtained if we further restrict the summation to is 6= is+1 ∀s ∈ {1, . . . , l}, i.e.

E
[
TrM l

ñ,p̃

]
≥

∑
S⊆{1,...,l}

p̃∑
i1,...,il=1

i1 6=i2,i2 6=i3,...,is 6=i1

∑
(js:s∈S)∈{1,...,ñ}|S|

ñ−
l+|S|

2

(
p̃

ñ

)− l−|S|
2

|a||S|(γ(ν − a2))
l−|S|

2 E

[∏
s∈S

zisjszis+1js

]
E

[∏
s/∈S

wisis+1

]
.

We identify the combination of these three sums, over the nonzero terms, as a sum over all (p̃, ñ)-
simple-labelings of an l-graph. Here, the first sum over S is over all choices of the subset of the
n-vertices that have non-empty label. The second sum over i1, . . . , il is over all choices of p-labels,
with condition (1) in Definition 4.10 that any two consecutive p-vertices have distinct labels being
imposed by the constraints i1 6= i2, i2 6= i3, . . . , il 6= i1 in the sum. The last sum over (js : s ∈ S)
is over all choices of n-labels for the n-vertices that have nonempty label. The product expression∏
s∈S zisjszis+1js then corresponds to a product, over all n-vertices with non-empty label and both

p-vertices immediately preceding and following that n-vertex, of zij , where j ∈ {1, . . . , ñ} is the
n-label of the n-vertex and i ∈ {1, . . . , ñ} is the p-label of the p-vertex. Similarly, the product
expression

∏
s/∈S wisis+1 corresponds to a product, over all n-vertices with empty label, of wii′ ,

where i and i′ are the p-labels of the p-vertices immediately preceding and immediately following
this n-vertex, respectively. The condition that zij for each distinct pair (i, j) appears an even
number of times, so that E[

∏
s∈S zisjszis+1js ] 6= 0, is precisely condition (2) in Definition 4.10, and

the condition that each wii′ appears the same number of times as wi′i, so that E[
∏
s/∈S wisis+1 ] 6= 0,

is precisely condition (3) in Definition 4.10. As E[
∏
s∈S zisjszis+1js ]E[

∏
s/∈S wisis+1 ] ≥ 1 whenever

this quantity is nonzero, this implies

E
[
TrM l

ñ,p̃

]
≥

∑
l-graph (p̃,ñ)-simple-labelings

ñ−
l+k̃

2

(
p̃

ñ

)− l−k̃
2

|a|k̃(γ(ν − a2))
l−k̃

2 ,

where k̃ = |S| is the number of n-vertices in the simple-labeling with non-empty label. Any
simple labeling with r̃ distinct p-labels and at most m̃− r̃ distinct non-empty n-labels has at most

ñ!
(ñ−m̃+r̃)!

p̃!
(p̃−r̃)! ≥ ñm̃

(
p̃
ñ

)r̃ (
p̃−l
p̃

)l (
ñ−l
p̃

)l
labelings in its equivalence class (where we have used

m̃− r̃ ≤ l and r̃ ≤ l). The desired result then follows upon identifying ñ1−∆̃ = ñ−
l+k̃

2
+m̃. �

With Lemmas 4.7 and 4.14 established, the remainder of our proof of Proposition 4.1 involves a
comparison of the upper bound in eq. (6) of Lemma 4.7 and the lower bound in eq. (7) of Lemma
4.14. The intuition for the comparison is the following: From Lemmas 4.4 and 4.11, we know that
the excesses satisfy ∆(L) ≥ 0 and ∆̃(L) ≥ 0 in eqs. (6) and (7), respectively. Provided that the

number of labelings with excesses ∆(L) and ∆̃(L) do not increase too rapidly as ∆(L) and ∆̃(L)
increase, we expect that when n is large, the dominant contributions to the sums in eqs. (6) and
(7) come from the labelings with zero excess. It may be shown that if we take any multi-labeling
equivalence class L with excess ∆(L) = 0 and replace the labels of any n-vertex having more than
one n-label with the empty label, then this mapping yields a valid simple-labeling equivalence class

L̃ with excess ∆̃(L̃) = 0, and furthermore,
∑
L:L maps to L̃

∏l
s=1

ads (L)

(ds(L)!)1/2 = |a||k̃(L̃)|(ν − a2)
l−k̃(L̃)

2 .

Hence, this mapping yields a direct correspondence between terms in eq. (6) with excess ∆(L) = 0

and terms in eq. (7) with excess ∆̃(L) = 0. To handle the terms in eq. (6) where ∆(L) 6= 0, we will
extend this mapping to multi-labeling equivalence classes L with positive excess. We do this in the
case a 6= 0, and the properties of this mapping that we will need are summarized in the following
proposition.
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Proposition 4.15. Suppose a 6= 0 and l ≥ 2. Let C denote the set of all multi-labeling equivalence
classes of an l-graph, and let C̃ denote the set of all simple-labeling equivalence classes of an l-
graph. For L ∈ C, let ∆(L) be its excess and r(L) be the number of distinct p-labels, and for

L̃ ∈ C̃, let ∆̃(L) be its excess, r̃(L̃) be the number of distinct p-labels, and k̃(L̃) be the number of

n-vertices with non-empty label. Then there exists a map ϕ : C → C̃ such that, for some constants
C1, C2, C3, C4 > 0 depending only on D,

(1) For all L ∈ C, r(L) = r̃(L̃),

(2) For all L ∈ C, ∆̃(ϕ(L)) ≤ C1∆(L), and

(3) For any L̃ ∈ C̃ and ∆0 ≥ 0,

∑
L∈ϕ−1(L̃)

∆(L)=∆0

l∏
s=1

|ads(L)|
(ds(L)!)1/2

≤
(√

ν

|a|

)C2∆0

|a|k̃(L̃)(ν − a2)
l−k̃(L̃)

2 lC3+C4∆0 .

This proposition allows us to control all terms in the sum in eq. (6), including those with positive
excess, by terms in the sum in eq. (7), thus bypassing the need to directly control how the number
of terms in the sum for eq. (6) corresponding to each value of ∆(L) grows with ∆(L). The proof
of this proposition and the explicit construction of the map ϕ require some detailed combinatorial
arguments, which we defer to Appendix A. Using this result, we may complete the proof of
Proposition 4.1 in the case a 6= 0.

Proof of Proposition 4.1 (Case a 6= 0). For any ε > 0 and even integer l ≥ 2,

P [‖Qn,p(X)‖ > (1 + ε)‖µa,ν,γ‖] ≤ P
[
TrQn,p(X)l > ((1 + ε)‖µa,ν,γ‖)l

]
≤ E[TrQn,p(X)l]

(1 + ε)l‖µa,ν,γ‖l
.

By Lemma 4.7, Definition 4.5, and Proposition 4.15,

E[TrQn,p(X)l] ≤ n
∑
L∈C

(
(12( l+Dl2 + 1))12α

n

)∆(L) ( p
n

)r(L)
(

l∏
s=1

|ads(L)|
(ds(L)!)1/2

)

= n
∑
L̃∈C̃

l+Dl
2

+1∑
∆0=

⌈
∆̃(L̃)
C1

⌉
∑

L∈ϕ−1(L̃)

∆(L)=∆0

(
(12( l+Dl2 + 1))12α

n

)∆0 ( p
n

)r̃(L̃)
l∏

s=1

|ads(L)|
(ds(L)!)1/2

≤ n
∑
L̃∈C̃

( p
n

)r̃(L̃)
l+Dl

2
+1∑

∆0=
⌈

∆̃(L̃)
C1

⌉
(

(12( l+Dl2 + 1))12α

n

)∆0

(√
ν

|a|

)C2∆0

|a|k̃(L̃)(ν − a2)
l−k̃(L̃)

2 lC3+C4∆0

≤ nlC3
(
l+Dl

2 + 2
)∑
L̃∈C̃

( p
n

)r̃(L̃)
|a|k̃(L̃)(ν − a2)

l−k̃(L̃)
2


(
12( l+Dl2 + 1)

)12α
(√

ν
|a|

)C2

lC4

n


∆̃(L̃)
C1

,



22 THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES

where the last line holds for all sufficiently large n if l ∼M log n, for any M > 0. Let

ñ =

 n
1
C1(

12( l+lD2 + 1)
) 12α
C1

(√
ν
|a|

)C2
C1 l

C4
C1

 ,
and let p̃ = b ñpn c. Then nlC3

(
l+Dl

2 + 2
)
≤ n2 and ( pn)r̃(L̃) ≤ ( p̃ñ)r̃(L̃)(1 + ε

4)l for l ∼ M log n, any
M > 0, and all sufficiently large n, so

E[TrQn,p(X)l] ≤ n2
(
1 + ε

4

)l∑
L̃∈C̃

(
1

ñ

)∆̃(L̃)( p̃
ñ

)r̃(L̃)

|a|k̃(L̃)(ν − a2)
l−k̃(L̃)

2 .

On the other hand, by Lemma 4.14,(
1− ε

4

)l
ñ
∑
L̃∈C̃

(
1

ñ

)∆̃(L̃)( p̃
ñ

)r̃(L̃)

|a|k̃(L̃)(ν − a2)
l−k̃(L̃)

2 ≤ E
[
TrM l

ñ,p̃

]
for all sufficiently large n. Since p̃

ñ → γ and l ∼ MC1 log ñ if l ∼ M log n, Proposition 4.9 implies

E[TrM l
ñ,p̃] ≤ p̃E[‖Mñ,p̃‖l] ≤ p̃

(
‖µa,ν,γ‖

(
1 + ε

4

))l
for all large n. Thus

P [‖Qn,p(X)‖ > (1 + ε)‖µa,ν,γ‖] ≤ n2 p̃

ñ

( (
1 + ε

4

)2(
1− ε

4

)
(1 + ε)

)l
.

Taking l ∼M log n with M > 0 sufficiently large such that M log
(1+

ε
4)

2

(1− ε4)(1+ε)
< −4 (which is possible

for any sufficiently small ε > 0), this implies P [‖Qn,p(X)‖ > (1 + ε)‖µa,ν,γ‖] < 1
n2 for all large n.

Then lim supn,p→∞ ‖Qn,p(X)‖ ≤ (1 + ε)‖µa,ν,γ‖ a.s., by the Borel-Cantelli lemma. This holds for
all sufficiently small ε > 0, so the proposition follows. �

Proposition 4.1 in the case a = 0 may be easily established from the a 6= 0 case via the following
continuity argument.

Lemma 4.16. For the measure µa,ν,γ in Definition 2.3, ‖µa,ν,γ‖ is continuous in (a, ν, γ).

Proof. Let Wp̃ and Vñ,p̃ be as in Definition 4.8, and let Mñ,p̃(a, ν, γ) =
√

γ(ν−a2)
p̃ Wp̃ + a

ñVñ,p̃.

For any fixed (a, ν, γ) and (ai, νi, γi)
∞
i=1 such that limi→∞(ai, νi, γi) = (a, ν, γ), by Lemma B.1,

‖Mñ,p̃(a, ν, γ)‖ → ‖µa,ν,γ‖, ‖Mñ,p̃(ai, νi, γi)‖ → ‖µai,νi,γi‖ for each i, and lim supn,p→∞
1√
p̃
‖Wp̃‖ <

∞ and lim supn,p→∞
1
ñ‖Vñ,p̃‖ < ∞ on an event having probability 1. Then on this event, for each

i,

|‖µai,νi,γi‖ − ‖µa,ν,γ‖| ≤ lim sup
n,p→∞

|‖Mñ,p̃(ai, νi, γi)‖ − ‖Mñ,p̃(a, ν, γ)‖|

≤ lim sup
n,p→∞

‖Mñ,p̃(ai, νi, γi)−Mñ,p̃(a, ν, γ)‖

≤
∣∣∣∣√γi(νi − a2

i )−
√
γ(ν − a2)

∣∣∣∣ lim sup
n,p→∞

1√
p̃
‖Wp̃‖+ |a− ai| lim sup

n,p→∞

1

ñ
‖Vñ,p̃‖,

which implies limi→∞ ‖µai,νi,γi‖ = ‖µa,ν,γ‖. �

Proof of Proposition 4.1 (Case a = 0). Suppose k(x) is a polynomial function such that the coef-
ficient of the linear term in its Hermite polynomial decomposition is zero. For any a > 0, let
ka(x) = k(x) + ax, and let Qn,p,a(X) be the matrix as defined in Definition 3.2 for the ker-
nel function ka. Then Qn,p,a(X) = Qn,p(X) + a

nVn,p(X), where Vn,p(X) has zero diagonal and
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equals XXT off of the diagonal. By Proposition 4.1 for the a 6= 0 case, established above,
lim supn,p→∞ ‖Qn,p,a(X)‖ ≤ ‖µa,(ν+a2),γ‖. As a consequence of the main theorem in [16] and the ob-

servation limn,p→∞ suppi=1

(
‖Xi‖2
n − 1

)
= 0, which follows easily under the Assumption 2.1, we have

lim supn,p→∞ ‖ 1
nVn,p(X)‖ ≤ Cγ for some constant Cγ > 0. This implies lim supn,p→∞ ‖Qn,p(X)‖ ≤

‖µa,(ν+a2),γ‖ − aCγ for any a > 0, and the desired result follows from Lemma 4.16 upon taking
a→ 0. �

5. Analyzing the remainder matrices Rn,p(X) and Sn,p(X)

To conclude the proof of Theorem 2.6, we analyze in this section the remainder matrices Rn,p(X)
and Sn,p(X) of Definition 3.2.

Lemma 5.1. As n, p→∞ with p
n → γ ∈ (0,∞), limn,p→∞ ‖Sn,p(X)‖ = 0 almost surely.

Proof. Note that ‖Sn,p(X)‖ ≤ ‖Sn,p(X)‖F ≤ pmax1≤i,i′≤p |sii′ | where ‖ · ‖F is the Frobenius norm.

By Definition 3.2 and Proposition 3.1, for any 1 ≤ i, i′ ≤ p and α > 0, |sii′ | ≤ n−
3
2

+α∑D
d=1 |ad| with

probability at least 1− n−4, for all large n. Then by a union bound, pmax1≤i,i′≤p |sii′ | ≤ pn−
3
2

+α

with probability at least 1− p2n−4. As p
n → γ ∈ (0,∞), taking any α < 1

2 and ε > 0, this implies

P[‖Sn,p(X)‖ > ε] ≤ p2n−4 for all large n, so lim supn,p→∞ ‖Sn,p(X)‖ ≤ ε a.s. by the Borel-Cantelli
lemma. As ε > 0 is arbitrary, the result follows. �

Definition 5.2. For d ≥ 2, let Rn,p,d(X) := (rii′ : 1 ≤ i, i′ ≤ p) ∈ Rp×p, with entries

rii′ =


(
d
2

)
√
d!
n−

d+1
2

n∑
j1,...,jd−1=1

j1 6=j2 6=... 6=jd−1

(
(x2
ij1x

2
i′j1 − 1)

d−1∏
a=2

xijaxi′ja

)
i 6= i′

0 i = i′.

Note that Rn,p(X) in Definition 3.2 is given by Rn,p(X) =
∑D

d=2 adRn,p,d(X).

Lemma 5.3. As n, p→∞ with p
n → γ ∈ (0,∞), limn,p→∞ ‖Rn,p,d(X)‖ = 0 a.s. for any d ≥ 3.

Proof. Letting i7 := i1 for notational convenience, note that

E
[
TrRn,p,d(X)6

]
=

p∑
i1,...,i6=1

i1 6=i2,i2 6=i3,...,i6 6=i1

E

[
6∏
s=1

risis+1

]

=

(
d
2

)6
(d!)3

n−3(d+1)
p∑

i1,...,i6=1

i1 6=i2,i2 6=i3,...,i6 6=i1

n∑
j11 ,...,j

1
d−1=1

j11 6=j12 6=... 6=j1d−1

. . .
n∑

j61 ,...,j
6
d−1=1

j61 6=j62 6=... 6=j6d−1

E

[
6∏
s=1

(
(x2
isjs1

x2
is+1js1

− 1)

d−1∏
a=2

xisjsaxis+1jsa

)]
.

Consider the term

E

[
6∏
s=1

(
(x2
isjs1

x2
is+1js1

− 1)
d−1∏
a=2

xisjsaxis+1jsa

)]
. (8)

Suppose that there is some j∗ ∈ {1, . . . , n} such that jsa = j∗ for exactly one pair of indices
(s, a) ∈ {1, . . . , 6} × {1, . . . , d − 1}. If a = 1, then the only term of the product in eq. (8) that
contains a variable equal to xij∗ for any i is (x2

isjs1
x2
is+1js1

−1), and if a ≥ 2, then the only two terms

that contain a variable equal to xij∗ for any i are xisjsa and xis+1jsa . In either case, as is 6= is+1,
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this implies eq. (8) is zero by independence of the entries of X. Hence, in order for eq. (8) to be
nonzero, each distinct j∗ that appears in the product must appear as jsa for at least two pairs (s, a).

Suppose, next, that there is some i∗ ∈ {1, . . . , p} such that is = i∗ for exactly one index s ∈
{1, . . . , 6}. Consider the label j∗ = js−1

a for any a ∈ {2, . . . , d− 1} (identifying s− 1 ≡ 6 if s = 1).
Such a label j∗ exists when d ≥ 3. If j∗ 6= jsa′ for all a′ ∈ {1, . . . , d − 1}, then the variable xi∗j∗
appears exactly once in the product in eq. (8), and so eq. (8) is zero. If j∗ = js1, then the variable
xi∗j∗ appears twice, once as the term xisjs−1

a
and once in the term (x2

isjs1
x2
is+1js1

− 1). The product

of these terms is x3
i∗j∗xis+1j∗ − xi∗j∗ , and as E[x3

i∗j∗ ] = 0 and E[xi∗j∗ ] = 0, this implies eq. (8) is

again zero. Hence, in order for eq. (8) to be nonzero, js−1
a must equal jsa′ for some a′ ≥ 2.

Consider first the case where there are at most 4 distinct values in {i1, . . . , i6}. Note that if eq.

(8) is nonzero, then there are at most 6(d−1)
2 = 3d − 3 distinct values of jsa in the product, by our

previous argument. There are at most p4n3d−3Cd total choices of indices (i1, . . . , i6) and (jsa : 1 ≤
a ≤ d − 1, 1 ≤ s ≤ 6) such that |{i1, . . . , i6}| ≤ 4 and |{jsa : 1 ≤ a ≤ d − 1, 1 ≤ s ≤ 6}| ≤ 3d − 3,
where Cd is a combinatorial constant depending on d but not on n and p. Then

p∑
i1,...,i6=1

i1 6=i2,i2 6=i3,...,i6 6=i1
|{i1,...,i6}|≤4

n∑
j11 ,...,j

1
d−1=1

j11 6=... 6=j1d−1

. . .
n∑

j61 ,...,j
6
d−1=1

j61 6=... 6=j6d−1

E

[
6∏
s=1

(
(x2
isjs1

x2
is+1js1

− 1)
d−1∏
a=2

xisjsaxis+1jsa

)]
≤ Cd,αp4n3d−3

for a constant Cd,α depending on d and the value of α in Assumption 2.1.
If there are 5 distinct values in {i1, . . . , i6}, then either is = is+2 for some s or is = is+3 for some

s (where s + 2 and s + 3 are taken modulo 6), with the remaining indices all distinct. Suppose
without loss of generality that i2 and i3 are distinct from {i1, i4, i5, i6}. Then, letting i∗ := i2
and j∗ := j1

2 , we note that i2 is the unique index in {i1, . . . , i6} equal to i∗, so for eq. (8) to be
nonzero, we must have j∗ = j2

a for some a ≥ 2, by our previous argument. The same argument
applied to i∗ := i3 then shows that we must have j∗ = j3

a′ for some a′ ≥ 2. Then there are at
least three pairs (s, a) for which jsa = j∗. This implies that there are at most 3d− 4 distinct values
of jsa (as if there were 3d − 3 distinct values and each value must equal jsa for at least two pairs
(s, a), then no such value can equal jsa for more than two pairs). There are at most p5n3d−4C ′d total
choices of indices (i1, . . . , i6) and (jsa : 1 ≤ a ≤ d − 1, 1 ≤ s ≤ 6) such that |{i1, . . . , i6}| = 5 and
|{jsa : 1 ≤ a ≤ d − 1, 1 ≤ s ≤ 6}| ≤ 3d − 4, where C ′d is a combinatorial constant depending on d
but not on n and p. Then

p∑
i1,...,i6=1

i1 6=i2,i2 6=i3,...,i6 6=i1
|{i1,...,i6}|=5

n∑
j11 ,...,j

1
d−1=1

j11 6=... 6=j1d−1

. . .

n∑
j61 ,...,j

6
d−1=1

j61 6=... 6=j6d−1

E

[
6∏
s=1

(
(x2
isjs1

x2
is+1js1

− 1)
d−1∏
a=2

xisjsaxis+1jsa

)]
≤ C ′d,αp5n3d−4

for a constant C ′d,α.

Finally, if |{i1, . . . , i6}| = 6, then letting j∗ = j1
2 and i∗ = i2, our previous argument implies

that for eq. (8) to be nonzero, there must be some a ≥ 2 such that j∗ = j2
a. Similarly, for each

s = 3, . . . , 6, there must be some a ≥ 2 such that j∗ = jsa. Then there are exactly 6 pairs (s, a)

such that jsa = j∗, so the number of distinct values of jsa is at most 6(d−1)−6
2 + 1 = 3d − 5. There

are at most p6n3d−5C ′′d total choices of indices (i1, . . . , i6) and (jsa : 1 ≤ a ≤ d− 1, 1 ≤ s ≤ 6) such
that |{i1, . . . , i6}| = 6 and |{jsa : 1 ≤ a ≤ d− 1, 1 ≤ s ≤ 6}| ≤ 3d− 5, where C ′′d is a combinatorial
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constant depending on d but not on n and p. Then

p∑
i1,...,i6=1

i1 6=i2,i2 6=i3,...,i6 6=i1
|{i1,...,i6}|=6

n∑
j11 ,...,j

1
d−1=1

j11 6=... 6=j1d−1

. . .
n∑

j61 ,...,j
6
d−1=1

j61 6=... 6=j6d−1

E

[
6∏
s=1

(
(x2
isjs1

x2
is+1js1

− 1)
d−1∏
a=2

xisjsaxis+1jsa

)]
≤ C ′′d,αp6n3d−5

for a constant C ′′d,α. Putting this together,

E
[
TrRn,p,d(X)6

]
≤
Cd,α,γ
n2

for some constant Cd,α,γ depending also on γ. Then for any ε > 0,

P [‖Rn,p,d(X)‖ > ε] ≤
E[TrRn,p,d(X)6]

ε6
≤
Cd,α,γ
ε6n2

,

so the Borel-Cantelli lemma implies lim supn,p→∞ ‖Rn,p,d(X)‖ ≤ ε almost surely. As this holds for
all ε > 0, the result follows. �

Lemma 5.4. Let Rn,p,d(X) be as in Definition 5.2, and let R̃n,p(X) be as in Theorem 2.6. As

n, p→∞ with p
n → γ ∈ (0,∞), limn,p→∞ ‖a2Rn,p,2(X)− R̃n,p(X)‖ → 0.

Proof. Let Tn,p(X) = a2Rn,p,2(X)− R̃n,p(X). Then Tn,p(X) has entries

tii′ =

{
a2√

2
n−

3
2
∑n

j=1

(
(x2
ijx

2
i′j − 1)− (x2

ij − 1)− (x2
i′j − 1)

)
i 6= i′

0 i = i′

=

{
a2√

2
n−

3
2
∑n

j=1(x2
ij − 1)(x2

i′j − 1) i 6= i′

0 i = i′
.

Thus, excluding the diagonal, Tn,p(X) equals a2√
2
n−

3
2Y Y T where Y = (yij) ∈ Rp×n and yij = x2

ij−1.

By Assumption 2.1 and the main theorem of [16], 1
n‖Y Y

T ‖ converges to a finite limit almost surely,

so n−
3
2 ‖Y Y T ‖ → 0. For any ε > 0 and any i,

P

n− 3
2

n∑
j=1

y2
ij − E[y2

ij ] ≥ ε

 ≤ E
[(∑n

j=1 y
2
ij − E[y2

ij ]
)4
]

ε4n6
≤ C(ε, α)

n4

for some constant C(ε, α) > 0 depending on ε and α in Assumption 2.1. Then

P

 p
max
i=1

n−
3
2

n∑
j=1

y2
ij ≥ ε

 ≤ pC(ε, α)

n4
≤ C(ε, α, γ)

n3

for all large n, and hence
∥∥∥Tn,p(X)− a2√

2
n−

3
2Y Y T

∥∥∥→ 0 almost surely by the Borel-Cantelli lemma,

implying ‖Tn,p(X)‖ → 0 almost surely. �

We may now conclude the proof of Theorem 2.6.

Proof of Theorem 2.6. By Remark 3.3, Kn,p(X) = Qn,p(X) + Rn,p(X) + Sn,p(X). As Rn,p(X) =∑D
d=2 adRn,p,d(X), where Rn,p,d(X) is as in Definition 5.2, Proposition 4.1 and Lemmas 5.1, 5.3,

and 5.4 imply lim supn,p→∞ ‖Kn,p(X) − R̃n,p(X)‖ ≤ ‖µa,ν,γ‖. On the other hand, Theorem 2.5

implies, for any ε > 0, limn,p→∞
1
p

∑p
i=1 1{|λi(Kn,p(X))| ∈ [‖µa,ν,γ‖ − ε, ‖µa,ν,γ‖]} > cp for some

constant c := c(ε) > 0 a.s., so in particular, lim infn,p→∞max(λ3(Kn,p(X)),−λp−2(Kn,p(X))) ≥
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‖µa,ν,γ‖ a.s., where λ3(Kn,p(X)) and λp−2(Kn,p(X)) are the third-largest and third-smallest eigen-

values of Kn,p(X). As R̃n,p(X) has rank two, Weyl’s eigenvalue inequality implies λ3(Kn,p(X)) ≤
λmax(Kn,p(X) − R̃n,p(X)) and −λp−2(Kn,p(X)) ≤ −λmin(Kn,p(X) − R̃n,p(X)), hence establishing

lim infn,p→∞ ‖Kn,p(X)−R̃n,p(X)‖ ≥ ‖µa,ν,γ‖ almost surely. This concludes the proof of the theorem

upon setting K̃n,p(X) = Kn,p(X)− R̃n,p(X). �

6. Extension to odd kernel functions for Gaussian observations

In this section, we prove Theorem 2.10. Our proof will rely on the following two results, the
first giving a polynomial approximation of the kernel function k and the second providing a general
concentration inequality that will allow us to handle the remainder term from this polynomial
approximation.

Theorem 6.1 ([8]). Suppose w(x) is an even, lower semi-continuous function on R with 1 ≤
w(x) < ∞, such that logw(x) is a convex function of log x. Let Cw be the class of continuous

functions on R such that lim|x|→∞
f(x)
w(x) = 0 for all f ∈ Cw, and suppose Cw contains all polynomial

functions. If
∫∞

1
logw(x)
x2 dx =∞, then for any f ∈ Cw and ε > 0, there exists a polynomial P such

that |f(x)− P (x)| < εw(x) for all x ∈ R.

Proof. See the first Theorem on page 956 of [8]. �

Proposition 6.2. Let k be an odd and differentiable function with |k′(x)| ≤ eβ|x| for some β > 0

and all x ∈ R. Let X ∈ Rp×n have entries xij
iid∼ N (0, 1), and let Kn,p(X) be the kernel inner-

product matrix with kernel k as in Definition 2.2. Suppose p, n→∞ with p
n → γ. Then there exist

constants Nβ,γ , Cβ,γ > 0, depending only on β and γ, such that

P[‖Kn,p(X)‖ > Cβ,γ ] ≤
Cβ,γ
n2

for all n ≥ Nβ,γ.

Assuming the above Proposition, let us first prove Theorem 2.10.

Proof of Theorem 2.10. By the given conditions, there exists β > 0 such that lim|x|→∞
|k′(x)|
eβ|x|

= 0.

Applying Theorem 6.1 with w(x) = eβ|x|, for any ε > 0, there exists a polynomial q̇ such that

|k′(x) − q̇(x)| < εeβ|x| for all x ∈ R. As k is an odd function, k′ is even, so we may take q̇ to
be an even polynomial function. (Otherwise, take the polynomial to be 1

2(q̇(x) + q̇(−x)).) Let

q(x) =
∫ x

0 q̇(x)dx for all x ∈ R, and let r(x) = k(x) − q(x). Then q is an odd polynomial

function, r is hence also an odd function, and |r′(x)| < εeβ|x| by construction. Let Qn,p(X) be
the kernel inner-product matrix with kernel function q as in Definition 2.2, and let Rn,p(X) be
the kernel inner-product matrix with kernel function r(x), so that Kn,p(X) = Qn,p(X) +Rn,p(X).

By Proposition 6.2, there exists a constant Cβ,γ > 0 such that P[‖Rn,p(X)‖ > εCβ,γ ] <
Cβ,γ
n2 , for

all sufficiently large n, so lim supn,p→∞ ‖Rn,p(X)‖ ≤ εCβ,γ almost surely. On the other hand, if
q(x) = a0,ε+a1,εh1(x)+ . . .+aD,εhD(x) where h1, . . . , hD are the orthonormal Hermite polynomials
as in Definition 2.4, then aj,ε = 0 for all even j since q is an odd function, and hence, in particular,
a2 = 0 and E[q(ξ)] = 0 for ξ ∼ N (0, 1). Then by Theorem 2.6, ‖Qn,p(X)‖ → ‖µaε,νε,γ‖ where

aε = a1,ε and νε =
∑D

d=1 a
2
d,ε. Hence

‖µaε,νε,γ‖ − εCβ,γ ≤ lim inf
n,p→∞

‖Kn,p(X)‖ ≤ lim sup
n,p→∞

‖Kn,p(X)‖ ≤ ‖µaε,νε,γ‖+ εCβ,γ

for any ε > 0. Note that |k(x) − q(x)| ≤ ε
β e

β|x| for all x ∈ R, so by the dominated convergence

theorem, limε→0 E[(k(ξ) − q(ξ))2] = 0 for ξ ∼ N (0, 1). Then aε → a and νε → ν as ε → 0, where
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a and ν are defined as in Theorem 2.5 for the kernel function k. By Lemma 4.16, this implies
limε→0 ‖µaε,νε,γ‖ → ‖µa,ν,γ‖, and hence limn,p→∞ ‖Kn,p(X)‖ = ‖µa,ν,γ‖. �

In the remainder of this section, we prove Proposition 6.2. Our proof relies on the covering
bound ‖Kn,p(X)‖ = supy∈Rp:‖y‖≤1 y

TKn,p(X)y ≤ C supy∈Dp2 y
TKn,p(X)y for an appropriate choice

of covering set Dp
2 ⊂ {y ∈ Rp : ‖y‖ ≤ 1} and sufficiently large constant C. The specific construction

of Dp
2 and method of bounding supy∈Dp2 y

TKn,p(X)y are inspired by a similar argument in [19].

Definition 6.3. Let G(β) ⊂ Rp×n × Rp×n be the set of pairs (X,X ′) of p × n matrices such that
‖X‖ ≤ √p+ 2

√
n, ‖X ′‖ ≤ √p+ 2

√
n, and for all l = 1, . . . , p,

1

p

p∑
i=1
i 6=l

exp

(
16β√
n
|XT

i Xl|
)
≤ 3e256β2

,

1

p

p∑
i=1
i 6=l

exp

(
16β√
n
|X ′i

T
Xl|
)
≤ 3e256β2

,

1

p

p∑
i=1
i 6=l

exp

(
16β√
n
|XT

i X
′
l |
)
≤ 3e256β2

,

1

p

p∑
i=1
i 6=l

exp

(
16β√
n
|X ′i

T
X ′l |
)
≤ 3e256β2

,

Lemma 6.4. Let X,X ′ ∈ Rp×n with xij , x
′
ij

iid∼ N (0, 1). Then for all sufficiently large p (i.e.

p > p0(β)),

P[(X,X ′) /∈ G(β)] ≤ 4e−
n
2 +

484e384β2

p2
+ 4pe−

n
8 .

Proof. By Corollary 5.35 of [31], P
[
‖X‖ > √p+ 2

√
n
]
≤ 2e−

n
2 , and similarly for X ′.

For ξ ∼ N (0, 1) and c > 0, E[ec|ξ|] ≤ E[ecξ] + E[e−cξ] = 2e
c2

2 , and Var[ec|ξ|] ≤ E[e2c|ξ|] ≤ 2e2c2 .

Then for ξ1, . . . , ξp
iid∼ N (0, 1), denoting f(ξ) = ec|ξ| − E[ec|ξ|],

P

[
1

p

p∑
i=1

ec|ξi| > 3e
c2

2

]
≤ P

[
1

p

p∑
i=1

f(ξi) > e
c2

2

]
≤ e−3c2

p6
E

( p∑
i=1

f(ξi)

)6


≤ e−3c2

p6

(
pE
[
f(ξi)

6
]

+ 15p2E
[
f(ξi)

4
]
E
[
f(ξi)

2
]

+ 15p3E
[
f(ξi)

2
]3)

<
121e3c2

p3
,

where the last line holds for all p ≥ p0(c). For any i 6= l, (XT
i Xl, Xl)

L
= (‖Xl‖ξi, Xl) where

ξi ∼ N (0, 1) is independent of Xl. Hence

P

 1

p− 1

p∑
i=1
i 6=l

exp

(
16β√
n
|XT

i Xl|
)
> 3e

128β2‖Xl‖
2

n

∣∣∣∣∣Xl

 < 121e
768β2‖Xl‖

2

n

p3
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for all p ≥ p0

(
β, ‖Xl‖√

n

)
. Then

P

 1

p− 1

p∑
i=1
i 6=l

exp

(
16β√
n
|XT

i Xl|
)
> 3e256β2

∣∣∣∣∣‖Xl‖ ≤
√

2n

 < 121e1536β2

p3

for all p ≥ p0(β), so using the chi-squared tail bound P[‖Xl‖2 > 2n] ≤ e−
n
8 ,

P

 1

p− 1

p∑
i=1
i 6=l

exp

(
16β√
n
|XT

i Xl|
)
> 3e256β2

 ≤ 121e1536β2

p3
+ e−

n
8 .

The same argument holds for the analogous sums with X ′i
TXl, X

T
i X

′
l , and X ′i

TX ′l in place of XT
i Xl,

and the result follows by a union bound. �

Lemma 6.5. Let y, z ∈ Rp satisfy ‖y‖ ≤ 1 and ‖z‖ ≤ 1. Under the setup of Proposition 6.2,

let F (X) = zTKn,p(X)y. Then E
[
et(F (X)−F (X′))

1{(X,X ′) ∈ G(β)}
]
≤ 2 exp

(
Cβ,γ‖y‖∞t2√

n

)
for all

n ≥ Nβ,γ, for constants Nβ,γ , Cβ,γ > 0 depending only on β and γ.

Proof. Consider F as a function from Rpn to R. Then

∇XlF (X) = ∇Xl

 p∑
i=1

p∑
i′=1
i′ 6=i

1√
n
k

(
XT
i Xi′√
n

)
ziyi′


=

p∑
i=1
i 6=l

1

n
k′
(
XT
i Xl√
n

)
(ziyl + yizl)X

T
i

=
yl
n
vTz X +

zl
n
vTy X,

for vy, vz ∈ Rp with (vy)i = k′
(
XT
i Xl√
n

)
yi1{i 6= l} and (vz)i = k′

(
XT
i Xl√
n

)
zi1{i 6= l}. Then

‖∇F (X)‖2 =

p∑
l=1

‖∇XlF (X)‖2

=

p∑
l=1

2y2
l

n2
‖X‖2‖vz‖2 +

2z2
l

n2
‖X‖2‖vy‖2

=
4‖X‖2

n2

p∑
i=1

p∑
l=1
l 6=i

k′
(
XT
i Xl√
n

)2

z2
i y

2
l

≤ 4‖X‖2

n2

p
max
i=1

p∑
l=1
l 6=i

k′
(
XT
i Xl√
n

)2

y2
l

≤ 4‖X‖2

n2

p
max
i=1

 p∑
l=1
l 6=i

k′
(
XT
i Xl√
n

)4


1/2 p∑

l=1
l 6=i

y4
l


1/2
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≤ 4‖X‖2‖y‖∞
n2

p
max
i=1

 p∑
l=1
l 6=i

k′
(
XT
i Xl√
n

)4


1/2 p∑

l=1
l 6=i

y2
l


1/2

≤ 4‖X‖2‖y‖∞
n2

p
max
i=1

 p∑
l=1
l 6=i

k′
(
XT
i Xl√
n

)4


1/2

.

For θ ∈
[
0, π2

]
, let Xθ = X ′ cos θ +X sin θ. Then

‖Xθ‖2 ≤ (‖X ′ cos θ‖+ ‖X sin θ‖)2 ≤ 2‖X ′‖2(cos θ)2 + 2‖X‖2(sin θ)2 ≤ 2 max(‖X‖2, ‖X ′‖2),

so
p∑
l=1
l 6=i

k′
(

(Xθ)
T
i (Xθ)l√
n

)4

≤
p∑
l=1
l 6=i

exp

(
4β|(Xθ)

T
i (Xθ)l|√
n

)

=

p∑
l=1
l 6=i

exp

(
4β|(X ′i cos θ +Xi sin θ)T (X ′l cos θ +Xl sin θ)|√

n

)

≤
p∑
l=1
l 6=i

exp

(
4β(|XT

i Xl|+ |X ′i
TXl|+ |XT

i X
′
l |+ |X ′i

TX ′l |)√
n

)

≤

 p∑
l=1
l 6=i

exp

(
16β|XT

i Xl|√
n

)
1/4 p∑

l=1
l 6=i

exp

(
16β|X ′i

TXl|√
n

)
1/4

 p∑
l=1
l 6=i

exp

(
16β|XT

i X
′
l |√

n

)
1/4 p∑

l=1
l 6=i

exp

(
16β|X ′i

TX ′l |√
n

)
1/4

,

where the last line follows from Hölder’s inequality. Hence for any (X,X ′) ∈ G(β),

‖∇F (Xθ)‖2 ≤
Cβ,γ‖y‖∞
n1/2

all n ≥ Nβ,γ and some constants Nβ,γ , Cβ,γ > 0 depending on β and γ. Then

E
[
et(F (X)−F (X′))

1{(X,X ′) ∈ G(β)}
]

= E

[
exp

(
2

π

∫ π
2

0

πt

2

d

dθ
F (Xθ)dθ

)
1{(X,X ′) ∈ G(β)}

]

≤ E

[
2

π

∫ π
2

0
exp

(
πt

2

d

dθ
F (Xθ)

)
dθ 1{(X,X ′) ∈ G(β)}

]

=
2

π

∫ π
2

0
E
[
exp

(
πt

2
∇F (Xθ)

T X̃θ

)
1{(X,X ′) ∈ G(β)}

]
dθ,
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where the third line follows from Jensen’s inequality, X̃θ = −X ′ sin θ + X cos θ in the fourth line,
and the inner-product ∇F (Xθ)

T X̃θ represents the vector inner-product in Rpn. Noting that Xθ

and X̃θ are independent and both equal in law to X, we may first condition on Xθ and use the

Cauchy-Schwarz inequality and E
[
ec|(X̃θ)ij |

]
≤ E

[
ec(X̃θ)ij

]
+ E

[
e−c(X̃θ)ij

]
≤ 2e

c2

2 to obtain

E
[
et(F (X)−F (X′))

1{(X,X ′) ∈ G(β)}
]

=
2

π

∫ π
2

0
E

[
E

[
exp

(
πt

2
∇F (Xθ)

T X̃θ

)
1{(X,X ′) ∈ G(β)}

∣∣∣∣∣Xθ

]]
dθ

≤ 2

π

∫ π
2

0
E

E[exp
(
πt∇F (Xθ)

T X̃θ

) ∣∣∣∣∣Xθ

] 1
2

E

[
1{(X,X ′) ∈ G(β)}

∣∣∣∣∣Xθ

] 1
2

 dθ
≤ 4

π

∫ π
2

0
E

[
exp

(
π2t2‖∇F (Xθ)‖2

4

)
E
[
1{(X,X ′) ∈ G(β)}

∣∣∣∣Xθ

] 1
2

]
dθ

=
4

π

∫ π
2

0
E

E[exp

(
π2t2‖∇F (Xθ)‖2

2

)
1{(X,X ′) ∈ G(β)}

∣∣∣∣∣Xθ

] 1
2

 dθ
≤ 4

π

∫ π
2

0
E
[
exp

(
π2t2‖∇F (Xθ)‖2

2

)
1{(X,X ′) ∈ G(β)}

] 1
2

dθ

≤ 2 exp

(
π2Cβ,γ‖y‖∞t2

4n1/2

)
.

�

Definition 6.6. For m = dlog2 pe, let Dp
2 =

{
y ∈ Rp : ‖y‖ ≤ 1, ∀i, y2

i ∈ {0, 1, 1
2 ,

1
4 ,

1
8 , . . . ,

1
2m+3 }

}
.

For each l = 0, 1, . . . ,m + 3, let πl : Dp
2 → Dp

2 be defined by (πl(y))i = yi1{y2
i ≥ 2−l}, and let

πl\l−1 : Dp
2 → Dp

2 be defined by (πl\l−1(y))i = yi1{y2
i = 2−l}.

Lemma 6.7. For any x ∈ Rp with ‖x‖ ≤ 1, there exists y ∈ Dp
2 such that ‖x− y‖ < 9

20 , and hence

‖M‖ ≤ 10 supy∈Dp2 y
TMy for any symmetric M ∈ Rp×p.

Proof. If x = 0 or x2
i = 1 for some i, then we may take y = x. Otherwise, for each i = 1, . . . , p, if

2−l ≤ x2
i < 2−l+1 for some l ∈ {1, . . . ,m+ 3}, let yi = 2−

l
2 sign(xi), and if x2

i < 2−m−3, let yi = 0.
Then ‖y‖ ≤ ‖x‖ ≤ 1 and y ∈ Dp

2, and

‖x− y‖2 =
∑

i:x2
i≥2−m−3

(xi − yi)2 +
∑

i:x2
i<2−m−3

x2
i

≤
∑

i:x2
i≥2−m−3

(
1− 1√

2

)2

x2
i +

∑
i:x2

i<2−m−3

x2
i

≤
(

1− 1√
2

)2

+

(
1−

(
1− 1√

2

)2
) ∑
i:x2

i<2−m−3

x2
i

≤
(

1− 1√
2

)2

+
1

8

(
1−

(
1− 1√

2

)2
)

<

(
9

20

)2
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establishing the first claim. The second claim then follows from Lemma 5.4 in [31]. �

Lemma 6.8. For some constant C > 0, m = dlog2 pe, and all l ∈ {0, 1, . . . ,m + 3}, log |{πl(y) :
y ∈ Dp

2}| ≤ C(m+ 4− l)2l.

Proof. For any l ∈ {0, 1, . . . ,m},

|{πl\l−1(y) : y ∈ Dp
2}| ≤

2l∑
k=0

(
p

k

)
2k,

as there are at most 2l non-zero entries of πl\l−1(y), and for each non-zero entry there are two

choices of sign. Using
(
p
k

)
≤
( ep
k

)k
, and noting that k 7→ (2ep)kk−k is monotonically increasing over

k ∈ [0, 2p] and that 2l ≤ 2p for l ≤ m, this implies

log |{πl\l−1(y) : y ∈ Dp
2}| ≤ log

(
1 + 2l

(
2ep

2l

)2l
)
≤ log

(
1 + 2l

(
2e2m−l

)2l
)
≤ C(m− l + 1)2l

for a constant C > 0. For l ∈ {m+ 1,m+ 2,m+ 3}, we use the bound |{πl\l−1(y) : y ∈ Dp
2}| ≤ 3p,

as each coordinate of πl\l−1(y) takes one of three values. Then

log |{πl\l−1(y) : y ∈ Dp
2}| ≤ C2m ≤ C(m+ 4− l)2l

for a constant C > 0. Then

log |πl(y)| ≤
l∑

j=0

log |πj\j−1(y)| ≤ C
l∑

j=0

(m+ 4− j)2j = C(m+ 4− l)
l∑

j=0

2j + C

l−1∑
k=0

k∑
j=0

2j

≤ 2C(m+ 4− l)2l + 2C2l ≤ C ′(m+ 4− l)2l

for a constant C ′ > 0. �

Lemma 6.9. Under the setup of Proposition 6.2, let m = dlog2 pe. Then there are constants
C,Cβ,γ , Nβ,γ > 0 such that for any l ∈ {0, 1, . . . ,m+ 3}, any t > 0, and any n ≥ Nβ,γ,

P

[
sup
y∈Dp2

πl(y)TKn,p(X)πl\l−1(y) > t and (X,X ′) ∈ G(β)

]
≤ 2e

C(m+4−l)2l− t
2
√

2ln
4Cβ,γ ,

and for any l ∈ {1, . . . ,m+ 3}, any t > 0, and any n ≥ Nβ,γ,

P

[
sup
y∈Dp2

πl−1(y)TKn,p(X)πl\l−1(y) > t and (X,X ′) ∈ G(β)

]
≤ 2e

C(m+4−l)2l− t
2
√

2ln
4Cβ,γ .

Proof. Letting m = dlog2 pe and j = l − 1 or l,

P

[
sup
y∈Dp2

πj(y)Kn,p(X)πl\l−1(y) > t and (X,X ′) ∈ G(β)

]

= P

[
sup

y∈{πl(x):x∈Dp2}
πj(y)Kn,p(X)πl\l−1(y) > t and (X,X ′) ∈ G(β)

]
≤ eC(m+4−l)2l sup

y∈{πl(x):x∈Dp2}
P
[
πj(y)Kn,p(X)πl\l−1(y) > t and (X,X ′) ∈ G(β)

]
≤ eC(m+4−l)2le−λt sup

y∈{πl(x):x∈Dp2}
E
[
eλπj(y)Kn,p(X)πl\l−1(y)

1{(X,X ′) ∈ G(β)}
]
,

where the second line follows from πl\l−1(y) = πl\l−1(πl(y)) and πl−1(y) = πl−1(πl(y)), the third
line follows from a union bound and Lemma 6.8 for some constant C > 0, and the fourth line
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follows from Markov’s inequality for any λ > 0. Let Λ be the set of all diagonal matrices in Rp×p
with all diagonal entries in {−1, 1}. Note that (X,X ′) ∈ G(β) if and only if (X,DX ′) ∈ G(β) for
all D ∈ Λ. Then, conditional on X and (X,X ′) ∈ G(β), X ′ is equal in law to DX ′ for D uniformly
distributed over Λ, and

E[Kn,p(X
′)|X, (X,X ′) ∈ G(β)]

= E[Kn,p(DX
′)|X, (X,X ′) ∈ G(β)]

= E[E[Kn,p(DX
′)|X ′, X, (X,X ′) ∈ G(β)]|X, (X,X ′) ∈ G(β)]

= 0,

where the last line follows from E[Kn,p(DX
′)] = 0 for any fixed X ′ ∈ Rp×n as the kernel function

k is odd. Hence by Jensen’s inequality, for any y ∈ Dp
2,

E
[
e−λπj(y)Kn,p(X′)πl\l−1(y)

∣∣∣X, (X,X ′) ∈ G(β)
]
≥ 1,

and so

E
[
eλπj(y)Kn,p(X)πl\l−1(y)

1{(X,X ′) ∈ G(β)}
]

= E
[
eλπj(y)Kn,p(X)πl\l−1(y)

∣∣∣(X,X ′) ∈ G(β)
]
P[(X,X ′) ∈ G(β)]

≤ E
[
eλπj(y)Kn,p(X)πl\l−1(y)E

[
e−λyKn,p(X′)πl\l−1(y)

∣∣∣X, (X,X ′) ∈ G(β)
] ∣∣∣(X,X ′) ∈ G(β)

]
P[(X,X ′) ∈ G(β)]

= E
[
eλπj(y)(Kn,p(X)−Kn,p(X′))πl\l−1(y)

∣∣∣(X,X ′) ∈ G(β)
]
P[(X,X ′) ∈ G(β)]

= E
[
eλπj(y)(Kn,p(X)−Kn,p(X′))πl\l−1(y)

1{(X,X ′) ∈ G(β)}
]
.

Noting that ‖πl\l−1(y)‖∞ ≤ 2−
l
2 , Lemma 6.5 implies this last quantity is at most 2 exp

(
Cβ,γλ

2
√

2ln

)
for all y ∈ Dp

2 and n ≥ Nβ,γ . Setting λ = t
√

2ln
2Cβ,γ

gives the desired result. �

Proof of Proposition 6.2. Let m = dlog2 pe, let Dp
2, πl, and πl\l−1 be as in Definition 6.6, and let

C,Cβ,γ > 0 be the constants in Lemma 6.9. We may assume without loss of generality C ≥ 3. For
each l = 0, . . . ,m+ 3, let

tl =

√
8CCβ,γ(m+ 4− l)2

l
4

n
1
4

.

Let X ′ be an independent copy of X. Then by Lemma 6.9, for all n ≥ Nβ,γ and each l = 0, . . . ,m+3,

P

[
sup
y∈Dp2

πl(y)TKn,p(X)πl\l−1(y) > tl and (X,X ′) ∈ G(β)

]
≤ 2e−C(m+4−l)2l ,

and for each l = 1, . . . ,m+ 3,

P

[
sup
y∈Dp2

πl−1(y)TKn,p(X)πl\l−1(y) > tl and (X,X ′) ∈ G(β)

]
≤ 2e−C(m+4−l)2l .

Note

2
m+3∑
l=0

tl ≤
2
√

8CCβ,γ

n
1
4

m+3∑
l=0

(m+ 4− l)2
l
4 =

2
√

8CCβ,γ

n
1
4

m+3∑
l=0

l∑
j=0

2
j
4 ≤

C ′β,γ2
m
4

n
1
4

≤ C ′′β,γ

for some constants C ′β,γ , C
′′
β,γ > 0, while

sup
y∈Dp2

yTKn,p(X)y = sup
y∈Dp2

(
m+3∑
l=0

πl(y)TKn,p(X)πl\l−1(y) +
m+3∑
l=1

πl\l−1(y)TKn,p(X)πl−1(y)

)



THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES 33

≤
m+3∑
l=0

sup
y∈Dp2

πl(y)TKn,p(X)πl\l−1(y) +

m+3∑
l=1

sup
y∈Dp2

πl−1(y)TKn,p(X)πl\l−1(y).

Then

P

[
sup
y∈Dp2

yTKn,p(X)y > C ′′β,γ and (X,X ′) ∈ G(β)

]

≤
m+3∑
l=0

P

[
sup
y∈Dp2

πl(y)TKn,p(X)πl\l−1(y) > tl and (X,X ′) ∈ G(β)

]

+
m+3∑
l=1

P

[
sup
y∈Dp2

πl−1(y)TKn,p(X)πl\l−1(y) > tl and (X,X ′) ∈ G(β)

]

≤ 4

m+3∑
l=0

e−C(m+4−l)2l < 4(m+ 4)e−3m <
C ′ log p

p3

for some constant C ′ > 0 and all n ≥ Nβ,γ . By Lemma 6.4, this implies

P

[
sup
y∈Dp2

yTKn,p(X)y > C ′′β,γ

]
<
C ′ log p

p3
+ P[(X,X)′ /∈ G(β)] ≤

C ′′′β,γ
n2

for all n ≥ N ′β,γ and some constants C ′′′β,γ , N
′
β,γ > 0. The desired result then follows from Lemma

6.7. �

Appendix A. Combinatorial results

This appendix contains the proofs of a number of combinatorial lemmas used in Section 4, as
well as the proof of Proposition 4.15 and the explicit construction of the map ϕ in that proposition.
We restate any lemmas previously stated in Section 4 using their original numbering.

Lemma 4.11. Suppose a simple-labeling of an l-graph has k̃ n-vertices with non-empty label and

m̃ total distinct p-labels and distinct non-empty n-labels. Then m̃ ≤ l+k̃
2 + 1.

Proof. Let I = {1, . . . , p} and J = {1, . . . , n}, and consider an undirected graph G on the vertex
set I tJ (the disjoint union of I and J with n+p elements, treating elements of I and the elements
of J as distinct). Let G have an edge between i, i′ ∈ I if there are two consecutive p-vertices of
the l-graph having p-labels i and i′ in the simple-labeling and such that the n-vertex between them
has empty label, and let G have an edge between i ∈ I and j ∈ J if there are two consecutive
vertices of the l-graph such that the p-vertex has label i and the n-vertex has label j. The number
of vertices of G incident to at least one edge is m̃, and G must be connected, so it has at least m̃−1
edges. Note that an edge in G between i, i′ ∈ I corresponds to at least two consecutive pairs of
p-vertices in the l-graph such that the n-vertex between them has empty label, by condition (3) of

Definition 4.10, so the number of such edges is at most l−k̃
2 . Similarly, an edge in G between i ∈ I

and j ∈ J corresponds to at least two pairs of consecutive n and p-vertices of the l-graph such that
the n-vertex has non-empty label, by condition (2) of 4.10. Hence, the number of such edges is at

most 2k̃
2 . Then m̃− 1 ≤ l+k̃

2 . �

Lemma A.1. In any multi-labeling of an l-graph, each distinct n-label that appears must appear
on at least two n-vertices.

Proof. Suppose that an n-label j appears only once. The two p-vertices preceding and following
that n-vertex must have distinct labels, say i1 and i2, by condition (1) of Definition 4.3. Then
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exactly one edge in the l-graph has p-vertex endpoint labeled i1 and n-vertex endpoint having label
j (and similarly for i2 and j), contradicting condition (3) of Definition 4.3. �

Lemma A.2. Suppose l = 2 or l = 3. Then for any multi-labeling of the l-graph, all l p-labels are
distinct, and all l n-vertices have the same tuple of n-labels, up to reordering.

Proof. That all l p-labels are distinct is a consequence of condition (1) of Definition 4.3. Then by
conditions (2) and (3) of Definition 4.3, the n-vertices immediately preceding and following each
p-vertex must have the same tuple of n-labels, up to reordering, and hence all l n-vertices has the
same tuple of n-labels. �

Lemma A.3. In a multi-labeling of an l-graph with l ≥ 4, suppose a p-vertex V is such that its
p-label appears on no other p-vertices. Let the n-vertex preceding V be U , the p-vertex preceding U
be T , the n-vertex following V be W , and the p-vertex following W be X.

(1) If T and X have different p-labels, then the graph obtained by deleting V and W and
connecting U to X is an (l − 1)-graph with valid multi-labeling.

(2) If T and X have the same p-label, then the graph obtained by deleting U , V , W , and X and
connecting U to the n-vertex after X is an (l − 2)-graph with valid multi-labeling.

Proof. First consider case (1). As T and X have distinct p-labels, it remains true that no two
consecutive p-vertices in the (l− 1)-graph have the same p-label, so condition (1) of Definition 4.3
holds. Condition (2) of Definition 4.3 clearly still holds as well. If V has p-label i and W has
n-labels (j1, . . . , jd), then U has n-labels (j1, . . . , jd) as well, up to reordering, by conditions (2)
and (3) of Definition 4.3 for the original l-graph and the fact that V is the only p-vertex with label
i. Then in the (l − 1)-graph obtained by deleting V and W , the number of edges with p-vertex
endpoint labeled i and n-vertex endpoint having label js for any s = 1, . . . , d is zero, and the
number of edges with p-vertex endpoint labeled i′ and n-vertex endpoint having label j′ is the same
as in the original l-graph for all other pairs (i′, j′). Thus condition (3) of Definition 4.3 still holds
as well, so the (l − 1)-graph still has a valid multi-labeling.

Now consider case (2). X and the p-vertex after X must have different p-labels in the original
l-graph, by condition (1) of Definition 4.3. As T and X have the same p-label, this implies T and
the p-vertex after X must have different p-labels, so condition (1) of Definition 4.3 still holds in the
(l−2)-graph. Condition (2) of Definition 4.3 clearly still holds in the (l−2)-graph as well. Suppose
V has p-label i1, T and X have p-label i2, and W has n-labels (j1, . . . , jd). Then by conditions (2)
and (3) of Definition 4.3 for the original l-graph and the fact that V is the only p-vertex with label
i1, U must also have n-labels (j1, . . . , jd), up to reordering. Then in the (l − 2)-graph obtained
by deleting U , V , W , and X, the number of edges with p-vertex endpoint labeled i1 and n-vertex
endpoint having label js for any s = 1, . . . , d is zero, the number of edges with p-vertex endpoint
labeled i2 and n-vertex endpoint having label js for any s = 1, . . . , d is two less than in the original
l-graph, and the number of edges with p-vertex endpoint labeled i′ and n-vertex endpoint having
label j′ is the same as in the original l-graph for all other pairs (i′, j′). Hence condition (3) of
Definition 4.3 still holds as well, so the (l − 2)-graph still has a valid multi-labeling. �

Lemma 4.4. Suppose a multi-labeling of an l-graph has d1, . . . , dl n-labels on the first through
lth n-vertices, respectively, and suppose that it has m total distinct p-labels and n-labels. Then

m ≤ l+
∑l
s=1 ds
2 + 1.

Proof. We induct on l. For l = 2, a multi-labeling must have d1 = d2 and m = d1 + 2, and for
l = 3, a multi-labeling must have d1 = d2 = d3 and m = d1 + 3, by Lemma A.2. The result is then
easily verified in these two cases.

Suppose by induction that the result holds for l − 2 and l − 1, and consider a multi-labeling of
an l-graph with d1, . . . , dl and m as specified, and l ≥ 4. If each distinct p-label which appears in
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the labeling appears at least twice, then there are at most l
2 distinct p-labels. Lemma A.1 implies

there are at most
∑l
s=1 ds

2 distinct n-labels, so m ≤ l+
∑l
s=1 ds
2 , establishing the result.

Thus, suppose that some p-vertex V has a label that appears exactly once. Let the n-vertex
preceding V be U , the p-vertex preceding U be T , the n-vertex following V be W , and the p-vertex
following W be X. If T and X have different p-labels, follow procedure (1) in Lemma A.3 to obtain
a multi-labeling of an (l − 1)-graph. This multi-labeling now has m− 1 total distinct p-labels and

n-labels, and so the induction hypothesis implies m− 1 ≤ l−1+
∑l
s=1 ds−d
2 + 1 where d is the number

of n-labels of the deleted n-vertex W . Hence m ≤ l+
∑l
s=1 ds
2 − d+1

2 + 2 ≤ l+
∑l
s=1 ds
2 + 1.

If T and X have the same p-label, follow procedure (2) of Lemma A.3 to obtain a multi-labeling
of an (l − 2)-graph. This multi-labeling has at least m − d − 1 and at most m − 1 total distinct
p-labels and n-labels, where d is the number of n-labels of the deleted n-vertex W . The induction

hypothesis implies m − d − 1 ≤ l−2+
∑l
s=1 ds−2d
2 + 1, so m ≤ l+

∑l
s=1 ds
2 + 1. This completes the

induction in both cases, establishing the desired result. �

Lemma A.4. Suppose a multi-labeling of an l-graph has excess ∆, d1, . . . , dl n-labels on the first
through lth n-vertices, respectively, and at most l

2 distinct p-labels. Then at most 6∆ − 6 of the∑l
s=1 ds total n-labels are such that that distinct n-label appears three or more times in the labeling.

Proof. Observe that if m total distinct p-labels and n-labels appear in the labeling, and at most l
2 of

these are p-labels, then the labeling has at least m− l
2 distinct n-labels. If c is the number of distinct

n-labels that appear exactly twice, then, as each distinct n-label appears at least twice by Lemma

A.1, a pigeonhole argument implies 2c+ 3
(
m− l

2 − c
)
≤
∑l

s=1 ds, so c ≥ 3m− 3l
2 −

∑l
s=1 ds. Then

the n-labels which appear exactly twice account for at least 6m − 3l − 2
∑l

s=1 ds of the
∑l

s=1 ds
total n-labels, implying that at most 3l + 3

∑l
s=1 ds − 6m = 6∆− 6 total n-labels remain. �

Remark A.5. Lemma A.4 implies that if an l-graph has at most l
2 distinct p-labels, then it has

excess ∆ ≥ 1.

Lemma A.6. Suppose a multi-labeling of an l-graph has excess ∆. For each p-label i and n-label
j, let bij be the number of pairs of consecutive vertices in the l-graph such that the p-vertex of the
pair is labeled i and the n-vertex of the pair has label j in its tuple. Then

∑
i,j:bij>2 bij ≤ 12∆.

Proof. We induct on l. For l = 2 or 3, we must have bij = 2 for all (i, j) by Lemma A.2, and ∆ ≥ 0
by Lemma 4.4, so the result holds.

Suppose the result holds for l − 2 and l − 1, and consider a multi-labeling of an l-graph with
l ≥ 4. If each p-label that appears in the labeling appears at least twice, then there are at most
l
2 distinct p-labels, so Lemma A.4 implies that at most 6∆ of the total n-labels are such that that
distinct n-label appears at least three times. Note that for any distinct n-label j that appears only
twice, bij = 2 or bij = 0 for all p-labels i, by conditions (1) and (3) of Definition 4.3. For any
distinct n-label j that appears at least three times,

∑
i:bij>2 bij is exactly twice the total number

of appearances of j as an n-label (as the p-vertices to the left and right of any n-vertex containing
label j each contributes 1 to this sum). Then

∑
i,j:bij>2 bij ≤ 12∆ by Lemma A.4.

Now suppose that some p-vertex V has a label i that appears exactly once in the labeling.
Consider the (l− 1)-graph or (l− 2)-graph obtained by following either procedure (1) or procedure
(2) of Lemma A.3. In the (l − 1)-graph, bij = 0 for n-labels j that appear on the deleted n-
vertices U and W , whereas bij = 2 for such n-labels j in the original l-graph, and the values
bi′j′ for all other pairs (i′, j′) are the same in the two graphs. Hence

∑
i,j:bij>2 bij is the same

in the (l − 1)-graph as in the l-graph. Then the induction hypothesis implies
∑

i,j:bij>2 bij ≤

12
(
l−1+

∑l
s=1 ds−d
2 + 1− (m− 1)

)
≤ 12∆, where d is the number of n-labels on the deleted n-vertex

W (or U) and m is the total number of distinct n and p-labels in the original l-graph.
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In the case of the (l−2)-graph, suppose the deleted n-vertex W (or U) had d n-labels, of which d′

appear on an n-vertex other than W and U . If j is a distinct n-label that does not appear on W or
U , then clearly bij is the same in the (l−2)-graph and the original l-graph for all i. If j is one of the
d−d′ distinct n-labels that appear only on W and U , then bij = 0 or 2 in both the (l−2)-graph and
the original l-graph for all i. If j is one of the other d′ distinct n-labels, then in deleting U , V , W ,
and X, we may have reduced bij by 2 for at most two distinct i-labels (corresponding to the i-labels
of V and X). This implies

∑
i:bij>2 bij reduces by at most 8 for this j, with the maximal reduction

occurring if bij = 4 for both of these distinct i-labels in the original l-graph. Then by the induction

hypothesis,
∑

i,j:bij>2 bij − 8d′ ≤ 12
(
l−2+

∑l
s=1 ds−2d
2 + 1− (m− 1− (d− d′)

)
, as the (l − 2)-graph

has m−1−(d−d′) total distinct n and p-labels. Then
∑

i,j:bij>2 bij ≤ 12
(
l+

∑l
s=1 ds
2 + 1−m− d′

)
+

8d′ ≤ 12∆, so the result holds in this case as well, completing the induction. �

This concludes the proof of all combinatorial lemmas used in Section 4. The remainder of this
appendix establishes Proposition 4.15 and provides the explicit construction of the map ϕ in that
proposition.

Definition A.7. In an l-graph with a multi-labeling, an n-vertex is single if it has only one n-label.
It is a good single if it is single and if its n-label does not appear on any other n-vertex that is
not single. Otherwise, it is a bad single.

Definition A.8. In an l-graph with a (p, n)-multi-labeling, a pair (V, V ′) of distinct (not necessarily
consecutive) n-vertices is a good pair if the following conditions hold:

(1) V and V ′ have the same tuple of n-labels, up to reordering,
(2) V has at least two n-labels (as does V ′),
(3) Each distinct n-label appearing on V and V ′ does not appear on any other n-vertices besides

V and V ′.

Remark A.9. The p-labels of the two p-vertices preceding and following V must be distinct, by
condition (1) of Definition 4.3, and similarly for the p-labels of the two p-vertices preceding and
following V ′. As each n-label for V and V ′ does not appear on any other vertices besides V and V ′,
condition (3) of Definition 4.3 requires that, in fact, the two p-labels of the p-vertices preceding and
following V are the same as those of the p-vertices preceding and following V ′ (but not necessarily
in the same order).

Definition A.10. Suppose (V, V ′) is a good pair of n-vertices. Let the p-vertices preceding and
following V be U and W , respectively, and let the p-vertices preceding and following V ′ be U ′ and
W ′, respectively. Then the good pair (V, V ′) is proper if U has the same label as W ′ and U ′ has
the same label as W , and it is improper if U has the same label as U ′ and W has the same label
as W ′.

Definition A.11. The label-simplifying map is the map from (p, n)-multi-labelings of an l-graph
to (p, n+ 1)-simple-labelings of an l-graph, defined by the following procedure:

(1) While there exists an improper good pair of n-vertices (V, V ′), iterate the following: Let W
be the p-vertex following V and W ′ be the p-vertex following V ′, and reverse the sequence
of vertices starting at W and ending at W ′ along with their labels. (I.e., swap W with W ′,
the n-vertex following W with the n-vertex preceding W ′, etc.)

(2) For each n-vertex in a good pair, relabel it with the empty label.
(3) For each n-vertex that is neither a good single nor part of a good pair, relabel it with the

single label n+ 1.

Remark A.12. In the case where there are multiple improper good pairs in step (1) of this proce-
dure, it will not be important for our later arguments in which order the pairs (V, V ′) are selected.
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For concreteness, we may always select {V, V ′} to be the improper good pair whose sorted n-label-
tuple is smallest lexicographically, and we may take V to come before V ′ in the l-graph cycle.

Lemma A.13. The following are true for the label-simplifying map in Definition A.11:

(1) Step (1) of the procedure in Definition A.11 always terminates in a valid (p, n)-multi-labeling
with no improper good pairs.

(2) The image of any (p, n)-multi-labeling under the map is a valid (p, n+ 1)-simple-labeling.
(3) If two multi-labelings are equivalent, then their image simple-labelings are also equivalent.

Proof. Clearly each reversal in step (1) of the procedure in Definition A.11 preserves condition (2)
of Definition 4.3 as well as the number of good pairs and n-labels of each good pair. As W and
W ′ have the same p-label because (V, V ′) is improper, it also preserves conditions (1) and (3) of
Definition 4.3, so the labeling of the vertices after each such reversal is still a valid (p, n)-multi-
labeling. Each time an improper good pair (V, V ′) is identified and a reversal is performed, V and
V ′ become consecutive n-vertices in the l-graph, and the pair (V, V ′) becomes a proper good pair.
As V and V ′ are consecutive, they must remain consecutive under each subsequent reversal that is
performed, so their properness is preserved. Hence the procedure must terminate after a number of
iterations at most the total number of good pairs in the multi-labeling, and the final multi-labeling
is such that all good pairs are proper. This establishes (1).

To prove (2), note that the image labeling under the label-simplifying map has either one n-label
or the empty label for each n-vertex. Condition (1) of Definition 4.10 holds for the image labeling
by condition (1) of Definition 4.3 for multi-labelings, as the p-labels are preserved under steps (2)
and (3) of the procedure in Definition A.11. As all good pairs in the multi-labeling obtained after
applying step (1) of the procedure are proper, and step (2) of the procedure maps their labels to
the empty label, condition (3) of Definition 4.10 holds for the image simple-labeling. Finally, note
that if j is an n-label appearing on good single vertices in the multi-labeling, then condition (2) of
Definition 4.10 holds in the image labeling for this j and all p-labels i by condition (3) in Definition
4.3 for multi-labelings. For the new n-label n + 1 created under the label-simplifying map, note
that for each distinct p-label i, there must be an even number of total edges in the l-graph cycle
with p-endpoint labeled i. Of these, there must be an even number with n-endpoint j for any good
single label j, by the above argument, and there must also be an even number with n-endpoint
belonging to a good pair in the multi-labeling since these edges must come in pairs. Hence the
number of remaining edges adjacent to any p-vertex with label i must also be even. These are
precisely the edges with p-vertex endpoint labeled i and n-vertex endpoint labeled n + 1 in the
image labeling, so condition (2) of Definition 4.10 holds for the new n-label n + 1 and all p-labels
i as well. Hence the image labeling is a valid (p, n+ 1)-simple-labeling, establishing (2).

For (3), note that two p-vertices have the same label in the multi-labeling if and only if they have
the same label in the image simple labeling, so equivalence of p-labels is preserved under the map.
Furthermore, equivalent multi-labelings have the same good pairs of n-vertices and the same good
single n-vertices, and the good single n-vertices are divided into the same sets of vertices that share
a common label. Hence equivalence of n-labels is also preserved under the map, so (3) holds. �

Definition A.14. Let C and C̃ be the set of all multi-labeling equivalence classes and simple-
labeling equivalence classes, respectively, of an l-graph. For L ∈ C and any multi-labeling in class
L, let L̃ ∈ C̃ be the equivalence class of its image simple-labeling under the label simplifying map of
Definition A.11. Then define ϕ : C → C̃ by ϕ(L) = L̃.

By parts (2) and (3) of Lemma A.13, the above construction of ϕ is well-defined. The remainder
of this appendix shows that ϕ satisfies the conditions of Proposition 4.15.

Lemma A.15. Suppose a multi-labeling of an l-graph has excess ∆. Then at most 42∆ pairs of
consecutive p-vertices are such that their pair of p-labels appears (in some order) on three or more
pairs of consecutive p-vertices.
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Proof. We induct on l. For l = 2 and 3, there are zero pairs of consecutive p-vertices satisfying the
condition of the lemma, and ∆ ≥ 0 by Lemma 4.4, so the result holds.

Suppose by induction that the result holds for l − 2 and l − 1, and consider a multi-labeling of
an l-graph with l ≥ 4. Let d1, . . . , dl be the number of n-labels on the first through lth n-vertices,
respectively, and let m be the number of distinct p-labels and n-labels. First suppose each distinct
p-label which appears in the labeling appears at least twice. Then there are at most l

2 distinct
p-labels. Lemma A.4 implies that there are at least l − 6∆ n-vertices such that all of its n-labels
appear exactly twice. For any such n-vertex W and n-label j for W , consider the other n-vertex
W ′ also having n-label j. The two p-vertices preceding and following W must have the same pair
of labels as the two p-vertices preceding and following W ′, by conditions (1) and (3) of Definition
4.3. This implies that there are at most 6∆ pairs of p-labels which appear (in some order) on only
one consecutive pair of p-vertices.

On the other hand, the number of distinct p-labels in the multi-labeling is at most one more
than the number of distinct pairs of p-labels appearing on pairs of consecutive p-vertices. This is
easily seen by considering the undirected graph with vertices {1, . . . , p}, having an edge between
i, i′ ∈ {1, . . . , p} if and only if some consecutive pair of p-vertices have labels i and i′. The edges
of this graph must form a single connected component, so the number of vertices adjacent to at
least one edge (which is the number of distinct p-labels appearing in the multi-labeling) is at most

one more than the number of edges. Note that by Lemma A.1, there are at most
∑l
s=1 ds

2 distinct

n-labels in the multi-labeling, so there are at least m−
∑l
s=1 ds

2 distinct p-labels. Hence, there are at

least m−
∑l
s=1 ds

2 − 1 = l
2 −∆ distinct pairs of consecutive p-labels. By our previous argument, at

least l
2 − 7∆ of these pairs appear on at least two pairs of consecutive p-vertices. If c distinct pairs

of p-labels appear on exactly two pairs of consecutive p-vertices, then by a pigeonhole argument,
2c+ 3

(
l
2 − 7∆− c

)
≤ l, so c ≥ l

2 − 21∆. These account for at least l− 42∆ pairs of consecutive p-
vertices, implying that at most 42∆ pairs of consecutive p-vertices have a pair of p-labels appearing
three or more times. This establishes the result in this case.

Now suppose that there is some p-vertex, V , whose p-label appears only once in the labeling.
Consider the (l− 1)-graph or (l− 2)-graph obtained by following either procedure (1) or procedure
(2) of Lemma A.3. Note that this (l − 1)-graph or (l − 2)-graph has the same number of pairs of
consecutive p-vertices such that their pair of p-labels appears on three or more pairs of consecutive
p-vertices as in the original l-graph, since no such pair in the original l-graph could contain the
p-label of V . On the other hand, our proof of Lemma 4.4 shows that this (l − 1)-graph or (l − 2)-
graph has excess less than or equal to the excess of the original l-graph. Then the desired result
follows from the induction hypothesis. �

The next lemma represents a key insight into the structure of the multi-labelings defined in
Definition 4.3. It indicates that in any multi-labeling with small excess ∆, most of the non-single
n-vertices must belong to a good pair, and in particular, if ∆ = 0, then all non-single n-vertices
belong to good pairs.

Lemma A.16. Suppose a multi-labeling of an l-graph has excess ∆ and k single n-vertices. Then
there are at least l−k

2 − 48∆ good pairs of n-vertices.

Proof. Let the multi-labeling have d1, . . . , dl n-labels for the first through lth n-vertices, respectively,
andm total distinct p-labels and n-labels. We induct on l. If l = 2, then Lemma A.2 implies d1 = d2,
m = d1 + 2, and ∆ = 0. If d1 = d2 = 1, then k = 2 and there are no good pairs, and if d1 = d2 ≥ 2,
then k = 0 and there is one good pair. Hence the result holds. If l = 3, then Lemma A.2 implies
d1 = d2 = d3, m = d1 + 3, and ∆ = d1−1

2 . If d1 = d2 = d3 = 1, then k = 3, ∆ = 0, and there are

no good pairs. If d1 = d2 = d3 ≥ 2, then k = 0, ∆ ≥ 1
2 , and there are still no good pairs. In either

case, the result also holds.
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Assume by induction that the result holds for l − 2 and l − 1, and consider a multi-labeling of
an l-graph with l ≥ 4. First suppose each distinct p-label which appears in the labeling appears at
least twice. Then there are at most l

2 distinct p-labels. As there are l− k non-single n-vertices, by
Lemmas A.1 and A.4, there are at least l − k − 6∆ non-single n-vertices such that each n-label of
that vertex appears exactly twice. Let V be one such n-vertex. Suppose that V has two n-labels
j1 and j2 that occur on two different n-vertices W1 and W2 respectively, in addition to V . Then by
conditions (1) and (3) of Definition 4.3, the three pairs of consecutive p-vertices around V , W1, and
W2 must have the same pair of (distinct) p-labels. By Lemma A.15, there are at most 42∆ such
n-vertices V . Now suppose that all n-labels of V reappear on a single other n-vertex W1, but W1

has some additional n-label j not appearing on V . Then either all additional n-labels of W1 appear
at least three times, or there is some n-label j appearing on W1 and a single other n-vertex W2,
but not on V . In the former case, the number of such vertices W1 is at most 6∆ by Lemma A.4.
As V is the unique n-vertex sharing an n-label with W1 that appears exactly twice, this implies
the number of such vertices V is also at most 6∆. In the latter case, the three pairs of p-vertices
around V , W1, and W2 must have the same pair of p-labels, so by Lemma A.15, the number of such
vertices V is at most 42∆. Combining the results from all of these cases, there are then at least
l − k − 96∆ non-single n-vertices V whose labels all appear exactly twice, on one other n-vertex
V ′, and such that V ′ has no additional n-labels. These pairs (V, V ′) form at least l−k

2 − 48∆ good
pairs, so the conclusion holds.

Now suppose there is some p-vertex, V , whose p-label appears only once in the labeling. Let the
n-vertex preceding V be U , the p-vertex preceding U be T , the n-vertex following V be W , and
the p-vertex following W be X. By conditions (2) and (3) of Definition 4.3 and the fact that the
p-vertex of V appears only once, U and W must have the same tuple of n-labels, up to reordering.
Consider four cases:

(1) T and X have different p-labels, and U and W are single.
(2) T and X have different p-labels, and U and W each have d ≥ 2 n-labels.
(3) T and X have the same p-label, and U and W are single.
(4) T and X have the same p-label, and U and W each have d ≥ 2 n-labels.

In cases (1) and (2), remove V and W , and connect U to X. Lemma A.3 implies that the resulting
graph is an (l− 1)-graph with a valid multi-labeling. In case (1), this (l− 1)-graph has k− 1 single

n-vertices,
∑l

s=1 ds − 1 total n-labels, and m− 1 total distinct p-labels and n-labels. Then by the

induction hypothesis, it has at least (l−1)−(k−1)
2 −48

(
(l−1)+(

∑l
s=1 ds−1)

2 + 1− (m− 1)
)

= l−k
2 −48∆

good pairs. Note that in case (1), this (l − 1)-graph must have the same number of good pairs as
the original l-graph, so the desired result holds.

In case (2), the (l − 1)-graph has k single n-vertices,
∑l

s=1 ds − d total n-labels, and m − 1
distinct p-labels and n-labels. By the induction hypothesis, as d ≥ 2 by assumption, it has at least
(l−1)−k

2 − 48
(

(l−1)+(
∑l
s=1 ds−d)

2 + 1− (m− 1)
)
> l−k

2 − 48∆ + 1 good pairs. This (l− 1)-graph can

have at most one more good pair than the original l-graph. (It has exactly one more good pair if
the removed n-vertex W had a tuple of n-labels that occurred exactly three times on three different
n-vertices in the original l-graph.) So the number of good pairs in the original l-graph is at least
l−k

2 − 48∆ and the conclusion holds in this case as well.
In cases (3) and (4), remove U , V , W , and X, and connect T to the n-vertex after X. Lemma

A.3 implies that the resulting graph is an (l−2)-graph with a valid multi-labeling. In case (3), this

(l−2)-graph has k−2 single n-vertices,
∑l

s=1 ds−2 total n-labels, and either m−2 distinct p-labels
and n-labels if the removed n-vertices had an n-label appearing only those two times, or m − 1
distinct p-labels and n-labels otherwise. Suppose the former. Then, by the induction hypothesis,

this (l− 2)-graph has at least (l−2)−(k−2)
2 − 48

(
(l−2)+(

∑l
s=1 ds−2)

2 + 1− (m− 2)
)

= l−k
2 − 48∆ good



40 THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES

pairs, and it has the same number of good pairs as the original l-graph. If, instead, the (l−2)-graph
has m − 1 distinct p-labels and n-labels, then it can have at most one more good pair than the
original l-graph. (It has exactly one more good pair if the (l−2)-graph has a pair of n-vertices having
the n-label of the removed vertices U and W , and this pair now forms a good pair.) But in this case,

the (l − 2)-graph has at least (l−2)−(k−2)
2 − 48

(
(l−2)+(

∑l
s=1 ds−2)

2 + 1− (m− 1)
)
> l−k

2 − 48∆ + 1

good pairs, so the original l-graph must have at least l−k
2 − 48∆ good pairs in this case as well.

Finally, in case (4), the (l− 2)-graph has k single n-vertices,
∑l

s=1 ds − 2d total n-labels, and at
least m−d− 1 and at most m− 1 distinct p-labels and n-labels. If it has exactly m−d− 1 distinct
p-labels and n-labels, then we must have removed a good pair, and by the induction hypothesis, the

(l−2)-graph has at least (l−2)−k
2 −48

(
(l−2)+(

∑l
s=1 ds−2d)
2 + 1− (m− d− 1)

)
= l−k

2 −48∆−1 good

pairs. Hence the original l-graph had at least l−k
2 −48∆ good pairs. If, instead, the (l−2)-graph has

m− c− 1 distinct p-labels and n-labels for 0 ≤ c < d (so that d− c distinct n-labels in the removed
pair of n-vertices U and W appear more than just those two times), then U and W cannot be a good
pair in the original l-graph, and the (l−2)-graph can have at most d−c more good pairs than the l-
graph, one for each distinct n-vertex label of U and W that appeared more than twice in the l-graph.

The (l−2)-graph has at least (l−2)−k
2 −48

(
(l−2)+(

∑l
s=1 ds−2d)
2 + 1− (m− c− 1)

)
> l−k

2 −48∆+d−c
good pairs, which implies that the original l-graph had at least l−k

2 − 48∆ good pairs.
This completes the induction in all cases, so the conclusion holds for all l. �

Remark A.17. In the context of Theorem 2.5 and Lemma 4.7, if a = 0, then only multi-labeling
equivalence classes with no single n-vertices contribute to the sum in eq. (6). By Lemma A.16,
the multi-labelings with no single n-vertices and excess ∆ = 0, which comprise the dominant term

of this sum, must be such that all n-vertices belong to good pairs. Then there are exactly
∑l
s=1 ds

2
distinct n-labels in such multi-labelings, which in turn implies by the definition of ∆ that there are
exactly l

2 + 1 distinct p-labels. By Remark A.9, this identifies the sequence of p-labels appearing

along the l-graph cycle as a traversal of a tree with l
2 edges in the complete graph having vertices

{1, . . . , p}, where each edge of the tree is traversed exactly once in each direction. This corresponds
exactly to Wigner paths in the combinatorial proof of the semicircle law for Wigner matrices and
explains the emergence of the semicircle law as the limit measure µa,ν,γ in Theorem 2.5 in the case
where a = 0.

Remark A.18. A statement analogous to Lemma A.16 for the single n-vertices does not hold, i.e.,
it is not true in general that if a multi-labeling of an l-graph has excess ∆ and k single n-vertices,
then at least k −O(∆) of these are good singles.

Lemma A.19. Suppose a multi-labeling of an l-graph has excess ∆. Then there are at most 2∆
good pairs of n-vertices such that the two vertices in the pair are consecutive in the l-graph cycle
and the p-label of the p-vertex between them appears at least twice in the labeling.

Proof. Suppose that (V, V ′) is such a pair, W is the p-vertex between them, and W has p-label
i. If i appears on any p-vertex that is not between two consecutive n-vertices forming a good
pair, then change the p-label of W to a new p-label not yet appearing in the multi-labeling, and
do this for every such p-vertex W with label i (picking a different new p-label each time). If i
only appears on p-vertices between consecutive n-vertices forming good pairs, and there are c such
p-vertices including W , then change the p-labels of c − 1 of these p-vertices to c − 1 new labels
not yet appearing in the multi-labeling. Note that changing the p-label of any p-vertex between
two consecutive n-vertices forming a good pair to a new p-label not yet appearing in the labeling
cannot violate any of the conditions of Definition 4.3, so the resulting labeling is still a valid multi-
labeling. If x is the number of good pairs satisfying the condition of the lemma, then we have added
at least x

2 distinct new p-labels to the multi-labeling. If there were originally m distinct n-labels
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and p-labels and d1, . . . , dl n-labels on the first through lth n-vertices, respectively, then Lemma

4.4 implies m+ x
2 ≤

l+
∑
s=l ds
2 + 1, so x ≤ 2∆. �

Definition A.20. In a multi-labeling of an l-graph, a distinct p-label i that appears in the multi-
labeling is a connector if, among all n-vertices that are adjacent to any p-vertex with label i,
exactly two of them are bad singles and the remainder of them are either good singles or part of
good pairs. Two bad single n-vertices are connected if they are these two n-vertices corresponding
to a connector i. A sequence of bad single n-vertices W1, . . . ,Wa is a connected cycle if W1 is
connected to W2, W2 is connected to W3, etc., and Wa is connected to W1.

Note that in the above definition, “connector” refers to a distinct p-label i, not to any specific
p-vertex having label i, and any two “connected” bad single n-vertices are adjacent to p-vertices
having some connector label i but these p-vertices may be distinct vertices in the l-graph. Each bad
single n-vertex may be connected to at most two other bad single n-vertices (where the connectors
are the p-labels of the p-vertices adjacent to that bad single n-vertex), and hence this notion of
connectedness partitions the set of bad single n-vertices into connected components that are either
individual vertices, linear chains, or cycles. The motivation for the above definition comes from the
observation that if two bad single n-vertices are connected, then they must have the same n-label,
as follows from condition (3) of Definition 4.3 and the fact that n-labels appearing on good singles
and good pairs must be distinct from those appearing on n-vertices that are not good singles nor
good pairs.

Lemma A.21. Suppose a multi-labeling of an l-graph has excess ∆ and k single n-vertices, of
which k′ are good single and k − k′ are bad single. Then at least k − k′ − (288D + 2)∆ distinct
p-labels are connectors, and there are at most (192D+1)∆ connected cycles of bad single n-vertices.

Proof. Suppose the multi-labeling is a (p, n)-multi-labeling. Construct an undirected multi-graph
G on p vertices labeled {1, . . . , p}, with each edge of G having one label in {1, . . . , n}, such that
the following is true: Corresponding to each n-label j of each n-vertex V in the multi-labeling, if
V is preceded and followed by p-vertices having labels i1 and i2, there is an edge between vertices

i1 and i2 of G with label j. (Hence, if the multi-labeling has
∑l

s=1 ds total n-labels, then G has∑l
s=1 ds total edges.) Condition (3) of Definition 4.3 states that for any n-label j, each vertex of

G has even degree in the sub-graph consisting of only edges with label j.
We will sequentially remove the edges of G corresponding to the good pair and good single

n-vertices of the multi-labeled l-graph, until only the edges of G corresponding to the n-vertices
that are not good pairs or good singles remain. At any stage of this removal process, let us call
a vertex of G “active” if there is at least one edge still adjacent to that vertex. Let us define a
“component” as the set of active vertices that may be reached by traversing the remaining edges
of G from a particular active vertex. (Hence a component of G is a connected component, in the
standard sense, that contains at least two vertices.) We will keep track of the quantity

M = #{active vertices}+ #{distinct edge labels} −#{components}.
Note that initially, if the l-graph multi-labeling has m distinct p-labels and n-labels, then m is

also the number of active vertices plus the number of distinct edge labels of G. Also, G initially has
only one component, so M = m− 1. Let us now remove the edges of G corresponding to the good
pairs of the l-graph. If an n-vertex of a good pair has d n-labels, then the good pair corresponds
to 2d edges between a single pair of vertices in G, having d distinct edge labels that do not occur
elsewhere in G. Hence removing these 2d edges of G removes d distinct edge labels, and if this
also changes the connectivity structure of G, then either the number of components increases by
1, the number of components stays the same but the number of active vertices decreases by 1, or
the number of components decreases by 1 and the number of active vertices decreases by 2. In all
of these cases, upon removing these 2d edges from G, M decreases by at most d + 1. Then after
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removing all edges of G corresponding to good pairs, M ≥ m−1−
(∑l

s=1 ds−k
2

)
−
(
l−k

2

)
= k−∆, as

there are at most
∑l
s=1 ds−k

2 distinct n-vertex labels for the good pairs and at most l−k
2 good pairs.

Let us now remove the edges of G corresponding to the good single n-vertices in the l-graph.
Let j be an n-label that appears on a good single n-vertex, and consider removing the edges of G
with label j one at a time. As each vertex of G has even degree in the subgraph of edges of G
with label j, when the first such edge is removed, the number of components and active vertices
cannot change. Subsequently, the removal of each additional edge might increase the number of
components by 1, keep the number of components the same and decrease the number of active
vertices by 1, or decrease the number of components by 1 and the number of active vertices by 2.
When the last such edge is removed, there are no longer any edges with label j by the definition of
a good single, so the number of distinct edge labels decreases by 1. Hence removing all edges with
label j decreases M by at most the number of such edges, and M ≥ k− k′ −∆ after removing the
edges corresponding to all k′ good singles.

Call the resulting graph G′. Note that every vertex of G′ still has even degree in the sub-graph
consisting of edges with label j, for any j, and in particular, every active vertex of G′ has degree
at least two. Then by Definition A.20, a p-label i of the l-graph is a connector if and only if vertex
i has degree exactly two in G′, in which case the edges adjacent to i in G′ must have the same
label j, and the n-vertices with label j in the l-graph are the bad singles connected by connector
i. A connected cycle of bad single n-vertices in the l-graph corresponds to the edges of a cycle of
(necessarily distinct) vertices in G′ with degree exactly two.

The number of distinct edge labels that remain in G′ is the number of distinct n-labels in the
original l-graph multi-labeling that appear on n-vertices that are not good singles nor part of good
pairs, which by Lemma A.16 is at most 96D∆. Hence the number of active vertices minus the
number of components of G′ is at least k−k′−(96D+1)∆, by our lower bound on M . The number
of total edges in G′ is at most k − k′ + 96D∆, with k − k′ of them corresponding to bad single
n-vertices of the l-graph and at most 96D∆ of them corresponding to non-single n-vertices that
are not part of good pairs. Then the total vertex degree of G′ is at most 2(k − k′ + 96D∆). As
each active vertex in G′ has degree at least two, this implies there are at most k−k′+96D∆ active
vertices. Then there are at most (192D + 1)∆ components in G′, and hence at most (192D + 1)∆
connected cycles of bad single n-vertices in the l-graph. Furthermore, if x active vertices in G′ have
degree exactly two in G′, then as there are at least k−k′− (96D+1)∆ active vertices, a pigeonhole
argument implies 2x+4(k−k′− (96D+1)∆−x) ≤ 2(k−k′+96D∆), so x ≥ k−k′− (288D+2)∆.
Hence there are at least k − k′ − (288D + 2)∆ connectors in the l-graph multi-labeling. �

Proof of Proposition 4.15. For notational convenience, let C denote a positive constant that may
depend on D and that may change from instance to instance. Let ϕ be as defined in Definition
A.14. As ϕ preserves the p-labels, up to reordering, clearly condition (1) of Proposition 4.15 holds.

To verify condition (2), let L ∈ C be any multi-labeling equivalence class. Let ϕ(L) have k̃

n-vertices with non-empty label. This means L has k̃ n-vertices that do not belong to a good pair.

These vertices have at least k̃ total n-labels in L, implying that there are at most
∑l

s=1 ds − k̃
total n-labels on the good pair vertices, where d1, . . . , dl are the number of n-labels on the first

through lth n-vertices, respectively, in L. These good pair vertices account for at most
∑l
s=1 ds−k̃

2
distinct n-labels in L, and these are mapped to the empty label under the label-simplifying map.
Furthermore, by Lemma A.16, there are at most 2C∆(L) n-vertices that are not single and that
also do not belong to a good pair in L, and hence these have at most 2CD∆(L) additional distinct
n-labels in L that are mapped to the new n-label n + 1 under the label-simplifying map. Note
that any bad single n-vertex has an n-label that is the same as one of these 2CD∆(L) distinct
n-labels (otherwise it is a good single by definition), and the n-label of any good single n-vertex
is preserved under the label-simplifying map. Hence, if m is the number of total distinct p-labels
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and n-labels in L and m̃ is the number of total distinct p-labels and non-empty n-labels in ϕ(L),
then, as the set of distinct p-labels is unchanged under the label-simplifying map, this implies

m̃ ≥ m −
∑l
s=1 ds−k̃

2 − 2CD∆(L), so ∆̃(ϕ(L)) = l+k̃
2 + 1 − m̃ ≤ (2CD + 1)∆(L). Hence condition

(2) holds.

It remains to verify condition (3). Fix L̃ ∈ C̃, and let the “canonical simple-labeling” in the

class L̃ be the one in which each ith new p-label that appears in the l-graph cycle is label i and
each jth new n-label that appears in the l-graph cycle is label j. Note that as there are at most
l distinct p-labels and l distinct n-labels, the canonical simple-labeling is an (l, l)-simple-labeling
of the l-graph. For notational convenience, let us still denote this canonical simple-labeling by
L̃ when the meaning is clear. Consider the below (non-determined) procedure that constructs a

multi-labeling from L̃.

(1) Choose an n-label in {1, . . . , l} to be the “new label”, or assume there is no new label.

(n-vertices in L̃ with the new label will be the ones that are neither good singles nor part
of good pairs in the multi-labeling.)

(2) For all p-vertices, copy its p-label from L̃ to the multi-labeling, and for all n-vertices with

non-empty n-label that is not the “new label” in L̃, copy its n-label from L̃ to the multi-
labeling.

(3) Among n-vertices having the new label in L̃, choose a subset S of them that will correspond
to the non-single n-vertices that are not part of good pairs.

(4) For each n-vertex in S, choose the size of its n-label tuple in the multi-labeling to be between
2 and D, and pick the n-labels for that tuple.

(5) For each n-vertex with the new label but not belonging to S, pick one n-label for that
n-vertex in the multi-labeling.

(6) For all n-vertices with empty label in L̃, pair them up into good pairs for the multi-labeling.
(7) Let G be the set of good pairs (V, V ′) in the multi-labeling that are consecutive n-vertices

in the l-graph, and such that the p-label of the p-vertex between them appears at least
twice. Choose an ordered subset of G. For each (V, V ′) in this ordered subset, if W is the
p-vertex between V and V ′, choose some other p-vertex W ′ having the same p-label as W ,
and either reverse the sequence of vertices from W to W ′ or reverse the sequence of vertices
from W ′ to W .

(8) For each good pair in the multi-labeling, choose the size of its n-label tuple to be between
2 and D, pick the n-labels for the first vertex of the good pair, and pick a permutation of
these n-labels for the second vertex of the good pair.

The above procedure is non-determined in the sense that there are many ways to perform each of
the above steps, and hence many different multi-labelings may be the output of the procedure for
a single canonical simple-labeling L̃. (The above procedure may, in addition, construct labelings
that are not valid multi-labelings according to Definition 4.3, but those will be irrelevant for our
argument.) We claim that for any L ∈ ϕ−1(L̃), there is a multi-labeling in class L that may be

constructed from L̃ according to the above procedure, and furthermore that this multi-labeling is
a (l,Dl)-multi-labeling such that, for each good pair, the n-labels of the first n-vertex in the pair
are the smallest n-labels not yet appearing in the labeling and are in sorted order.

To verify this claim, note that the steps of the above procedure “invert” the label-simplifying
map in Definition A.11. The “new label” chosen in step (1) above corresponds to the label n + 1
that is given to n-vertices that are neither good singles nor part of good pairs in the multi-labeling
under the label-simplifying map (except, of course, if we take L̃ to be the canonical simple-labeling

equivalent to the output of the label-simplifying map, then the new label is no longer n+1 in L̃). If
no new label is chosen, this implies that the multi-labeling we construct has all of its n-vertices being
either a good single or part of a good pair. Steps (2)–(6) and (8) above invert the process by which
p-labels and n-labels are mapped from the multi-labeling to the simple-labeling under steps (2) and
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(3) of Definition A.11 for the label-simplifying map. Note that if step (1) of the label-simplifying
map in Definition A.11 is performed on any multi-labeling, each reversal that is performed causes
an additional good pair (V, V ′) of n-vertices that were not consecutive to become consecutive in
the l-graph, and they remain consecutive under each subsequent reversal. Hence, starting with the
final multi-labeling in which all good pairs are proper, we may perform this sequence of reversals in
reverse order to recover the original multi-labeling. So step (7) above inverts step (1) of Definition

A.11. This establishes that, for any multi-labeling equivalence class L ∈ ϕ−1(L̃), there exists some

multi-labeling L in class L that may be constructed by the above procedure from L̃. The above
procedure picks new n-labels for the non-good-single n-vertices of L in steps (4), (5), and (8), but
since it does not specify which n-labels are picked, there is a (l,Dl)-multi-labeling equivalent to L
that may also be constructed by the above procedure, and such that for each of its good pairs, the
n-labels of the first n-vertex in the pair are the smallest n-labels not yet appearing in the labeling
and are in sorted order. This establishes our claim.

Thus, to verify condition (3) of the proposition, it suffices to upper-bound the number of ways
in which each of the above steps (1)–(8) may be performed while still ensuring that the resulting
multi-labeling is a valid (l,Dl)-multi-labeling satisfying Definition 4.3, having excess ∆0, and such
that the first n-vertex of each good pair has n-labels that are the smallest n-labels not yet appearing
in the labeling and are in sorted order. As there are at most l distinct n-labels in L̃, there are at
most l + 1 ways of choosing the new label or choosing no new label in step (1). There is only one
way of performing step (2). By Lemma A.16, for a multi-labeling with excess ∆0, there can be at
most C∆0 n-vertices that are not single and also do not belong to a good pair. Hence, to obtain a
multi-labeling with excess ∆0, we may restrict our selection of S in step (3) to be of size at most
C∆0, so there are at most (l+ 1)C∆0 ways of choosing S in step (3). To perform step (4), for each
vertex in S, we may first choose the number of n-labels d between 1 and D, and then there are at
most (Dl)d ways of choosing the n-labels for that vertex.

For step (5), suppose that k single n-vertices and k′ good single n-vertices have been identified
in steps (1)–(4). In step (5) we must assign n-labels to each of the k − k′ n-vertices that are
bad singles. Recall the notions of connectors and connected bad singles from Definition A.20. By
Lemma A.21, there are at least k − k′ − C∆0 connectors. By condition (3) of Definition 4.3, any
two of the k − k′ bad single n-vertices connected by a connector must be given the same n-label
in the multi-labeling. Hence, going through the connectors one-by-one, each successive connector
constrains the n-label of one more bad single n-vertex, unless that connector closes a connected
cycle of such vertices. But as there are at most C∆0 total connected cycles by Lemma A.21, this
implies that the number of bad single n-vertices that we can freely label at most C∆0 (rather than
the naive bound of at most k − k′). Then there are at most (Dl)C∆0 ways to perform step (5).

For step (6), recall from Remark A.9 that the pairs of p-vertices surrounding the two n-vertices of
each good pair must have the same pair of p-labels. By Lemma A.15, for all but at most C∆0 of the
n-vertices with empty label, this pairing is uniquely determined. Then there are at most (C∆0)C∆0

ways of performing the pairing in step (6). For step (7), Lemma A.19 shows that |G| ≤ 2∆0. Then
there are at most 2∆0 ways of choosing each successive element in the ordered subset of G, and at
most 2l ways of choosing the other p-vertex W ′ as well as which half of the cycle to reverse for each
such added element. As the size of the ordered subset is also at most 2∆0, and we may choose to
not add any more elements to the ordered subset at any point, there are at most (4∆0l+1)2∆0 ways
of performing step (7). Finally, for step (8), for each good pair we may first choose the number of
n-labels d between 2 and D. As we are requiring that the first vertex of the pair have the smallest
n-labels not yet appearing in the multi-labeling and in sorted order, this determines uniquely the
choice of n-labels for this first vertex in the good pair. We may then choose the permutation of
these labels for the second vertex in the pair from one of d! choices.
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Combining the above arguments, we obtain the bound∑
L∈ϕ−1(L̃)

∆(L)=∆0

l∏
s=1

|ads(L)|
(ds(L)!)1/2

≤ (l + 1)
∑
S

|a1|k̃(L̃)−|S|

(
D∑
d=2

(Dl)d
|ad|

(d!)1/2

)|S|
(Dl)C∆0(C∆0)C∆0

(4∆0l + 1)2∆0

(
D∑
d=2

d!
a2
d

d!

) l−k̃(L̃)
2


≤ (l + 1)(Cl)C∆0 |a|k̃(L̃)(ν − a2)

l−k̃(L̃)
2

∑
S

|a|−|S|
(

D∑
d=2

(Dl)d
|ad|

(d!)1/2

)|S|
,

where the summation over S represents the sum over all possible sets S selected by step (3) of the
procedure above. As |S| ≤ C∆0 by our preceding argument, this implies

|a|−|S|
(

D∑
d=2

(Dl)d
|ad|

(d!)1/2

)|S|
≤ (Cl)C∆0 |a|−|S|

√
D

(
D∑
d=2

a2
d

d!

) |S|
2

≤
√
D(Cl)C∆0

(√
ν

|a|

)C∆0

.

The sum is over at most (l+ 1)C∆0 possible sets S, so this verifies condition (3) of the proposition

upon noting that
√
D(l + 1)C∆0+1(Cl)C∆0 ≤ lC3+C4∆0 for some constants C3, C4 > 0 and all

l ≥ 2. �

Appendix B. Moments of a deformed GUE matrix

In this Appendix, we prove Proposition 4.9. Recall Definition 4.8 of Mñ,p̃, Wp̃, Vñ,p̃, and Zñ,p̃.
Throughout this section, we will use p and n in place of p̃ and ñ, and we will suppress the dependence
of W , V , and Z on n and p.

Lemma B.1. Suppose n, p→∞ with p
n → γ. Then ‖Mn,p‖ → ‖µa,ν,γ‖ almost surely

Proof. Recall Mn,p =
√

γ(ν−a2)
p W + a

nV , where V = ZZT −D and D = diag(‖Zi‖22). We will apply

Proposition 8.1 of [6], conditional on V . The empirical spectral distribution of 1
nZZ

T converges
weakly a.s. to µMP,γ , the Marcenko-Pastur law with parameter γ. By a standard chi-squared tail

bound and a union bound, for any ε > 0, P[max1≤i≤p |‖Zi‖22−n| > εn] ≤ 2pe−
nε2

8 . Then the Borel-
Cantelli lemma implies

∥∥ 1
nD − I

∥∥ → 0 a.s., and hence the empirical spectral distribution of a
nV

converges weakly a.s. to the translated and scaled Marcenko-Pastur law µMP,shift of Proposition
2.11. Furthermore, µMP,γ has compact support, and the maximal distance between an eigenvalue

of 1
nZZ

T and the support of µMP,γ converges to 0 a.s. by the results of [34] and [1]. Hence the
same is true of µMP,shift and a

nV .

Let V = OΛOT where O is the real orthogonal matrix that diagonalizes V . Then the spectrum of

Mn,p is the same as that of
√

γ(ν−a2)
p OTWO+ a

nΛ. By the above argument, conditional on V , anΛ is

a non-random diagonal matrix whose empirical spectral distribution converges weakly to µMP,shift

and such that the maximal distance between any of its diagonal entries and supp(µMP,shift) con-

verges to 0 (a.s. in V ). Furthermore, OTWO is still distributed as the GUE by unitary invari-
ance. Hence the conditions of [6] are satisfied with no spike eigenvalues, so, conditional on V ,

Proposition 8.1 of [6] implies that the spectral norm of
√

γ(ν−a2)
p OTWO + a

nΛ converges a.s. to

sup{|x| : x ∈ supp(µsc � µMP,shift)}. As this convergence holds a.s. in V and the limit does
not depend on V , it holds a.s. unconditionally as well. The result then follows from Proposition
2.11. �
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Lemma B.2. Suppose n, p→∞ with p
n → γ, let l := l(n) be such that l(n)

n → 0, and let Bn be any

event. Then there exist positive constants C := Ca,ν,γ and c := ca,ν,γ such that E[‖Mn,p‖l1{Bn}] ≤
C lP[Bn] + e−cn for all large n.

Proof. Note

‖Mn,p‖ ≤

√
γ(ν − a2)

p
‖W‖+

|a|
n
‖ZZT ‖+

|a|
n

max
1≤i≤p

‖Zi‖22.

By Corollary 2.3.5 of [29], there exist positive constants A and B such that for all t ≥ A,

P[‖W‖ > t
√
p] ≤ Ae−Btp.

By Corollary 5.35 of [31], for all t ≥ 0,

P[‖ZZT ‖ > (
√
n+
√
p+
√
tn)2] ≤ P[‖Z‖ >

√
n+
√
p+
√
tn] ≤ 2e−

tn
2

By a standard chi-squared tail bound and a union bound, for all t ≥ 0,

P
[

max
1≤i≤p

‖Zi‖22 > n+
√
tn

]
≤ pe−

tn
8 .

Hence, for all t ≥ A and sufficiently large n,

P
[
‖Mn,p‖ > t

√
γ(ν − a2) + |a|(1.1 +

√
γ +
√
t)2 + |a|(1 +

√
t)
]
≤ Ae−Btp + 2e−

tn
2 + pe−

tn
8 .

So there exist constants C, ε > 0 depending on a, ν, γ such that, for all t ≥ C and sufficiently large
n, P[‖Mn,p‖ > t] ≤ e−εtn. Then we may write

E
[
‖Mn,p‖l1{Bn}

]
= E

[
‖Mn,p‖l1{Bn}1{‖Mn,p‖ ≤ C}

]
+ E

[
‖Mn,p‖l1{Bn}1{‖Mn,p‖ > C}

]
≤ C lP[Bn] +

∫ ∞
Cl

P
[
‖Mn,p‖l > t

]
dt

= C lP[Bn] +

∫ ∞
C

P[‖Mn,p‖ > s] · lsl−1ds

≤ C lP[Bn] + l

∫ ∞
C

e−εsn+(l−1) log sds

≤ C lP[Bn] + l

∫ ∞
C

e−(εn−l)sds

= C lP[Bn] +
l

εn− l
e−(εn−l)C

for all large n. As l = o(n), the result follows upon setting c = Cε
2 . �

Lemma B.3. Suppose n, p→∞ with p
n → γ. Then E[‖Mn,p‖]→ ‖µa,ν,γ‖.

Proof. By Lemma B.1, ‖Mn,p‖ → ‖µa,ν,γ‖ almost surely. Then lim inf E[‖Mn,p‖] ≥ E[lim inf ‖Mn,p‖] =
‖µa,ν,γ‖ by Fatou’s lemma, so it suffices to show lim supE[‖Mn,p‖] ≤ ‖µa,ν,γ‖+ ε for all ε > 0. Let
Bn =

{
‖Mn,p‖ > ‖µa,ν,γ‖+ ε

2

}
. Then

E[‖Mn,p‖] = E[‖Mn,p‖1{BCn }] + E[‖Mn,p‖1{Bn}] ≤ ‖µa,ν,γ‖+ ε
2 + E[‖Mn,p‖1{Bn}].

Lemma B.1 implies P[Bn] → 0, so Lemma B.2 (with l = 1) implies E[‖Mn,p‖1{Bn}] → 0 as well.
Then E[‖Mn,p‖] ≤ ‖µa,ν,γ‖+ ε for all large n, as desired. �

Lemma B.4. Suppose F : Rd → R is L-Lipschitz on a set G ⊆ Rk, i.e. |F (x)−F (y)| ≤ L‖x−y‖2
for all x, y ∈ G. Let ξ ∼ N(0, Id). Then there exists a function F̃ : Rd → R such that F̃ (x) = F (x)

for all x ∈ G, |F̃ (x)− F̃ (y)| ≤ L‖x− y‖2 for all x, y ∈ Rk, and, for all ∆ > 0,

P[F (ξ)− EF (ξ) ≥ ∆ + |EF (ξ)− EF̃ (ξ)| and ξ ∈ G] ≤ e−
∆2

2L2 .



THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES 47

Proof. Let F̃ (x) = infx′∈G(F (x′)+L‖x−x′‖2). Note that if x ∈ G, then F (x) ≤ F (x′)+L‖x−x′‖2
for all x′ ∈ G, so F̃ (x) = F (x). Also, for any x, y ∈ Rk and ε > 0, there exists x′ ∈ G such that

F̃ (x) ≥ F (x′) + L‖x− x′‖2 − ε. Then by definition, F̃ (y) ≤ F (x′) + L‖y − x′‖2, so F̃ (y)− F̃ (x) ≤
L‖y − x′‖2 − L‖x− x′‖2 + ε ≤ L‖x− y‖2 + ε. Similarly, F̃ (x)− F̃ (y) ≤ L‖x− y‖2 + ε. This holds

for all ε > 0, so |F̃ (x) − F̃ (y)| ≤ L‖x − y‖2. Finally, applying Gaussian concentration of measure

for the Lipschitz function F̃ ,

P[F (ξ)− EF (ξ) ≥ ∆ + |EF (ξ)− EF̃ (ξ)| and ξ ∈ G]

= P[F̃ (ξ) ≥ ∆ + |EF (ξ)− EF̃ (ξ)|+ EF (ξ) and ξ ∈ G]

≤ P[F̃ (ξ) ≥ ∆ + EF̃ (ξ)] ≤ e−
∆2

2L2 .

�

Lemma B.5. Suppose n, p → ∞ with p
n → γ, and let ε > 0. Then there exist c := ca,ν,γ > 0 and

N := Na,ν,γ,ε > 0 and a set G := Gn,p ⊂ Rp×n with P[Z ∈ G] ≥ 1 − 2e−
n
2 , such that for all t > ε

and n > N ,

P[‖Mn,p‖ ≥ ‖µa,ν,γ‖+ t and Z ∈ G] ≤ e−cnt2 .

Proof. Recall Mn,p =
√

γ(ν−a2)
p W + a

n(ZZT − diag(‖Zi‖22)). Denote

W =
(
(wii)1≤i≤p, (

√
2 Rewij ,

√
2 Imwij)1≤i<j≤p

)
∈ Rp

2
,

so that the entries of W and Z are iid N (0, 1). Let f : Rp2+np → R and fv : Rp2+np →
R for v ∈ Cp be given by f(W, Z) = ‖Mn,p‖ and fv(W, Z) = v∗Mn,pv, so that f(W, Z) =
supv∈Cp:‖v‖2=1 |fv(W, Z)|. Note that

fv(W, Z) =

√
γ(ν − a2)

p

 p∑
i=1

wii|vi|2 +
∑

1≤i<j≤p
wijvivj + wijvivj

+
a

n

 ∑
1≤i<j≤p

(vivj + vivj)Z
T
i Zj


=

√
γ(ν − a2)

p

 p∑
i=1

wii|vi|2 +
∑

1≤i<j≤p
(Rewij)(vivj + vivj) + i(Imwij)(vivj − vivj)


+
a

n

 ∑
1≤i<j≤p

(vivj + vivj)Z
T
i Zj

 ,

∂fv(W, Z)

∂wii
=

√
γ(ν − a2)

p
|vi|2,

∂fv(W, Z)

∂(
√

2 Rewij)
=

√
2γ(ν − a2)

p
Re(vivj),

∂fv(W, Z)

∂(
√

2 Imwij)
= −

√
2γ(ν − a2)

p
Im(vivj), ∇Zifv(W, Z) =

2a

n

p∑
j=1

j 6=i

Re(vivj)Zj .

Then, for any v ∈ Cp such that ‖v‖2 = 1,

‖∇fv(W, Z)‖22 =
γ(ν − a2)

p

 p∑
i=1

|vi|4 + 2
∑

1≤i<j≤p
|vivj |2

+
4a2

n2

p∑
i=1

∥∥∥∥∥∥∥∥
p∑
j=1

j 6=i

Re(vivj)Zj

∥∥∥∥∥∥∥∥
2

2

≤ γ(ν − a2)

p

(
p∑
i=1

|vi|2
)2

+
4a2

n2

p∑
i=1

|vi|2‖Z‖2‖v‖22
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=
γ(ν − a2)

p
+

4a2‖Z‖2

n2
.

Take G = {Z ∈ Rp×n : ‖Z‖ ≤ 2
√
n +
√
p}. Then by Corollary 5.35 of [31], P[Z /∈ G] ≤ 2e−

n
2 .

As Rp2 × G is convex, the above inequality implies fv(W, Z) is L-Lipschitz on Rp2 × G for L :=(
γ(ν−a2)

p +
4a2(2

√
n+
√
p)2

n2

)1/2
= O(n−1/2). Then

f(W, Z)− f(W ′, Z ′) ≤ sup
v∈Cp:‖v‖2=1

(
|fv(W, Z)| − |fv(W ′, Z ′)|

)
≤ sup

v∈Cp:‖v‖2=1

∣∣fv(W, Z)− fv(W ′, Z ′)
∣∣ ≤ L‖(W, Z)− (W ′, Z ′)‖2

for all W,W ′ ∈ Rp2
and Z,Z ′ ∈ G, so f is also L-Lipschitz on Rp2 ×G.

Let f̃ : Rp2+np → R be the L-Lipschitz extension of f on Rp2 × G given by Lemma B.4. Note
that

|Ef(W, Z)− Ef̃(W, Z)| = |E[(f(W, Z)− f̃(W, Z))1{Z /∈ G}]|

≤ E|f(W, Z)1{Z /∈ G}|+ E|f̃(W, Z)1{Z /∈ G}|.

Lemma B.2 (with l = 1) implies E|f(W, Z)1{Z /∈ G}| = E[‖Mn,p‖1{Z /∈ G}] = o(1). As f̃ is
L-Lipschitz,

|f̃(W, Z)| ≤ |f̃(0, 0)|+ L‖(W, Z)‖2 = |f(0, 0)|+ L‖(W, Z)‖2 = L‖(W, Z)‖2.

Let An =
{
‖(W, Z)‖2 ≤

√
2(p2 + np)

}
. As ‖(W, Z)‖22 is chi-squared distributed with p2 + np

degrees of freedom, a standard tail bound gives P
[
‖(W, Z)‖22 ≥ p2 + np+ t

]
≤ e−

t2

8(p2+np) . Then

E
[
‖(W, Z)‖22 1{A

C
n }
]

=

∫ ∞
p2+np

P
[
‖(W, Z)‖22 ≥ p

2 + np+ t
]
dt ≤

∫ ∞
p2+np

e
− t2

8(p2+np)dt

= 2
√
p2 + np

∫ ∞
√
p2+np

2

e−
s2

2 ds ∼ 4e−
p2+np

8 .

This implies

E|f̃(W, Z)1{Z /∈ G}| ≤ E[|f̃(W, Z)|1{Z /∈ G}1{An}] + E[|f̃(W, Z)|1{Z /∈ G}1{ACn }]

≤ L
√

2(p2 + np)P[Z /∈ G] + LE
[
‖(W, Z)‖22 1{A

C
n }
]1/2

= o(1).

Then |Ef(W, Z)−Ef̃(W, Z)| = o(1), so Lemmas B.3 and B.4 imply, for all t > ε and all sufficiently
large n (i.e. n > Na,ν,γ,ε independent of t),

P[‖Mn,p‖ ≥ ‖µa,ν,γ‖+ t and Z ∈ G]

≤ P
[
‖Mn,p‖ − E‖Mn,p‖ ≥ t− ε

2 + |Ef(W, Z)− Ef̃(W, Z)| and Z ∈ G
]

≤ e−
(t−ε/2)2

2L2 ≤ e−
t2

8L2 .

The result follows upon noting that L = O(n−1/2). �

Proof of Proposition 4.9. Let c > 0 and G ⊂ Rp×n be as given by Lemma B.5. Then, for any ε > 0,

E[‖Mn,p‖l1{Z ∈ G}] ≤ (‖µa,ν,γ‖+ ε)l + E
[
‖Mn,p‖l1{‖Mn,p‖ ≥ ‖µa,ν,γ‖+ ε}1{Z ∈ G}

]
= (‖µa,ν,γ‖+ ε)l +

∫ ∞
(‖µa,ν,γ‖+ε)l

P
[
‖Mn,p‖l ≥ t and Z ∈ G

]
dt
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= (‖µa,ν,γ‖+ ε)l +

∫ ∞
‖µa,ν,γ‖+ε

P[‖Mn,p‖ ≥ s and Z ∈ G] · lsl−1ds

≤ (‖µa,ν,γ‖+ ε)l + l

∫ ∞
ε

e−cns
2
(‖µa,ν,γ‖+ s)l−1ds

for all sufficiently large n, where we have applied Lemma B.5. Note that

l

∫ ∞
ε

e−cns
2
(‖µa,ν,γ‖+ s)l−1ds ≤ l

∫ ∞
ε

e−cns
2+l(‖µa,ν,γ‖+s)ds

= lel‖µa,ν,γ‖+
l2

4cn

∫ ∞
ε

e−cn(s−
l

2cn)
2

ds

=
lel‖µa,ν,γ‖+

l2

4cn

√
2cn

∫ ∞
√

2cn(ε− l
2cn)

e−
t2

2 dt

∼ lel‖µa,ν,γ‖+
l2

4cn

2cn
(
ε− l

2cn

)e−cn(ε− l
2cn)

2

→ 0

for l = O(log n), so E[‖Mn,p‖l1{Z ∈ G}] ≤ (‖µa,ν,γ‖+ ε)l + o(1). On the other hand, P[Z /∈ G] ≤
2e−

n
2 by Lemma B.5, so Lemma B.2 implies E[‖Mn,p‖l1{Z /∈ G}] = o(1) for l = O(log n). Hence

E[‖Mn,p‖l] ≤ (‖µa,ν,γ‖+ ε)l + o(1). As ε > 0 was arbitrary, this proves the desired result. �
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