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Abstract

Given a sample from a biviariate distribution, consider the problem of testing inde-
pendence. A permutation test using the sample correlation is known to be an exact level
α test. However, when used to test the null hypothesis that the samples are uncorrelated,
the permutation test can have rejection probability that is far from the nominal level.
Further, the permutation test can have large Type 3 (directional) error rate, whereby
there can be a large probability that the permutation test rejects because the sample
correlation is a large positive value, when in fact the true correlation is negative. It
will be shown that studentizing the sample correlation leads to a permutation test which
is exact under independence and asymptotically controls the probability of Type 1 (or
Type 3) errors. These conclusions are based on our results describing the almost sure
limiting behavior of the randomization distribution. We will also present asymptotically
robust randomization tests for regression coefficients, including a result based on a modi-
fied procedure of Freedman and Lane (1983). Simulations and empirical applications are
included.

Keywords: Testing independence; Randomization tests; Least squares; Partial cor-
relation; Studentization

1 Introduction

Assume (X1, Y1) , ..., (Xn, Yn) are i.i.d. according to a joint distribution P with marginal

distributions PX and PY . Define Xn = (X1, ..., Xn) and Y n = (Y1, ..., Yn). Let ρ = ρ(P ) =
corr(X1, Y1) and first consider the problem of testing the null hypothesis of independence,

H0 : P = PX × PY .

A permutation test can be constructed as follows. Define Gn to be the set of all permutations

π of {1, ..., n}. The permutation distribution of any given test statistic Tn (Xn, Y n) is defined
as

R̂Tn
n (t) =

1

n!

∑

π∈Gn

I {Tn(Xn, Y nπ ) ≤ t}

1,2 Research supported by NSF Grants DMS-1307973 and DMS-1007732
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where we write Y n
π for (Yπ(1), ..., Yπ(n)). A level α permutation test rejects if Tn(X

n, Y n) is
smaller than the α1/2 quantile or larger than the 1−α2/2 quantile of the permutation distri-

bution (where α1 and α2 are chosen so that α = α1 + α2). More precisely, the permutation
test is given by

φ(Xn, Y n) =



















1 Tn(X
n, Y n) < T

(m1)
n or Tn(X

n, Y n) > T
(m2)
n

γ1 Tn(X
n, Y n) = T

(m1)
n

γ2 Tn(X
n, Y n) = T

(m2)
n

0 T
(m1)
n < Tn(X

n, Y n) < T
(m2)
n

where T
(k)
n denotes the kth largest ordered value of {Tn(Xn, Y nπ ) : π ∈ Gn}, m1 = n!− b(1−

α/2)n!c + 1, m2 = n! − bα/2n!c, and γ1, γ2 are chosen so that

1

n!

∑

π:T (Xn,Y n
π )≤T (m1)

n

φ(Xn, Y nπ ) = α1 and
1

n!

∑

π:T (Xn,Y n
π )≥T (m2)

n

φ(Xn, Y nπ ) = α2

which ensures
1

n!

∑

π∈Gn

φ(Xn, Y nπ ) = α.

Usually for a two sided test, α1 = α2 = α/2, and for a one sided test, α1 = 0. The random-

ization hypothesis is said to hold if the distribution of (Xn, Y n) is invariant under the group
of transformations, Gn (i.e. (Xn, Y nπ ) is distributed as (Xn, Y n)). If the randomization hy-

pothesis holds, then the permutation test is exact level α (See Definition 15.2.1 and Theorem
15.2.2 of Lehmann and Romano).

To test the null hypothesis of independence, the normalized sample correlation

√
nρ̂n (Xn, Y n) =

√
n

∑

XiYi − nX̄nȲn
√

∑

(Xi − X̄n)2
∑

(Yi − Ȳn)2
.

can be used as the test statistic. Under the null hypothesis of independence, the distribution
of (Xn, Y n) is the same as that of (Xn, Y nπ ) for any permutation π. The randomization

hypothesis is satisfied and this test is exact level α. However, even in this case, if rejection
of independence is accompanied by the claim that ρ is positive (negative) when ρ̂n is large

positive (negative), then such claims have large error rates.

Suppose instead we are interested in testing the null hypothesis

H0 : ρ(P ) = 0,

against two sided alternatives. When testing H0, the Xi and Yi may be dependent under the

null, and the distribution of the test statistic may not be the same under all permutations of
the data. Therefore, the randomization hypothesis is violated and the test is not guaranteed

to be level α, even asymptotically. Under the null hypothesis that ρ = 0, if var(X1) > 0,
var(Y1) > 0, E(X1)

2 < ∞, E(Y1)
2 < ∞ and E(X1Y1)

2 < ∞, then the sampling distribution

of
√
nρ̂n(X

n, Y n) is asymptotically normal with mean zero and variance

τ2 = τ2(P ) =
µ2,2

µ2,0µ0,2
(1)
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where

µr,s = µr,s(P ) = E [(X1 − µX)r(Y1 − µY )s] .

It will be shown in the next section that the permutation distribution of the sample correla-

tion is not guaranteed to asymptotically approximate this distribution, and the permutation
test obtained by comparing the sample correlation with the quantiles of the permutation

distribution will not have the desired level asymptotically. Even more troubling, this discrep-
ancy can lead to large Type 3 (directional) error rate if one is interested in deciding the sign of
the correlation based on the sample correlation. A Type 3 error occurs when declaring ρ < 0

when in fact ρ > 0, or the other way around. For example, a researcher who rejects H0 due
to a large positive value of ρ̂n would like to claim ρ > 0. The results of Section 2 will show

that the permutation distribution does not approximate the true sampling distribution of
the sample correlation; however, appropriate studentization of the sample correlation yields

a permutation test which is asymptotically level α for testing correlation zero, but is also
exact in finite samples under independence. Randomization tests for regression coefficients

will be presented in Section 3 and for partial correlations will be given in Section 4. It will be
shown that appropriate studentization of the test statistic in the regression setting leads to

a permutation test that is exact when the error terms are independent of the predictor vari-
ables, and asymptotically valid when they are only assumed to be uncorrelated. In Section
5, simulation results will be presented showing the true rejection probability of the studen-

tized and unstudentized permutation tests. Finally, Section 6 gives empirical applications
comparing the studentized and unstudentized permutation tests, as well as plots comparing

the resulting permutation distributions. Proofs of the results in Section 2, 3 and 4 are given
in the appendix.

Robust asymptotic inference for parameters based on permutation tests has been much stud-

ied in the two sample problem. While the context of observing two independent samples is
distinct from the context of paired samples studied here, we will now provide a short review.

Typically, two sample permutation tests are exact when the underlying distributions are the
same, however the exactness property may fail if the parameters of interest are equal but
the distributions differ; see Romano (1990). Extensive work has been done to show how

studentizing two sample permutation tests can lead to an asymptotically valid test whenever
the parameters of interest are equal which also retains the exactness property in finite sam-

ples when the underlying distributions are the same. This was first discovered by Neuhaus
(1993), in the context of random censoring models. Further work on studentizing two sample

permutation tests has been done on comparing means by Janssen (1997), comparing vari-
ances by Pauly (2011), and comparing correlations by Omelka and Pauly (2012). Results on

studentizing linear statistics are given by Janssen (1999), and more generally by Chung and
Romano (2013). Applications of permutation tests can be found in Good (2005). The goal of

this paper is to show how studentizing the sample correlation coefficient calculated from one
sample of a bivariate density can lead to an asymptotically robust test. In the two sample
case, the permutation test is exact when the marginal distributions are equal, but in the case

of testing for independence, the permutation test is exact when the joint distribution is the
product of the marginal distributions. When permuting pairs of uncorrelatated variables, the

difficulty with the permutation test arises when the data is not independent as opposed to
the two sample test where the two samples are always assumed independent, but the permu-

tation test may fail when the underlying distributions are unequal. As with the two sample
problem, the “fix” of using a studentized or asymptotically distribution free statistic works
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here, although the heuristics and proofs are distinct.

Permutation tests are often used to test significance of one or more regression coefficients in

multiple regression, especially in biological or ecological studies. Winkler et al. (2014) dis-
cusses the applications of permutation methods for multiple linear regression to neuroimaging

data. Depending on the regression model assumed, permutation methods often fail to be ex-
act in regression (see Anderson and Robinson (2002) for a comparison of existing methods).
A common concern is that when the errors and predictor variables are uncorrelated, but

not independent (which includes heteroskedastic regression), permutation methods are not
guaranteed to be exact or even asymptotically valid. In these situations, asymptotically valid

tests based on a normal approximation using White’s heteroskedasticity-consistent covariance
estimators (White (1980)), or bootstrap methods such as the pairs bootstrap or the Wild

bootstrap, proposed by Wu (1986), may be used. However, the results on robust tests for
correlation extend naturally to testing for regression coefficients, and asymptotically valid

permutation tests can be constructed by using appropriately studentized test statistics.

2 Main Results

The first theorem will show that the permutation distribution does not asymptotically ap-

proximate the true sampling distribution of the correlation statistic. Instead, the permutation
distribution behaves asymptotically like the true sampling distribution of the correlation of

a sample from PX × PY (instead of from P ). As a result, comparing the sample correlation
with the quantiles of the permutation distribution will not give an asymptotically level α

test.

Theorem 2.1 Assume (X1, Y1) , ..., (Xn, Yn) are i.i.d. according to P such that X1 and
Y1 are uncorrelated but not necessarily independent. Also assume that E(X4

1) < ∞ and
E(Y 4

1 ) <∞. Then, the permutation distribution of Tn =
√
nρ̂n satisfies

lim
n→∞

sup
t∈R

∣

∣

∣
R̂Tn
n (t) − Φ(t)

∣

∣

∣
= 0

almost surely. However, √
nρ̂n(X

n, Y n)
L−→ N

(

0, τ2(P )
)

where τ2(P ) is defined by equation 1. Therefore,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Tn
n (t) − Fn(t)

∣

∣

∣ > 0

where Fn is the law of
√
nρ̂n(X

n, Y n), unless τ2(P ) = 1.

When the Xi and Yi are independent, the asymptotic variance of both the sampling distribu-
tion and the permutation distribution of

√
nρ̂n(X

n, Y n) are one. In this case, the quantiles

of the permutation distribution and the true sampling distribution will converge to the cor-
responding quantiles of the standard normal distribution (with probability one), and the test

is asymptotically level α. However, this is not necessarily the case when the (Xi, Yi) are
uncorrelated but dependent. In fact, when the (Xi, Yi) are uncorrelated but dependent, the

4



permutation distribution has variance one (asymptotically and n/(n− 1) in finite samples),
but the sampling distribution has limiting variance τ2(P ), which can take any value in the

interval [0,∞] as is summarized by the next theorem.

Theorem 2.2 If Xi and Yi are uncorrelated (but not necessarily independent),

0 ≤ E
[

(Xi − µX)2(Yi − µY )2
]

σ2
Xσ

2
Y

≤ ∞

and these bounds can be attained in the sense that there exists a joint distribution of (X1, Y1)

where cov(X1, Y1) = 0, but this ratio is 0, and likewise for which it is ∞.

When τ2(P ) < 1, the permutation test can have asymptotic null rejection probability much

smaller than the nominal level α, and when τ2(P ) > 1, the permutation test can have rejection
probability much larger than α. Further, this discrepancy can cause the permutation test to

have large Type 3 (directional) error when concluding that the true sign of the correlation is
equal to that of the sample correlation after rejecting H0. For example, when the Xi and Yi
are uncorrelated, and τ2(P ) is much larger than one, the permutation test will have rejection

probability α′ much larger than the nominal level α. By continuity, the rejection probability
when Xi and Yi have some small positive correlation can be made very near to α′. In this

case, the true sampling distribution of the sample correlation will be almost symmetric about
0, and the Type 3 error rate will be close to α′/2. Since α′ can be arbitrarily close to one,

the Type 3 error rate can be unacceptably large in this situation. Moreover, in cases when
τ2(P ) is small, the test can have large Type 2 error.

To remedy these problems, the test statistic can be studentized by

τ̂n =

√

µ̂2,2

µ̂2,0µ̂0,2

where

µ̂r,s =
1

n

n
∑

i=1

(Xi − X̄n)
r(Yi − Ȳn)

s

are the sample central moments. The studentized correlation statistic defined by Sn =√
nρ̂n/τ̂n is asymptotically pivotal in the sense that it is asymptotically distribution free

whenever the underlying distribution satisfies H0. If Tn is a pivotal statistic, then the true

sampling distribution of Tn under P has the same asymptotic behavior as the true sampling
distribution of Tn under PX × PY . But, if the randomization hypothesis is satisfied, the

permutation test using the statistic Tn is exact under PX×PY , and therefore, the permutation
distribution should asymptotically approximate the true sampling distribution under PX ×
PY . Applying a permutation to data sampled under P effectively destroys the dependence

between the pairs, and the distribution of the permutation distribution under P should behave
asymptotically like the permutation distribution under PX × PY . It is then reasonable to

expect that the quantiles of the permutation distribution of the studentized statistic will
approximate those of the true sampling distribution under P . Although τ̂2

n(Xn, Y n) converges

in probability to τ2(P ), if a permutation π is chosen uniformly, then τ̂2
n(Xn, Y nπ ) converges

in probability to 1, which is the same as the limit when the Xi and Yi are independent. By
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Slutsky’s theorem, the sampling distribution of
√
nρ̂n/τ̂n is asymptotically standard normal

and the next theorem gives that the permutation distribution of
√
nρ̂n/τ̂n is also standard

normal in probability (or almost surely under stronger moment assumptions).

Theorem 2.3 Assume (X1, Y1) , ..., (Xn, Yn) are i.i.d. according to P such that X1 and
Y1 are uncorrelated but not necessarily independent. Also assume that E(X4

1) < ∞ and

E(Y 4
1 ) <∞. The permutation distribution R̂Sn

n (t) of Sn =
√
nρ̂n/τ̂n satisfies

sup
t∈R

∣

∣

∣R̂Sn
n (t)− Φ(t)

∣

∣

∣→ 0

in probability. Under the stronger assumption that E(X8
1) <∞ and E(Y 8

1 ) <∞,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Sn
n (t) − Φ(t)

∣

∣

∣ = 0

almost surely.

Consequently, if
√
nρ̂n is studentized by τ̂n, then the quantiles of the permutation distribution

and the true sampling distribution converge in probability to the corresponding quantiles of

the standard normal distribution. The permutation test using the studentized statistic is
appealing because it retains the exactness property under PX×PY but is also asymptotically

level α under P .

Remark 2.4 (Limiting Local Power) To study the limiting local power of the studentized

permutation test, suppose that P0 satisfies H0 and consider a sequence {Pn} of contiguous
alternatives to P0. Under P0,

r̂n(1− α)
P−→ z1−α

where r̂n(1−α) is the 1−α quantile of the permutation distribution of
√
nρ̂n and z1−α is the

1 − α quantile of the standard normal distribution. By contiguity, it follows that

r̂n(1− α)
P−→ z1−α

under Pn. Using Slutsky’s theorem, this gives that the probability under Pn that the per-
mutation test rejects H0 converges to P (Y > z1−α) where Y is distributed as the limiting

distribution of Tn =
√
nρ̂n under Pn. In the case where Pn is a bivariate normal with corre-

lation ρn = h/
√
n, √

nρ̂n
L−→ N (h, 1)

under Pn and the limiting power against this sequence of alternatives is 1 − Φ(z1−α − h).

For a bivariate normal distribution, the Rao Score test which rejects for large values of
1√
n

∑n
i=1 XiYi is known to be locally asymptotically uniformly most powerful (see Lehmann

and Romano Theorem 13.3.2 and Example 13.3.5). Since the studentized permutation test

has the same limiting local power, the limiting local power of the studentized permutation test
is optimal. Thus, the loss of power of the permutation test is negligible in large samples.

However, the permutation test is widely robust against non-normality.
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Remark 2.5 (Limiting Type 3 Error Rate) Because this test controls the Type 1 error
rate, the Type 3 error rate is also controlled. Under contiguous alternatives, the Type 3 error

rate is asymptotically bounded above by α/2. For instance, let Pn be a sequence of normal
contiguous alternatives with correlations ρn = h/

√
n, where h > 0. Then the probability

that a Type 3 error occurs, i.e. the limiting probability that the test rejects and the sample
correlation is negative, is bounded bounded by (1 − Φ(z1−α − h))/2 < α/2.

The same techniques can be used to correct for permutation tests based on functions of the
sample correlation. For instance, a permutation test using Fisher’s z-transformation is not

guaranteed to be level α, but a studentized version is asymptotically level α. If the (Xi, Yi)’s
follow a bivariate normal distribution with correlation ρ, then

√
n(ρ̂n − ρ)

L−→ N (0, (1− ρ2)2).

Fisher proposed using the variance stabilizing transformation tanh−1(ρ) = 1
2 log

(

1+ρ
1−ρ

)

, which

has derivative 1
1−ρ2 so that

√
n(tanh−1(ρ̂)− tanh−1(ρ))

L−→ N (0, 1).

When the data is not normally distributed but has finite fourth moments, this transfor-
mation is no longer variance stabilizing (it is readily seen using the delta method that
var(tanh−1(ρ̂)) ≈ var(ρ̂)/(1 − ρ2)2 which is not constant when the data is not normally

distributed). When ρ = 0,

√
n(tanh−1(ρ̂) − tanh−1(ρ))

L−→ N
(

0, τ2(P )
)

,

but the permutation distribution of
√
n tanh−1(ρ̂) has asymptotic variance 1. This problem

can again be fixed asymptotically by studentizing by τ̂n (as defined above).

Theorem 2.6 Assume (X1, Y1) , ..., (Xn, Yn) are i.i.d. such that X1 and Y1 are uncorrelated

but not necessarily independent. If E(X4
1) < ∞ and E(Y 4

1 ) < ∞, then the permutation
distribution RUn

n (t) of Un =
√
n tanh−1(ρ̂n)/τ̂n satisfies

sup
t∈R

∣

∣

∣R̂Un
n (t) − Φ(t)

∣

∣

∣→ 0

in probability. Under the stronger assumption that E(X8
1) <∞ and E(Y 8

1 ) <∞,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Un
n (t)− Φ(t)

∣

∣

∣ = 0

almost surely.

Of course, if bivariate normality holds, then ρ = 0 implies independence and each of the
permutation tests discussed control Type 1 (and Type 3) errors.
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3 Applications to Linear Regression

The techniques of using studentizing test statistics for asymptotically valid permutation tests

seen in the previous section can be extended to regression problems. As motivation, consider
a simple univariate linear regression model

Y = α+ βX + ε,

where Xi ∈ R and εi are errors with mean zero and variance σ2. (For the moment, assump-

tions on the joint distribution of X and ε are not specified, but will be described below). To
test the hypothesis

H : β = 0,

it is natural to base a test on the sample correlation

√
nρ̂n (X, Y ) =

√
n

∑

XiYi − nX̄nȲn
√

∑

(Xi − X̄n)2
∑

(Yi − Ȳn)2

or the least squares estimator β̂n. If the Xi’s are independent of the εi’s, then an exact
permutation test can be performed by permuting the Xi’s. A permutation test may not
be exact if the predictors and errors are uncorrelated, however, following the results of the

previous section, studentizing the correlation coefficient leads to an asymptotically level α
test. Using the same techniques, asymptotically valid permutation tests can be performed in

multiple linear regression as well.

Remark 3.1 Throughout this section, we will assume that the constant is included in the

regression model. Otherwise, it is possible that the permutation distribution of
√
nβ̂n will not

approximate the sampling distribution asymptotically when β = 0. For example, in the simple

linear regression case discussed above, if the constant is not fit, basing a permutation test on√
nβ̂n is equivalent to basing a test on 1√

n

∑n
i=1XiYi. The distribution of 1√

n

∑n
i=1 XiYπ(i)

conditional on the Xi’s and Yi’s has mean nX̄nȲn, which may not converge to zero. But
the sampling distribution has mean zero asymptotically, so it will not be approximated by the

permutation distribution. A more rigorous justification of this claim is given in the appendix.

Consider the regression model specified by the following assumptions:

(1) Yi = α+X>
i β + εi, i = 1, ..., n where Xi ∈ R

p is a vector of predictor variables, and εi is

a mean zero error term.

(2) {(Yi, Xi)} are i.i.d. according to a distribution P with E(εi ·Xi) = 0.

(3) ΣXX := E((Xi− µX)(Xi− µX)>) and Ω := E(ε2i (Xi − µX)(Xi− µX)>) are nonsingular.
Furthermore,

∑n
i=1 XiX

>
i is almost surely invertible.

When {Xi, Yi} pairs are observed, one can define εi = Yi −X>
i β, where β is chosen so that

Xi and εi are uncorrelated. β can therefore be interpreted as the slope of the best fitting line,

and assumption (2) is unnecessary. A commonly used sub-family of the regression models
specified by assumptions (1)-(3) is heteroskedastic models, which assume that the conditional

8



variance of Yi given Xi changes with Xi, satisfy assumptions (1)-(3). For these models, there
exists a non-constant skedastic function σ2(Xi) = E

(

ε2i |Xi

)

. (Note that we are not assuming

E(εi|Xi) = 0, so the skedastic function may not be the conditional variance.)

Since the constant is included in the model, we may assume, without loss of generality,
that the Xi’s and Yi’s have been standardized to have sample mean zero (i.e. consider the

regression of Y − Ȳ on X − X̄). Under these model assumptions, White (1980) showed that
the ordinary least squares estimator β̂n = (X>X)−1X>Y is asymptotically normal,

√
n(β̂n − β) → N (0,Σ−1

XXΩΣ−1
XX).

In the case of heteroskedasticity, the center matrix in the covariance can be written as Ω =

E(σ2(Xi)XiX
>
i ). As will be seen in the proof of Theorem 3.1, permutation distribution of√

n(β̂n−β) is asymptotically normal with mean zero and variance E(ε2i )×Σ−1
XX when β = 0.

Unless E(ε2iXiX
>
i ) = E(ε2i )E(XiX

>
i ), the covariance of the permutation distribution is not

equal to that of the sampling distribution. Consequently, a permutation test of the hypothesis
H0 : β = 0 using the usual F-statistic will not be exact, and will not even be asymptotically

valid when the predictor and error terms are dependent.

Our aim is to test the hypothesis
H0 : β = 0.

To test this hypothesis, two randomization tests will be considered, each using the studentized
test statistic

Sn(X, Y ) = nβ̂>n
(

Σ̂−1
XXΩ̂Σ̂−1

XX

)

β̂n

where Σ̂XX = 1
n

∑

iX
>
i Xi and Ω̂ = 1

n

∑

i Y
2
i XiX

>
i .

If the εi are independent of the Xi, we can use this statistic for a permutation test done by

permuting the Y ′
i s. This test will not be exact if there is dependence, but since the statistic

is asymptotically pivotal, we expect that the permutation test will be asymptotically level α.

Theorem 3.2 Suppose that {(Xi, Yi)}ni=1 satisfies the regression model described by condi-

tions (1)-(3) above, and also assume that E(Y 4
1 ) < ∞ and E(X4

1j) < ∞ , j = 1, ..., p.

If β = 0, then the permutation distribution R̂Tn,π
n (t) of Sn obtained by permuting the Yi’s

satisfies

lim
n→∞

sup
t∈R

∣

∣

∣
R̂Sn,π
n (t) − R(t)

∣

∣

∣

P−→ 0

where R(·) is the law of a χ2
p random variable. Therefore,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Sn,π
n (t) − JSn (t, P )

∣

∣

∣ = 0.

where JS(t, P ) is the sampling distribution of Sn.

Alternatively, if it is assumed that the Xi are independent of the εi, and the errors are sym-

metric, then an exact randomization test can be obtained using the group of transformations
Gδ
n = {gδ : δ ∈ {1,−1}n} such that gδ(y1, ..., yn) = (δ1y1, ..., δnyn) for any y ∈ R

n. In par-

ticular, if the errors are symmetric and β = 0, then Sn(X, gδ(Y )) is distributed as Sn(X, Y )

9



for any uniformly chosen transformation gδ and the test is exact because the randomization

hypothesis is satisfied. The next theorem studies the asymptotic behavior of the permutation
distribution

R̂Sn,δ
n (t) =

1

2n

∑

gδ∈Gδ
n

I {Sn(X, gδ(Y )) ≤ t}

when the errors are not assumed to be symmetric or independent of the Xi, but instead

satisfy E (εi ·Xi) = 0.

Theorem 3.3 Suppose that {(Xi, Yi)}ni=1 satisfies the regression model described by condi-

tions (1)-(3) above. If β = 0, then the permutation distribution R̂Sn,δ
n (t) of Sn obtained

changing the sign of the Yi’s satisfies

lim
n→∞

sup
t∈R

∣

∣

∣
R̂Sn,δ
n (t) −R(t)

∣

∣

∣

P−→ 0

where R(·) is the law of a χ2
p random variable. Therefore,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Sn,δ
n (t)− JSn (t, P )

∣

∣

∣ = 0,

where JS(t, P ) is the sampling distribution of Sn.

Under the sequence of local alternatives β = h/
√
n, the permutation distribution of Sn

remains asymptoticallyχ2
p under either of the methods of permuting the data described above.

On the other hand, the sampling distribution of Sn under these alternatives is asymptotically

chi squared with p degrees of freedom and non-centrality parameter

λ =
∥

∥

∥Ω−1/2ΣXXh
∥

∥

∥

2

2
.

and so the local power of either of the randomization tests is P
(

C > χ2
p,1−α

)

where C ∼ χ2
p (λ)

and χ2
p,1−α is the 1 − αth quantile of a χ2

p distribution. Therefore, the two tests have the

same limiting local power functions under such alternative sequences. An advantage of the
randomization test conducted by permuting the Yi’s is that it can be extended to test if only

a subset of the regression coefficients are zero.

Suppose instead that we are interested in testing only a subset of the coefficients. Then,
a subset of the regression coefficients may be non-zero, and the Yi’s may no longer have
mean zero (conditionally). Even if the errors are symmetric, the randomization test using

sign changes will no longer work since Yi and −Yi will have different means. However, an
asymptotically valid permutation test can still be conducted by permtuing the regressors

corresponding to the coefficients of interest.

Consider the multiple linear regression model specified by the following assumptions:

(1’) Yi = α + X>
i β + Z>

i γ + εi, i = 1, ..., n where Xi ∈ R
k and Yi ∈ R

p−k are vectors of
predictor variables, and εi is a mean zero error term.

(2’) {(Yi, Xi, Zi)} are i.i.d. according to a distribution P with E(εi|Xi, Zi) = 0.
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(3’) ΣX̃X̃ := E((X̃i− µX̃)(X̃i− µX̃ )>) and Ω := E(ε2i (X̃i− µX̃ )(X̃i− µX̃)>) are nonsingular

where X̃>
i = (X>

i , Z
>
i ). Furthermore,

∑n
i=1 X̃iX̃

>
i is almost surely invertible.

Without loss of generality, assume that the Xi’s, Yi’s and Zi’s have been standardized to

have sample mean zero. In this setting, the ordinary least squares estimator, (β̂>n , γ̂
>
n )> =

(X̃>X̃)−1X̃>Y is asymptotically normal:

√
n

((

β̂n
γ̂n

)

−
(

β

γ

))

L−→ N (0,Σ−1

X̃X̃
ΩΣ−1

X̃X̃
).

To test the hypothesis
H : β = 0,

one could use a Wald statistic

Wn(X,Z, Y ) = n ·
(

R

(

β̂n
γ̂n

))>
[

RΣ̂−1

X̃X̃
Ω̂Σ̂−1

X̃X̃
R>
]−1

(

R

(

β̂n
γ̂n

))

(2)

with R = diag(1, ..., 1, 0, ..., 0), Σ̂X̃X̃ = 1
n

∑

i X̃
>
i X̃i and Ω̂ = 1

n

∑

i ε̂
2
i X̃iX̃

>
i (which are consis-

tent estimators of Σ and Ω respectively). This Wald statistic is asymptotically χ2
k.

If theXi’s are independent of the (Zi, Yi)’s, then for any permutation π of {1, ..., n}, (Xπ(i), Zi, Yi)
is distributed as (Xi, Zi, Yi). Moreover, W (Xπ, Z, Y ) is distributed as W (X,Z, Y ). The ran-

domization hypothesis is satisfied, and a permutation test conducted by permuting the Xi’s
while keeping the (Yi, Zi) pairs together is exact. When there is dependence, the test is no
longer exact, but the permutation distribution

R̂Wn
n (t) =

1

n!

∑

π∈Gn

I
{

W (Xπ(i), Zi, Yi) ≤ t
}

is asymptotically χ2
p and the test is asymptotically level α.

Theorem 3.4 Suppose that {(Yi, Xi, Zi)}ni=1 satisfies the regression model specified by con-

ditions (1’)-(3’). If β = 0, the permutation distribution R̂Wn (t) of Wn obtained by permuting

the Xi’s satisfies

lim
n→∞

sup
t∈R

∣

∣

∣R̂Wn
n (t)− R(t)

∣

∣

∣

P−→ 0

where R(·) is the law of a χ2
k random variable. Therefore,

lim
n→∞

sup
t∈R

∣

∣

∣R̂Wn
n (t) − JWn

n (t, P )
∣

∣

∣ = 0.

where JWn
n (t, P ) is the sampling distribution of Wn.

Another approach to testing H0 : β = 0 using permutations of the data was suggested by

Freedman and Lane (1983). They proposed the following procedure:

• Fit the model Y = Xβ̂n + Zγ̂n + ε̂

11



• Compute

Fn(Y,X, Z) = n ·
(

R

(

β̂n
γ̂n

))>
[

Rs2(X̃>X̃)−1R>
]−1

(

R

(

β̂n
γ̂n

))

,

the F-statistic to test H : β = 0 with s2 = 1
n−p

∑n
i=1 ε̂

2
i

• Fit Y = Zγ̂n + ε̂

• Generate new samples Y ∗
i = Z>

i γ̂n + ε̂π(i)

• Regress Y ∗ on X and Z, get a new F statistic, say Fπ

• Compare the original F-statistic with the appropriate quantiles of the permutation
distribution

P̂Fn
n (t) =

1

n!

∑

π

I {Fπ ≤ t}

Their procedure does not appear to be exact under any circumstance, but is asymptotically

valid when the regressors are independent of the error terms. This procedure may fail to
be asymptotically valid under the relaxed model assumptions (1’)-(3’). When β = 0, the
sampling distribution of

√
nβ̂n is asymptotically N (0, RΣεXZR

>) where

ΣεXZ =

(

E(ε2iXiX
>
i ) E(ε2iZiX

>
i )

E(ε2iZiX
>
i ) E(ε2iZiZ

>
i )

)

.

Asymptotically, the F-statistic is distributed asN>E(ε2i )RΣXZR
>N , whereN ∼ N (0, RΣεXZR

>)

and

ΣXZ =

(

E(XiX
>
i ) E(ZiX

>
i )

E(ZiX
>
i ) E(ZiZ

>
i )

)

.

Therefore, the sampling distribution of the F-statistic is not always asymptotically chi-
squared. Nevertheless, the permutation distribution, which behaves as though the regressors
are independent of the error terms, will always be asymptotically chi-squared. This procedure

is asymptotically correct if instead of the F-statistic, the Wald statistic defined in Equation
2 is used.

Theorem 3.5 Suppose that {(Yi, Xi, Zi)}ni=1 satisfies the regression model specified by condi-

tions (1’)-(3’). If β = 0, the permutation distribution P̂Wn (t) of Wn obtained by the Freedman-

Lane procedure satisfies

lim
n→∞

sup
t∈R

∣

∣

∣P̂Wn
n (t) −R(t)

∣

∣

∣

P−→ 0

where R(·) is the law of a χ2
k random variable. Therefore,

lim
n→∞

sup
t∈R

∣

∣

∣
P̂Wn
n (t) − JWn

n (t, P )
∣

∣

∣
= 0.

where JWn
n (t, P ) is the sampling distribution of Wn.

While the Freedman-Lane procedure does not have any of the usual exactness properties

of a permutation test, it may be favorable to the previous permutation test when there is
dependence between the regressors of interest and nuisance regressors.
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4 Partial Correlation

Suppose we have univariate variables X and Y , and a multivariate variable Z which satisfy

model assumptions (1’)-(3’). The partial correlation between X and Y given Z, denoted
ρX,Y |Z is the correlation between the residual RX = Xi−Z>

i E(ZiZ
>
i )−1E(ZiXi) of regressing

X on Z and the residual RY = Yi − Z>
i E(ZiZ

>
i )−1E(ZiYi) of regressing Y on Z.

The problem of testing partial correlation is related to the problem of inference for a single

regression coefficient in the presence of nuisance regressors. The sample partial correlation
is proportional to the ordinary least squares estimate of the coefficient β in the model Y =

Xβ+Zγ+ε, and testing that the sample correlation is zero is equivalent to testingH0 : β = 0.
Consequently, either of the randomization tests for this hypothesis proposed in the previous
section are appropriate for testing partial correlation. Alternatively, a randomization test

can be based on permuting residuals and recomputing the partial correlation on permuted
residuals.

Write

rX = X − (Z>Z)−1Z>X = X − X̂

and

rY = Y − (Z>Z)−1Z>Y = Y − Ŷ .

The sample partial correlation is the sample correlation between rX and rY

ρ̂X,Y |Z =

∑n
i=1(Yi − Ŷi)(Xi − X̂i)

√

∑n
i=1(Xi − X̂i)2

∑n
i=1(Yi − Ŷi)2

It is easily seen that the sample correlation is related to the ordinary least squares estimate
of β:

ρ̂X,Y |Z =

√

∑n
i=1(Xi − X̂i)2

∑n
i=1(Yi − Ŷi)2

β̂n.

Define

X̌i = Xi − Z>
i E(Z>Z)E(Z>X)

and

Y̌i = Yi − Z>
i E(Z>Z)E(Z>Y ).

When the partial correlation is zero, the asymptotic distribution of ρ̂X,Y |Z is normal with

mean zero and variance σ2 = E(X̌2Y̌ 2)

E(X̌2)E(Y̌ 2)
. However, the permutation distribution of the

sample correlation computed on permuted residuals is asymptotically standard normal. If we

instead use the studentized statistic ρ̂X,Y |Z/σ̂n where

σ̂n =

√

∑n
i=1(Yi − Ŷi)2(Xi − X̂i)2

∑n
i=1(Xi − X̂i)2

∑n
i=1(Yi − Ŷi)2

,

then both the sampling distribution and the permutation distribution are asymptotically

standard normal when the partial correlation is zero.
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Theorem 4.1 Assume (X1, Y1, Z1) , ..., (Xn, Yn, Zn) are i.i.d. according to P such that X1

and Y1 are uncorrelated but not necessarily independent conditionally on the Zi. Also as-

sume that E(X4
1) < ∞ and E(Y 4

1 ) < ∞. The permutation distribution R̂Tn
n (t) of Tn =√

nρ̂X,Y |Z/σ̂n satisfies

sup
t∈R

∣

∣

∣R̂Tn
n (t) − Φ(t)

∣

∣

∣→ 0

in probability.

Although asymptotically valid, the permutation test using permutations of theX observations
discussed in the previous section may not be appropriate when X and Y are not independent

of Z. However, the Freedman-Lane procedure, and the test permuting the residuals preserve
the dependence of X and Y on Z and are a better choice for testing partial correlation.

5 Simulations

Recall that a random vector X is said to have an elliptical distribution with parameters µ

(a vector) and Σ (a positive definite symmetric matrix) if it has a characteristic function
of the form φ(t) = exp(it′µ)ψ(t′Σt), where ψ is a scalar function. If X has an elliptical

distribution, then E(X) = µ and cov(X) = −∂ψ(0)
∂t Σ, i.e. the covariance is proportional to

Σ. The elliptical distributions provide many joint distributions having correlation zero but
dependence between the variables since correlation zero implies independence only when the

data is normally distributed.

The density functions of elliptical distributions have the form f(x) = cg((x−µ)′Σ−1(x−µ)),

where g is a univariate density, and c is the appropriate normalizing constant. For instance,
if we take g to be the density function of a t distribution with ν degrees of freedom, we get

the distribution function of a d-dimensional multivariate t-distribution, denoted by tν(µ,Σ):

f(x) =
1

|Σ|1/2(νπ)d/2
· Γ((ν + d)/2)

Γ(ν/2)
·
(

1 +
x′Σ−1x

v

)−(ν+d)/2

.

When µ = 0, samples from this distribution can be generated by dividing a d-dimensional
normal vector with mean 0 and covariance Σ by an independent chi-squared random variable

with ν degrees of freedom. We will consider a bivariate t distribution with covariance the
identity and 5 degrees of freedom (so that there are finite fourth moments).

Also, an elliptically distributed, p-dimensional random vector X can be obtained by taking

X = µ+ rS ′u(k)

where r ≥ 0 is a random variable, S is a k×p matrix satisfying S ′S = Σ, and u(k) is a random

variable that is uniformly distributed on the k-dimensional unit sphere and independent of
r. For example, we will consider the case where k = p = 2, µ is zero, Σ = diag(2, 1), and

r ∼ exp(1).

Another common example of a distribution is the circular uniform distribution, which gives
(X, Y ) uniformly distributed on the unit circle.
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Distribution n: 10 25 50 100 200

N (0, 1)

Bootstrap 0.0800 0.0700 0.0700 0.0640 0.0580

Normal Approx 0.2240 0.1220 0.0840 0.0820 0.0600
Not Studentized 0.0480 0.0480 0.0440 0.0500 0.0480

Studentized 0.0480 0.0540 0.0480 0.0600 0.0500

Multivariate t5

Bootstrap 0.0920 0.0820 0.0940 0.0620 0.0640
Normal Approx 0.2960 0.1640 0.1260 0.1000 0.0760

Not Studentized 0.0920 0.0980 0.1580 0.1680 0.1640
Studentized 0.0760 0.0580 0.0700 0.0560 0.0570

Exponential

Bootstrap 0.0700 0.0620 0.0380 0.0500 0.0700

Normal Approx 0.1320 0.0680 0.0580 0.580 0.0660
Not Studentized 0.0240 0.0120 0.0100 0.0060 0.0020

Studentized 0.0360 0.0400 0.0460 0.0560 0.0580

Circular

Bootstrap 0.0500 0.0540 0.0600 0.0620 0.0480
Normal Approx 0.1600 0.0800 0.0680 0.0600 0.0440

Not Studentized 0.0080 0.0020 0.0060 0.0040 0.0200
Studentized 0.0320 0.0300 0.0420 0.0510 0.0480

t4.1

Bootstrap 0.0960 0.0880 0.0920 0.0800 0.0660

Normal Approx 0.3100 0.2180 0.1520 0.1180 0.0780
Not Studentized 0.1040 0.1920 0.2440 0.2960 0.2900

Studentized 0.0820 0.1020 0.1140 0.0980 0.0700

Table 1: Rejection probabilities for bootstrap, normal approximation and permutation tests

for ρ = 0 using the sample correlation statistic.

It is also seen in the appendix that µ22
µ20µ02

can be made arbitrarily large by taking X = W+Z
and Y = W − Z, where W and Z are independent tv random variables with v close to four.

As an example, we will consider v = 4.1.

Finally, we consider two examples where the data used is of the form X = W + Z and

Y = W − Z, where X and Y are independent and identically distributed. In the first
example, we will choose W,X ∼ t4.1 so that the ratio µ22

µ20µ02
is large (and the quantiles of the

limiting sampling distribution are much larger than those of the permutation distribution of
the unstudentized test statistic).

Table 1 presents rejection probabilities estimated by 1000 simulations at nominal level α =

.05. Results are for tests using the bootstrap distribution, the normal approximation, the un-
studentized permutation, and the studentized permutation distribution. For the permutation
tests, 800 permutations were used.

Table 2 below gives the same simulations as Table 1, but instead uses Fisher’s z-transformation.

Because Fisher’s z-transformation is monotonic, the unstudentized test rejects exactly when
the unstudentized permutation test based on the untransformed correlation rejects.

The simulations for testing sample correlation indicate that an unstudentized permutation

test can indeed have rejection probability , even in large sample. The studentized permutation
test has the desired rejection probability for large n, and appears to have rejection probability

much closer to the nominal level when compared to the normal approximation, especially in
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Distribution n: 10 25 50 100 200

N (0, 1)

Normal Approx 0.0540 0.0500 0.0520 0.0520 0.0480

Normal Approx Studentized 0.1560 0.0900 0.0760 0.0720 0.0540
Not Studentized 0.0480 0.0480 0.0440 0.0500 0.0480
Studentized 0.0460 0.0540 0.0520 0.0600 0.0500

Multivariate t5

Normal Approx 0.1080 0.1580 0.2120 0.2220 0.2080
Normal Approx Studentized 0.2220 0.1360 0.1220 0.1060 0.0740
Not Studentized 0.0920 0.0980 0.1580 0.1680 0.1640

Studentized 0.0620 0.0580 0.0660 0.0800 0.0640

Exponential

Normal Approx 0.0160 0.0120 0.0080 0.0040 0.0060
Normal Approx Studentized 0.0960 0.0740 0.0460 0.0540 0.0480

Not Studentized 0.0240 0.0120 0.0100 0.0060 0.0020
Studentized 0.0360 0.0540 0.0380 0.0480 0.0480

Circular

Normal Approx 0.0140 0.0160 0.0100 0.0060 0.0040
Normal Approx Studentized 0.1180 0.0540 0.0400 0.0560 0.0600
Not Studentized 0.0080 0.0020 0.0060 0.0040 0.0200

Studentized 0.0360 0.0540 0.0340 0.0580 0.0560

t4.1

Normal Approx 0.1700 0.2060 0.2520 0.2860 0.3080
Normal Approx Studentized 0.2260 0.1500 0.1320 0.0940 0.0700

Not Studentized 0.1040 0.1920 0.2240 0.2960 0.2900
Studentized 0.0640 0.0760 0.0920 0.0760 0.0620

Table 2: Rejection probabilities for bootstrap, normal approximation and permutation tests

for ρ = 0 using Fisher’s z-transformation.
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Distribution n: 10 25 50 100 200

t5

Normal Approx 0.0880 0.0280 0.0160 0.0040 0.0060

Not Studentized 0.0220 0.0320 0.0220 0.0180 0.0220
Studentized 0.0140 0.0140 0.0080 0.0020 0.0040

Normal

Normal Approx 0.0740 0.0500 0.0080 0.0040 0.0000

Not Studentized 0.0140 0.0240 0.0060 0.0000 0.0020
Studentized 0.0160 0.0280 0.0080 0.0020 0.0000

Table 3: Type 3 error rates for normal approximation and permutation tests of ρ = 0 using

the sample correlation statistic.

small sample sizes. Further, using Fisher’s z-transformation appears to perform similarly to
using the untransformed correlation.

Table 3 reports the Type 3 error rate when the data is generated according to a multivariate

t-distribution (as described above) with 5 degrees of freedom, as well as a multivariate normal
distribution. For both examples, we will use

Σ =

(

1 .1
.1 1

)

as the covariance matrix.

The studentized permutation test exhibits a lower Type 3 error rate than the unstudentized
test, or the normal approximation, especially in small samples.

Finally, we present simulation results showing the performance of the permutation tests

described in Section 3 for linear regression. Table 4 compares the rejection probabilities of
the two methods of permutation test with the normal approximation when the nominal level

is α = 0.05.

For the simulations in Table 4, the regression model used is

Y = α+ βX + ε

where Xi ∼ U(1, 4) and εi = σ(Xi) ·Ni where Ni is a standard normal random variable, and
σ(·) is a skedastic function specified in the table. The simulations are performed with β = 0

so that the rejection probabilities reported are the Type 1 error rates at nominal level 0.05.

The next simulation is a comparison of the rejection probability of the normal approximation,
and permutation tests of the hypothesis H0 : β = 0 in the regression model

Y = α+ βX + γZ + ε.

Table 5 gives rejection probabilities for simulations under this model using γ = 1, Xi ∼
U(1, 4), Z ∼ N (0, 1) and εi = σ(Xi) · Ni where Ni is a standard normal random variable,
and σ(·) is a skedastic function specified in the table. Again, we simulate under the null

hypothesis and report the Type 1 error rates at nominal level 0.05.

Similarly to what was seen in the simulations for correlation, a studentized permutation test
for regression coefficients has a rejection probability that is far closer to the nominal level
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n: 10 25 50 100 200

σ(x) = 1

Permutation 0.0440 0.0560 0.0520 0.0530 0.0490

Sign Change 0.0490 0.0540 0.0530 0.0480 0.0530
Normal Approx 0.1270 0.0860 0.0650 0.0570 0.0540

σ(x) = |x|
Permutation 0.0690 0.0660 0.0560 0.0530 0.0510

Sign Change 0.0910 0.0670 0.0580 0.0560 0.0510
Normal Approx 0.1790 0.1080 0.0640 0.0590 0.0550

σ(x) = |log(x)|
Permutation 0.0650 0.0570 0.0630 0.0580 0.0520

Sign Change 0.0990 0.0720 0.0670 0.0660 0.0570
Normal Approx 0.1940 0.0940 0.0740 0.0670 0.0580

Table 4: Rejection probabilities for tests of β = 0.

n: 10 25 50 100 200

σ(x) = 1
Permutation 0.0610 0.0570 0.0600 0.0540 0.0560

Normal Approx 0.2480 0.1240 0.0750 0.0590 0.0600

σ(x) = |x| Permutation 0.0680 0.0670 0.0600 0.0620 0.0540
Normal Approx 0.2780 0.1330 0.0820 0.0810 0.0610

σ(x) = |log(x)| Permutation 0.0770 0.0730 0.0570 0.0550 0.0540
Normal Approx 0.2810 0.1430 0.0850 0.0640 0.0620

Table 5: Rejection probabilities for tests of β = 0.

than using a normal approximation. The randomization test using sign changes outperforms

the normal approximation, but appears to have a rejection probability that is farther above
the nominal level than the permutation test.

6 Empirical Applications

Bardsley and Chambers (1984) collected data on the number of cattle and sheep on large
farms in Australia. This data was used for an exercise in Sprent and Smeeton (2007) asking

if there is evidence of correlation.
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Sheep Cattle

4716 41

4605 0
4951 42

2745 15
6592 47

8934 0
9165 0

5917 0
2618 56
1105 67

150 707
2005 368

3222 231
7150 104

8658 132
6304 200

1800 172
5270 146

1537 0

The p-values found by the normal approximation, the permutation test, and the studentized
permutation tests are 0.1682, 0.0390, and 0.1670 respectively. Figure 1 shows the unstu-

dentized permutation distribution compared with a N (0, τ̂2
n) density, and figure 2 shows the

studentized permutation distribution compared with a N (0, 1) density.

The following is a randomly chosen subset of the measurements of blood pressure and obesity
taken from a South African heart disease data set used in The Elements of Statistical Learning

(Hastie, Tibshirani, and Friedman).
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Figure 1: Unstudentized permutation distribution
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Figure 2: Studentized permutation distribution
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Blood Pressure Obesity

142.0000 24.9800

134.0000 26.0900
114.0000 17.8900

126.0000 27.6200
116.0000 30.0100

118.0000 30.9800
122.0000 28.0700

180.0000 26.7000
138.0000 26.0600
132.0000 30.7700

134.0000 29.1600
148.0000 31.8300

114.0000 20.1700
130.0000 24.3400

136.0000 25.0000
118.0000 25.1500

146.0000 36.4600
108.0000 22.6100

118.0000 29.1400
126.0000 19.3700
206.0000 27.3600

117.0000 25.8900
127.0000 22.0300

138.0000 22.1600
156.0000 28.4000

128.0000 23.8100
136.0000 27.6800

128.0000 29.3800
114.0000 20.3100

146.0000 32.7300

On the entire data set (which consists of 462 observations), the sample correlation is 0.23.

For the subsampled data set shown above, the p-values computed using the normal approxi-
mation, the permutation test, and the studentized permutation test are 0.0212, 0.0907, and

0.0088 respectively. If we were to do hypothesis test at .05 level, the permutation test and
the studentized permutation test would have different decisions, with the studentized permu-
tation test correctly rejecting. Of 1000 randomly chosen subsets of size 30, in 93 cases the

unstudentized test rejects, but the studentized test does not, and 35 cases the studentized
test rejects but the unstudentized test does not, and in 186 cases, both tests reject.

7 Conclusion

The permutation test using the sample correlation as the test statistic is exact when testing
that two variables are independent. However, this test fails to be exact, or even asymptotically
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valid, for testing the null hypothesis that the variables are uncorrelated. When used to test

the correlation, the permutation test may have a rejection probability which is far from the
nominal level or have an excessively large Type 3 error rate.

This problem can be resolved by studentizing the sample correlation so that the test statistic

is asymptotically pivotal (or distribution free). The permutation test asymptotically behaves
as if the variables are independent. When using a studentized sample correlation statistic, the
sampling distribution has the same asymptotic behavior regardless of whether the variables

are independent or only uncorrelated. The permutation distribution is exact under inde-
pendence, and has the same asymptotic behavior as the sampling distribution. But under

the weaker assumption of the variables being uncorrelated, the permutation distribution has
the same asymptotic behavior as the permutation distribution under dependence, and thus

should approximate the sampling distribution. A permutation test based on a studentized
test statistic retains the exactness property under independence, but also has the desired

asymptotic level.

Simulations results confirm that the unstudentized permutation test can have rejection prob-
ability that is far from the nominal level in large samples. Using a studentized statistic not
only leads to a test with the correct rejection probability, but that simulations suggest has

rejection probability much closer to the nominal level.

The techniques used to find the limiting behavior of the permutation test can also be used
to describe permutation tests for regression coefficients. When testing that several of many

regression coefficients are zero, using a Wald type statistic (which is inherently studentized)
leads to a permutation test that is exact when the predictors of interest are independent of

the predictors with non-zero coefficients and the error, and that is asymptotically correct
when there is dependence. Simulation results show that the level of the permutation test is

closer to the nominal level than using the usual chi-squared statistics.

8 Appendix

The next two lemmas are useful for proving the theorems stated in Section 2.

Lemma 8.1 Let Z1, Z2, ... be an iid sequence of random variables. If E |Z1|2 < ∞, then

limn→∞
max1≤i≤n|Zi|√

n
= 0 almost surely.

Proof. By assumption,

E (|Z1| /ε)2 =

∫ ∞

0
P
(

|Z1|2 > ε2z
)

dz <∞

for any ε > 0. Thus,
∞
∑

n=1

P
(

|Zn| ≥ ε
√
n
)

< E
(

Z2/ε2
)

<∞.

and it follows from the Borel-Cantelli lemma that limn→∞ Zn/
√
n = 0 almost surely. Now

let Λ =
{

ω :
∣

∣

∣

Zn(ω)√
n

∣

∣

∣
→ 0

}

. For any ω ∈ Λ, the sequence
∣

∣

∣

Zn(ω)√
n

∣

∣

∣
is bounded, say by K. Then
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given any ε > 0, there exists a constant N1 such that
∣

∣

∣

Zn(ω)√
n

∣

∣

∣ ≤ ε/2 for all n > N1. We can

write
∣

∣

∣

∣

max1≤i≤n Zi(ω)√
n

∣

∣

∣

∣

≤
∣

∣

∣

∣

max1≤i≤N1 Zi(ω)√
n

∣

∣

∣

∣

+

∣

∣

∣

∣

maxN1+1≤i≤n Zi(ω)√
n

∣

∣

∣

∣

.

The second term on the right hand side is bounded by ε/2. The first term is bounded by
max1≤i≤N1 K/

√
n which can be made smaller than ε/2 for all n greater than a constant N2.

So,
∣

∣

∣

∣

max1≤i≤n Zi(ω)√
n

∣

∣

∣

∣

≤ ε

for all n > max {N1, N2}.

The second lemma is due to McLeish (1974, Lemma 2.11) which is stated next.

Lemma 8.2 (McLeish) If {Xn} and X are positive, integrable random variables such that
E(Xn) → E(X) and P (X −Xn > ε) → 0 for all ε > 0, then Xn converges in L1 to X.

The next theorem is a condition due to Hoeffding that characterizes convergence of random-

ization distributions. (sufficiency given in Lehmann and Romano (2005), and necessity given
in Chung and Romano (2013)).

Theorem 8.3 (Hoeffding’s condition) Suppose that Xn has distribution Pn in Xn, and
that Gn is a finite group of transformations from Xn to Xn. Let R̂n(·) denote the permutation

distribution of a statistic Tn. For any Gn and G′
n chosen independently and uniformly from

Gn,
(

Tn(GnX
n), Tn(G

′
nX

n)
) L−→ (T, T ′)

under Pn where T and T ′ are independent with common c.d.f. R(·) if and only if

R̂n(t)
P−→ R(t)

for any continuity point t of R(·).

The following combinatorial central limit theorem due to Hoeffding (1951, Theorem 4) is
helpful for finding the asymptotic behavior of the randomization distribution of sample cor-

relations.

Theorem 8.4 (Hoeffding’s Combinatorial Central Limit Theorem) Let a = (a1, ..., an)

and b = (b1, ..., bn) be two vectors whose components ai and bi are real numbers, possibly de-
pending on n. Let π be a uniformly chosen permutation of {1, ..., n}. Define

Fn(y, a, b) = P





√
n− 1

∑n
i=1(ai − ā)bπ(i)

(
∑n

i=1(ai − ā)2
∑n

i=1(bi − b̄)2
)1

2

≤ y





where ā = 1
n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi. A sufficient condition for

Fn(y, a, b) → Φ(y)
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as n→ ∞ is that

n
1
2
p−1

∑n
i=1(ai − ā)p

(
∑n

i=1(ai − ā)2)
1
2
p

∑n
i=1(bi − b̄)p

(
∑n

i=1(bi − b̄)2
)1

2
p
→ 0, p = 3, 4, ...

This condition is satisfied if

n
max1≤i≤n(ai − ā)2
∑n

i=1(ai − ā)2
max1≤i≤n(bi − b̄)2
∑n

i=1(bi − b̄)2
→ 0.

The last result needed is a multivariate extension of Hoeffding’s combinatorial central limit
theorem which is used to prove the results in Section 3 on regression coefficients.

Theorem 8.5 Suppose that (a
(r)
1 , ..., a

(r)
n ) and (b

(r)
1 , ..., b

(r)
n ), r = 1, ..., k are sequences of

constants satisfying
∑

i a
(r)
i =

∑

i b
(r)
i = 0,

lim
n→∞

1

n

n
∑

i=1

(

a(r)
)2
<∞

and

lim
n→∞

1

n

n
∑

i=1

(

b(r)
)2

<∞

for all r = 1, ..., k. If π is a uniformly chosen permutation of {1, ..., n}, then

1√
n

(

n
∑

i=1

a
(1)
i b

(1)
π(i), ...,

n
∑

i=1

a
(k)
i b

(k)
π(i)

)

L−→ N (0,Σ)

where Σrs = limn→∞
1
n

∑n
i=1 a

(r)
i b

(s)
i

1
n

∑∞
j=1 a

(s)
j b

(r)
j , provided these limits are finite and

lim
n→∞

maxi≤n
(

a
(r)
i

)2

√
n

×
maxi≤n

(

b
(r)
i

)2

√
n

= 0

for r = 1, ..., k.

Proof. Define Sn =
∑n

i=1 cn(i, π(i)) where cn(i, j) are real numbers. Hoeffding’s combina-

torial central limit theorem states that if

maxg,h d
2(g, h)

1
n

∑

i,j d
2(i, j)

→ 0,

then
Sn −ESn√

varSn

L−→ N (0, 1)

where ESn = 1
n

∑

i,j c(i, j), and varSn = 1
n−1

∑

i,j d
2(i, j) with

d(i, j) = c(i, j)− 1

n

∑

g

c(g, j)− 1

n

∑

h

c(i, h) +
1

n

∑

g,h

c(g, h).
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To prove the theorem using the Cramér-Wold device, it is enough to show that for any

constants φ1, ..., φk,
1√
n

∑n
i=1

∑k
r=1 φra

(r)
i b

(r)
π(i)

is asymptotically normal with mean zero and

variance φ′Σφ. To show this, we will use Hoeffding’s combinatorial central limit theorem

with

c(i, j) =
1√
n

k
∑

r=1

φra
(r)
i b

(r)
j

where the φr are arbitrary constants. Then

d(i, j) =
1√
n

k
∑

r=1

φr(a
(r)
i − ā(r))(b

(r)
j − b̄(r)) =

1√
n

k
∑

r=1

φra
(r)
i b

(r)
j

and

d2(i, j) =
1

n

k
∑

r=1

(

φra
(r)
i b

(r)
j

)2
+

1

n

∑

r 6=s
φrφsa

(r)
i b

(s)
j .

Thus,

varSn =
1

n − 1





∑

r

φr
1

n

n
∑

i=1

(

a
(r)
i

)2
n
∑

j=1

(

b
(s)
j

)2
+
∑

r 6=s
φrφs

1

n

n
∑

i=1

a
(r)
i b

(r)
i

n
∑

j=1

a
(s)
j b

(s)
j





which converges to φ′Σφ, and the result of the theorem follows if we can check the conditions

of Hoeffding’s combinatorial central limit theorem. Indeed,

maxg,h d
2(g, h)

1
n

∑

i,j d
2(i, j)

=

1
n maxg,h

∑k
r=1

(

φra
(r)
g b

(r)
h

)2
+
∑

r 6=s φrφsa
(r)
g b

(s)
h

1
n

[

∑

r φr
∑n

i=1

(

a
(r)
i

)2
∑n

j=1

(

b
(s)
j

)2
+
∑

r 6=s φrφs
∑n

i=1 a
(r)
i b

(r)
i

∑n
j=1 a

(s)
j b

(s)
j

]

≤
k
∑

r=1

(

∑

q,s |φqφs|
)

maxg

(

a
(r)
g

)2
1√
n

maxh

(

b
(r)
h

)2
1√
n

1
n

[

∑

r φr
∑n

i=1

(

a
(r)
i

)2
∑n

j=1

(

b
(s)
j

)2
+
∑

r 6=s φrφs
∑n

i=1 a
(r)
i b

(r)
i

∑n
j=1 a

(s)
j b

(s)
j

]

which converges to zero by assumption since the denominator converges to φ′Σφ <∞.

Justification of Remark 3.1. If both the mean of Xi and Yi are non-zero, then the ordi-

nary least squares coefficient tends to infinity in probability. We will assume that the mean
of the Yi is zero, and the mean of the Xi is non-zero. In this case, the sampling distribution
of 1√

n

∑n
i=1XiYi is asymptotically normal with mean zero, and covariance E(X2

i Y
2
i ). Using

the necessity part of Hoeffding’s condition (Theorem 8.3), if the permutation distribution
approximated the sampling distribution, then for any randomly chosen permutations π and

π′,
(

1√
n

n
∑

i=1

XiYπ(i)

)

d−→ (T, T ′)

where T and T ′ are independent with a common distribution. However, writing

1√
n

n
∑

i=1

XiYπ(i) =
1√
n

n
∑

i=1

(Xi − X̄n)(Yπ(i) − Ȳn) − nX̄nȲn
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and
1√
n

n
∑

i=1

XiYπ′(i) =
1√
n

n
∑

i=1

(Xi − X̄n)(Yπ′(i) − Ȳn)− nX̄nȲn,

and noting that nX̄nȲn is asymptotically normal, we see that these statistics cannot converge
jointly to independent random variables.

Proof of Theorem 2.1. To prove this theorem, we will use Hoeffding’s combinatorial

central limit theorem (Theorem 8.4), replacing ai by Xi and bi by Yi where (Xi, Yi), i =
1, ..., n, are independent and identically distributed. If it can be shown that

n
max1≤i≤n(Xi − X̄)2
∑n

i=1(Xi − X̄)2
max1≤i≤n(Yi − Ȳ )2
∑n

i=1(Yi − Ȳ )2
a.s.−−→ 0,

then the convergence in Hoeffding’s central limit theorem holds almost surely and our first

theorem is proved. Indeed, this holds using Lemma 8.1 since we can write

n
max1≤i≤n(Xi − X̄)2
∑n

i=1(Xi − X̄)2
max1≤i≤n(Yi − Ȳ )2
∑n

i=1(Yi − Ȳ )2
=

1√
n

max1≤i≤n(Xi − X̄)2

1
n

∑n
i=1(Xi − X̄)2

1√
n

max1≤i≤n(Yi − Ȳ )2

1
n

∑n
i=1(Yi − Ȳ )2

.

Proof of Theorem 2.2. Clearly
E[(X−µX)2(Y−µY )2]

σ2
X
σ2

Y

≥ 0. We will now show that this

quantity can be made arbitrarily large. Let W and Z be independent and identically dis-

tributed random variables with mean zero. Set X = W − Z, and Y = W + Z so that
cov(X, Y ) = var(W )−var(Y ) = 0. Therefore, X and Y are uncorrelated, but not necessarily

independent. Also, E(X) = E(Y ) = 0 and var(X) = var(Y ) = 2σ2
W .

Because

E(X2Y 2) = E
(

(W − Z)2(W + Z)2
)

= E
(

(W 2 − 2WZ + Z2)(W 2 + 2WZ + Z2)
)

= E
(

W 4 + 2W 3Z +W 2Z2 − 2W 3Z − 4W 2Z2 − 2WZ3 +W 2Z2 + 2WZ3 + Z4
)

= E
(

W 4
)

+ E
(

Z4
)

− 2E
(

W 2Z2
)

= E
(

W 4
)

+ E
(

Z4
)

− 2σ4
W ,

we have

E
(

(X − µX)2(Y − µY )2
)

σ2
Xσ

2
Y

=
E
(

W 4
)

+E
(

Z4
)

− 2σ4
W

4σ4
W

=
E
(

W 4
)

+ E
(

Z4
)

4σ4
W

− 1

2

which we claim can be made arbitrarily large. For instance, if W and Z follow a t distribution

with ν > 4 degrees of freedom, E(W 2) = ν
ν−2 and E(W 4) = ν2

(

1
ν−2

)(

3
ν−4

)

. Consequently,

E(W 4)

4σ2
W

=
3(ν − 2)

4(ν − 4)

which can be made arbitrarily large by choosing ν sufficiently close to 4. Moreover, this

quantity is infinite if ν = 4. Note, however, that if X and Y have finite fourth moments, that
this quantity is always finite.
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To show that this quantity can be made exactly equal to 0, chooseX = W−Z, and Y = W+Z

where W and Z are independent with P (W = ±1/2) = P (Z = ±1/2) = 1/2. It is easily seen
that always either X = 0 or Y = 0 and consequently E

[

(X − µX)2(Y − µY )2
]

= 0.

Proof of Theorem 2.3. We will assume without loss of generality that the Xi and Yi
have mean zero since the sample correlation only depends on the data through Xi − X̄ =
(Xi−µX )−(X̄−µX) and Yi−Ȳ = (Yi−µY )−(Ȳ −µY ). To prove the first part of the theorem

we first show that show µ̂2,2
P−→ µ2,0µ0,2 under the assumption of finite fourth moments. The

result of the theorem will then follow from Slutsky’s theorem as well as Hoeffding’s condition.

By Hoeffding’s condition (Theorem 8.3), and Theorem 2.1, if π and π′ are independent,
uniformly chosen permutations of {1, ..., n}, then

(√
nρ̂n(X

n, Y nπ ),
√
nρ̂n(X

n, Y nπ′)
) L−→ N (0, I2).

If we can show that for any uniformly chosen permutation π, τ̂n(X
n, Y nπ )

P−→ 1, then Slutsky’s

Theorem implies
(√
nρ̂n(X

n, Y nπ )/τ̂n(X
n, Y nπ ),

√
nρ̂n(X

n, Y nπ′)/τ̂n(X
n, Y nπ′)

) L−→ N (0, I2).

and by Hoeffding’s condition, it follows that the permutation distribution of
√
nρ̂n/τ̂n is

asymptotically standard normal in probability. To show τ̂n(X
n, Y nπ )

P−→ 1, it is enough to show

that 1
n

∑n
i=1(Xi − X̄)2(Yπ(i) − Ȳ )2

P−→ µ2,0µ0,2 since 1
n

∑n
i=1 X

2
i

P−→ µ2,0 and 1
n

∑n
i=1 Y

2
π(i)

P−→
µ0,2. Because

√
nX̄Ȳ

a.s.−−→ 0, we need only show 1
n

∑n
i=1(XiYπ(i))

2 P−→ µ2,0µ0,2. Define

µn = E

(

1

n

n
∑

i=1

(XiYπ(i))
2

)

.

Then by conditioning on the number of fixed points,

µn = µ2,0µ0,2 +
1

n
(E(X1Y1)− µ20µ02)E(# {i : π(i) = i}).

Because

E(# {i : π(i) = i}) = E

n
∑

k=1

I{π(k)=k}

=

n
∑

k=1

P (π(k) = k)

=

n
∑

k=1

1

k

= 1,

1
nE(# {i : π(i) = i}) → 0 and it follows that µn → µ2,0µ0,2. Also define

σ2
n = var

(

1

n

n
∑

i=1

(XiYπ(i))
2

)

1

n2

n
∑

i=1

var
(

(XiYπ(i))
2
)

+
1

n2

∑

i6=j
cov

(

(XiYπ(i))
2, (XjYπ(j))

2
)

.
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The first term trivially converges to zero, and the second term converges to zero since

(XiYπ(i))
2 is independent of all but at most two of the other terms (XjYπ(j))

2. Thus σ2
n → 0.

By Chebychev’s inequality,

lim
n→∞

P

(

1

n

n
∑

i=1

(XiYπ(i))
2 < µ2,0µ0,2 − ε

)

= lim
n→∞

P

(

1

n

n
∑

i=1

(XiYπ(i))
2 − µn < µ2,0µ0,2 − µn − ε

)

≤ lim
n→∞

σ2
n

(µ2,0µ0,2 − µn − ε)2

= 0.

and we get the desired convergence by appealing to Lemma 8.2.

Under the stronger assumption of finite eighth moments, the convergence can be strengthened

to almost sure convergence by showing

P

(

1

n

n
∑

i=1

(XiYπ(i))
2 > ε

)

≤ 1

ε4
E





1

n4

(

n
∑

i=1

(XiYπ(i))
2

)4


 = O(1/n2).

The desired convergence would then follow from the Borel-Cantelli lemma. Indeed,

E





(

1

n

n
∑

i=1

XiYπ(i)

)4


 =
1

n4
E









n
∑

i=1

X2
i Y

2
π(i) +

∑

i6=j
XiYπ(i)XjYπ(j)





2



=
1

n4
E





(

n
∑

i=1

X2
i Y

2
π(i)

)2

+ 2
∑

i6=j
X2
i Y

2
π(i)XiYπ(i)XjYπ(j)

+ 3
∑

i6=j 6=k
X2
i Y

2
π(i)XjYπ(j)XkYπ(k) +

∑

i6=j
X2
i Y

2
π(i)X

2
j Y

2
π(j)

+
∑

i6=j 6=k
XiYπ(i)XjYπ(j)XkYπ(k)XlYπ(l)





=
1

n4
E



3
∑

i6=j 6=k
X2
i Y

2
π(i)XjYπ(j)XkYπ(k)

+
∑

i6=j 6=k
XiYπ(i)XjYπ(j)XkYπ(k)XlYπ(l)



+ O(1/n2)

Now E(X2
i Y

2
π(i)XjYπ(j)XkYπ(k)|π) is zero, except perhaps when {j, k} ⊂ {πi, πj, πk} which

happens with probability less than 1/n. Consequently, the first term in the expectation above
is O(1/n2). Similarly, E(XiYπ(i)XjYπ(j)XkYπ(k)XlYπ(l)|π) is zero except when {i, j, k, l} ⊂
{πi, πj, πk, πl} which happens with probability less than 1/n2. So the second term is also
O(1/n2).
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Applying this result to 1
n

∑n
i=1(X

2
i −σ2

X)(Y 2
π(i)−σ2

Y ), we have that 1
n

∑n
i=1 X

2
i Y

2
π(i)

a.s.−−→ σ2
Xσ

2
Y

if the Xi’s and Yi’s have finite eight moments.

Proof of Theorem 2.6. It was shown above that the permutation distribution of
√
nρ̂n

also converges weakly to N (0, 1). By Hoeffding’s condition (Theorem 8.3), this implies that

if π and π′ are two independent and uniformly chosen permutations of {1, ..., n}, then

(√
n(ρ̂n(X

n, Y nπ )),
√
n(ρ̂n(X

n, Y nπ′))
) L−→ N (0, I2).

Using Slutsky’s theorem gives

(√
n(tanh−1(ρ̂n(X

n, Y nπ ))/τ̂n(X
n, Y nπ )),

√
n(tanh−1(ρ̂n(X

n, Y nπ′))/τ̂n(X
n, Y nπ ))

) L−→ N (0, I2).

Hence, by Hoeffding’s condition, the permutation distribution of
√
n(tanh−1(ρ̂n))/τ̂n con-

verges weakly to N (0, 1) in probability. Convergence to N (0, 1) almost surely follows exactly

as in the proof of Theorem 2.3.

Proof of Theorem 3.2. By the multivariate extension of Hoeffdings combinatorial central

limit theorem (Theorem 8.5), if π is a uniformly chosen permutation of {1, ..., n}, then

1√
n
X>Yπ =

(

1√
n

n
∑

i=1

Xi1Yπ(i), ...,
1√
n

n
∑

i=1

XipYπ(i)

)

L−→ N (0,Ω∗), a.s.

where Ω∗ = E(ε2i )E(XiX
>
i ). But also, Σ̂XX(X, Yπ)

P−→ ΣXX and Ω̂(X, Yπ)
P−→ Ω∗. Because

E

(

1

n

n
∑

i=1

Y 2
π(i)XijXik

)

= Ω∗
jk +

1

n
E(# {i : π(i) = i})

(

Ω∗
jk − Ω∗

jk

)

→ Ω∗
jk

and using the law of total variance,

var

(

1

n

n
∑

i=1

Y 2
π(i)XijXik

)

=var

(

1

n
# {i : π(i) = i}

(

Ω∗
jk − Ω∗

jk

)

)

+ E

(

(

var(Y 2
1 X1jX1k) − var(Y 2

1 X2jX2k)
)2

n2
# {i : π(i) = i})

)

→ 0

second convergence is a consequence of Chebychev’s inequality. Using Slutsky’s theorem for
permutation distributions (see Chung and Romano (2014)), the permutation distribution
of Ω−1/2Σ̂XX

√
nβ̂n is asymptotically multivariate normal with mean zero and the identity

covariance matrix (in probability), and we have that the permutation distribution of Sn(X, Y )
is asymptotically χ2

p in probability.

Proof of Theorem 3.3. Appealing to Hoeffding’s condition (Theorem 8.3), it is enough

to show that for any independent and uniformly chosen transformations gδ and g′δ,

(Sn(X, gδ(Y )), Sn(X, gδ′(Y )))
L−→ (T, T ′)

30



where T and T ′ are independent χ2
p random variables. By the multivariate central limit

theorem, if δ1, ..., δn, δ
′
1, ..., δ

′
n are independent random variables taking values +1 or -1, each

with probability 1/2, then

1√
n

(X>gδ(Y ), X>gδ′(Y )) =

(

1√
n

n
∑

i=1

Xi1Yiδi, ...,
1√
n

n
∑

i=1

XipYiδi,
1√
n

n
∑

i=1

Xi1Yiδ
′
i, ...,

1√
n

n
∑

i=1

XipYiδ
′
i

)

L−→ N (0, I2 ⊗ Ω)

Further, Σ̂XX
p−→ ΣXX because this estimator only depends on the data through X , and

Ω̂(X, gδ(Y )) = Ω̂(X, gw′(Y )) =
1

n

∑

i

Y 2
i XiX

>
i

P−→ Ω.

By the multivariate delta method, this yields,

(Sn(X, gδ(Y )), Sn(X, gδ′(Y )))
L−→ (T, T ′)

as required.

Proof of Theorem 3.4. The Wald statistic Wn is a quadratic form of
(

β̂n
γ̂n

)

=

[

X>X X>Z
X>Z Z>Z

](

X>

Z>

)

ε.

Using Hoeffding’s combinatorial central limit theorem, 1√
n
X>
π ε is asymptoticallyN (0, E(ε2i)E(XiX

>
i ))

almost surely. Moreover,

1

n

[

X>
π Xπ X>

π Z

X>
π Z Z>Z

]

P−→
[

E(XiX
>
i ) 0

0 E(ZiZ
>
i )

]

almost surely and we have that

√
nRβ̂(Xπ, Z, Y )

L−→
(

N

0

)

almost surely where N ∼ N (0, E(ε2i)E(XiX
>
i )−1). Also,

nΣ̂X̃X̃(Xπ, Z, Y )−1Ω̂(Xπ, Z, Y )Σ̂X̃X̃(Xπ, Z, Y )−1

P−→
[

E(ε2i )E(XiX
>
i )−1 0

0 E(ZiZ
>
i )−1E(ε2iZiZ

>
i )E(ZiZ

>
i )−1

]

so it follows from the continuous mapping theorem that the permutation distribution has the
required chi-squared distribution asymptotically.

Proof of Theorem 3.5. We will first look at the randomization distribution of β̂n under
the Freedman-Lane procedure. For any permutation π, we can write

√
nR

(

β̂n
γ̂n

)

=
√
nR
[

(X,Z)>(X,Z)
]−1

(X,Z)>Y ∗

=
√
nR
[

(X,Z)>(X,Z)
]−1

(X,Z)> (Zγ̂n + ε̂π)

=
√
nR
[

(X,Z)>(X,Z)
]−1

(

X>Z
Z>Z

)

γ̂n +
√
nR
[

(X,Z)>(X,Z)
]−1

(X,Z)>ε̂π
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The first term is zero, so it is enough to find the limiting behavior of

√
n

(

X>

Z>

)

επ.

Appealing to the multivariate extension of Hoeffding’s combinatorial central limit theorem
(Theorem 8.5), this is asymptotically N (0, E(ε2i)ΣX,Z), in probability. It follows that the

permutation distribution of
√
nRβ̂ is asymptotically N (0, E(ε2i)RΣ−1

XZR
>), in probability.

Now, under permutations, Ω̂ = 1
n

∑

i ε̂
2
i X̃iX̃

>
i converges in probability to E(ε2i )ΣXZ, and the

result follows from Slutsky’s theorem.

Proof of Theorem 4.1. This follows immediately from Hoeffding’s combinatorial central

limit theorem (Theorem 8.4), and Slutsky’s theorem for permutation distributions.
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