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Abstract

The reported “hiatus” in the warming of the global climate system during this century has
been the subject of intense scientific and public debate, with implications ranging from scientific
understanding of the global climate sensitivity to the rate in which greenhouse gas emissions
would need to be curbed in order to meet the United Nations global warming target. A number
of scientific hypotheses have been put forward to explain the hiatus, including both physical
climate processes and data artifacts. However, despite the intense focus on the hiatus in both
the scientific and public arenas, rigorous statistical assessment of the uniqueness of the recent
temperature time-series within the context of the long-term record has been limited. We apply a
rigorous, comprehensive statistical analysis of global temperature data that goes beyond simple
linear models to account for temporal dependence and selection effects. We use this framework to
test whether the recent period has demonstrated i) a hiatus in the trend in global temperatures,
ii) a temperature trend that is statistically distinct from trends prior to the hiatus period, iii)
a “stalling” of the global mean temperature, and iv) a change in the distribution of the year-
to-year temperature increases. We find compelling evidence that recent claims of a “hiatus”
in global warming lack sound scientific basis. Our analysis reveals that there is no hiatus in
the increase in the global mean temperature, no statistically significant difference in trends, no
stalling of the global mean temperature, and no change in year-to-year temperature increases.

Keywords: Global Warming Hiatus Warming Slowdown Internal Variability Hypothesis Test-
ing Uncertainty Quantification

1 Introduction, Motivation and Approach

The international debate on the “hiatus” in the warming of the global climate system over the last
15 years has intensified (e.g., Meehl et al. [2011], IPCC [2013], Otto et al. [2013], Fyfe et al. [2013],
Kosaka and Xie [2013], Santer et al. [2014], Trenberth and Fasullo [2013], Smith [2013], Guemas
et al. [2013], Chen and Tung [2014], Boykoff [2014], Hawkins et al. [2014], England et al. [2014], Karl
et al. [2015], Cowtan et al. [2015]). The implications of the purported hiatus (also referred to as a
“pause” or “slowdown”) are far reaching. First, contradictory scientific conclusions have emerged
regarding the relationship between climate change and anthropogenic global warming, especially
during a period of heightened carbon emissions [Kosaka and Xie, 2013]. Second, the discrepancy
between climate model projections and observations appear to point to an overestimation of climate
sensitivity to anthropogenic forcings [Otto et al., 2013, Fyfe et al., 2013].
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The perceived hiatus has led to a myriad of resources being expended on trying to better under-
stand the geophysical mechanisms that lead to a possible hiatus, including, among others, volcanic
activity [Santer et al., 2014], Pacific Ocean variability [Kosaka and Xie, 2013, Trenberth and Fasullo,
2013], and increased ocean heat uptake [Smith, 2013, Guemas et al., 2013, Chen and Tung, 2014],
as well as spurious artifacts of the global climate observing system [Durack et al., 2014, Cowtan
and Way, 2014, Karl et al., 2015, Cowtan et al., 2015]. The purported hiatus has therefore inspired
valuable scientific insight into the processes that regulate decadal-scale variations of the climate sys-
tem. However, the perception of a hiatus has important repercussions for public decision making,
as the implications that global warming has paused or slowed down [Boykoff, 2014, Hawkins et al.,
2014], and that climate models have overestimated the rate of warming (e.g., Fyfe et al. [2013]),
influence the perceived level of mitigation action that is needed to obtain particular policy targets
[Otto et al., 2013]. In addition, fundamental to any work on the hiatus is to ascertain whether
there is sufficient empirical evidence in support of its existence. Surprisingly, to our knowledge, a
rigorous statistical analysis has not been undertaken, at least not one which incorporates temporal
dependencies without making strong assumptions about the underlying process. Without empirical
evidence in support of the hiatus claims, any further conclusions stemming from the assumption
should be called into question.

As a part of our investigation to better understand the hiatus, we develop a comprehensive
scientific framework that is intended to systematically test hypotheses that have been implied
in statements claiming a hiatus in global warming. We first identify a typology of the scientific
assertions that have been put forward, including i) that there has been a hiatus in the trend in global
warming, ii) that there is a difference in trends before and during the hiatus, iii) that there has been
a hiatus in the change in mean global temperature, and iv) that there is a difference in warming
before and during the hiatus (when accounting for possibly non-linear increases without explicit
reference to a linear trend). (See Supplementary Section 3.4 for more detail on the typology.) We
next connect these scientific claims with four classes of distinct testable statistical hypotheses, with
each hypothesis focusing on different aspects of the underlying (unknown) temperature process. We
then identify and develop appropriate statistical tools in order to test each of these hypotheses in a
principled manner, and under progressively less restrictive - and therefore more generally applicable
modeling assumptions, thereby allowing for a deeper understanding of the nuances of the global
temperature time series. In particular, we attempt to properly account for temporal dependence,
we use less restrictive resampling methods to assess statistical significance, and we employ a flexible
nonparametric modeling approach. By applying these progressively more general techniques in a
cascading approach, we are able to test the extent to which invalid statistical assumptions can lead
to erroneous scientific conclusions.

Our analysis is first undertaken using NASA-GISS global mean land-ocean temperature in-
dex. It is subsequently also repeated on the NOAA and HadCRUT4 datasets for comparison
purposes (see Supplemental Tables 1 and 2). The analysis is also undertaken on the recently re-
leased ERSSTv4 (Karl et al. [2015]) datasets (see Supplemental Tables 11 and 12). Plots of the
NASA-GISS raw and smoothed global mean land-ocean temperature index from 1880 to 2013, with
the base period 1951-1980, are given in in Figure 1 (top). As there is a clear underlying trend, a
moving average is superimposed on the time series. A statistical analysis of the serial correlation
in the residuals after fitting a regression line is also given in Figure 1 (top). The autocorrelation in
the temperature time series is non-negligible. The presence of autocorrelation motivates the need
to use less naive statistical methods to understand the evolution of temperature over time (see also
Supplemental Section 2.2).
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Figure 1: Top panel: Global mean land-ocean temperature index from 1880 to 2013, with base
period 1951-1980 and moving average superimposed. The table provides Durbin-Watson and Ljung-
Box p-values for the residuals from three OLS fits between 1950-2013. The Ljung-Box test here
considers residual autocorrelation in the first 20 lags. The 1950-2013 Full OLS model fits a single
regression line to all observations from 1950 to 2013. The 1950-2013 Separated model fits a separate
regression line to the 1950-1997 and 1998-2013 periods. Bottom panel: Plot of the global mean
land-ocean temperature index, from 1998 to 2013, with the ordinary least squares regression line
superimposed.
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2 Methods

Datasets: The datasets of global surface temperature anomalies used in our analysis come from
three sources: the NASA Goddard Institute for Space Studies (GISS) Surface Temperature Analysis
(GISTEMP) Data, the NOAA National Climatic Data Center (NCDC) data, and the HadCRUT4
data, produced from the Met Office Hadley Centre in collaboration with the University of East
Anglia Climatic Research Unit (CRU). Each source combines monthly land and sea surface tem-
perature measurements into spatial grids that are then averaged into a single global temperature
series. Temperature anomalies are computed from a baseline period, which differs by dataset. The
differences in the three datasets largely come from the adjustment/infilling methods for sparse
temporal/spatial coverage [Hansen et al., 2010, Morice et al., 2012]. (See the Supplemental Section
for more details.). Note that given the global mean temperature data that is available, the main
goal of our analysis is to understand the possible mischaracterizing of hiatus claims as compared
to understanding the source of observational errors of the temperature process.

Temporal Dependence and Uncertainty Quantification: The global temperature record
exhibits temporal correlation. Standard statistical methods tend to ignore this important feature,
which in turn can lead to incorrect statistical modeling assumptions and incorrect statistical signif-
icance which can in turn lead to erroneous scientific conclusions. For the purposes of uncertainty
quantification when testing each of the four statistical hypotheses, we either model the temporal
dependence in the global temperature time series explicitly through a parametric autoregressive
model, or account for it through the nonparametric circular block bootstrap, stationary block
bootstrap or subsampling. (See the Supplemental Section for more details.)

Statistical Hypothesis Testing: The various scientific assertions regarding the climate hiatus
are collected into four groups and then formulated as four testable statistical hypotheses. These
four hypotheses are specified rigorously, in a principled statistical framework, and are given in
Supplemental Sections 3.1, 3.2, 3.3 and 3.4. The Wald test is used to test slope parameters in the
linear regression model in Hypotheses I and II leading to Normal or t-distribution based p-values.
Moreover, p-values based on the bootstrap and subsampling are also calculated as alternatives to
the Wald test whenever appropriate. When comparing two distributions, the Kolmogorov-Smirnov
test is used, together with the bootstrap or subsampling, to account for temporal dependence. (See
the Supplemental Section for more details.)

Observational Uncertainties: It is important to recognize that the temperature data that
is used in our analysis are estimates of an unobserved process and is thus subject to observational
errors and the implied uncertainties. Observational uncertainties could arise due to various factors,
including instrumental error, changes in the observing network configuration and observing tech-
nology, and also due to uncertainties in adjustments made to the data. The HadCRUT4 dataset
allows an analysis that incorporates observational uncertainties. The single time-series used for the
analysis of the HadCRUT4 data is actually derived from multiple time series which are constructed
in order to reflect observational uncertainties. This analysis is provided in Supplemental Section 4
.

3 Results

3.1 Hypothesis I: Hiatus in temperature trend during 1998-2013

A basic assertion regarding the hiatus is that the steady increase in global surface temperature
around a linear positive trend has stopped, or “paused” [Guemas et al., 2013]. This sentiment is
reflected in statements that “Despite a sustained production of anthropogenic greenhouse gases,
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the Earth’s mean near-surface temperature paused its rise during the 2000-2010 period” [Guemas
et al., 2013], and that “climate skeptics have seized on the temperature trends as evidence that
global warming has ground to a halt” [Tollefson, 2014]. These scientific claims can be turned into
a precise statistical null hypothesis: the slope in the regression line of global temperature on time
is zero during the hiatus period.

We use three methods with increasing levels of generality to test the above hypothesis. Specific
details of the methodology are provided in Supplementary Section 3.1. First, beginning with the
1998-2013 period we fit a standard regression to the response variable global temperature on time
during 1998-2013, with errors assumed to be independently and identically distributed (see Figure
1 for the fit). A two-sided hypothesis test yields a p-value of 0.102 (a one-sided test yields a p-value
of 0.051). Thus, the claim of a zero warming trend during the hiatus period cannot be rejected
at the 5% significance level. The second method fits a linear regression with autocorrelated errors
that follow a parametric autoregressive model with lag 1. This model aims to directly address the
year-to-year temporal dependency present in the global temperature record. A p-value of 0.075
is obtained for the regression slope coefficient by the bootstrap method (with one-sided p-value
less than 5%). Taking temporal dependence into account, there is now more evidence against the
null hypothesis of a climate hiatus. The third method is completely nonparametric, and instead
of using the parametric AR(1) approach to model the temporal dependency, a block bootstrap is
used which allows for quite general forms of temporal dependence, and yields a two-sided p-value of
0.019. There is now compelling evidence to reject the claim of no warming trend during the 1998-
2013 period at the 5% significance level (and even at the 1% level for a one-sided test). Moreover,
the p-values corresponding to starting years 1999 and 2000 are 0.005 and 0.017 respectively, yielding
even lower p-values - and stronger evidence against a hiatus - than when using a starting year of
1998. The sensitivity analysis highlights the fact that choosing the year 1998 had a priori favored
the hiatus claim. Moreover, assuming the hiatus as the null makes it harder to conclude otherwise.
Regardless, the assertion of a climate hiatus is nevertheless rejected at the 5% level. We therefore
conclude that there is “overwhelming evidence” against the claim that there has been no trend in
global surface temperature over the past ≈ 15 years.

Note also that, in applying progressively more general statistical techniques, the scientific con-
clusions have progressively strengthened from “not significant,” to “significant at the 10% level,”
and then to “significant at the 5% level.” It is therefore clear that naive statistical approaches
can possibly lead to erroneous scientific conclusions. Methods that rely upon a strong modeling
assumption of no temporal dependence, or that of a specific form, are less reliable than methods
that capture dependence without assuming structural knowledge of the type of dependence.

3.2 Hypothesis II: Difference in temperature trends

Otto et al. [2013] state that: “the rate of mean global warming has been lower over the past decade
than previously.” This statement encompasses a second interpretation of the purported hiatus:
that the hiatus represents a “slowdown” of global warming [Chen and Tung, 2014], in which the
rate of warming is less during the hiatus compared with the warming prior to the hiatus [Chen and
Tung, 2014, Otto et al., 2013, Smith, 2013]. This claim can be formulated as a testable statistical
hypothesis, where the null hypothesis is that the regression slope before the hiatus period minus
the regression slope during the hiatus period is zero or negative, versus the alternative hypothesis
that this difference is positive.

We employ three different methods with increasing levels of statistical sophistication to test this
hypothesis. Specific details of the methodology are provided in Supplementary Section 3.2. First,
a standard regression of global temperature on time is fitted to both the 1998-2013 hiatus period

5



and the period 1950-1997, with errors assumed to be independently and identically distributed (see
Figure 2 top left panel). The first method yields a p-value of 0.210. Thus, there is no evidence of
a difference in warming trends even at the 10% significance level. The second method accounts for
the temporal dependency in the global temperature record by using a block bootstrap approach,
yielding a p-value of 0.323. The evidence for a difference in trends is further weakened when
temporal dependency is accounted for. The third approach uses the method of subsampling [Politis
et al., 1999] to determine how the current 16-year trend during 1998-2013 compares against all
the previous 16-year trends observed between 1950 and 1997. A p-value of 0.3939 is obtained and
evidence for the hiatus is further weakened. From the plots in Figure 2 (bottom panel), observe
that during the 1950-1997 period, there are several 16-year periods with both higher and lower
linear trends. Therefore the observed trend during 1998-2013 does not appear to be anomalous in
a historical context.

See Figure 2 (top right panel) for a summary of results of hypothesis II. Varying the cut-off year
from 1998 to either 1999 or 2000 yields p-values of 0.214 and 0.348, respectively, for the bootstrap
method. Even after properly accounting for temporal dependence, and undertaking a sensitivity
analysis, there is no compelling evidence to suggest that the slopes are significantly different. We
therefore conclude that the rate of warming over the past ≈ 15 years is not appreciably different
from the rate of warming prior to the recent period.

3.3 Hypothesis III: Hiatus in the mean global temperature

Some claims have simply asserted that the annual mean global temperature has remained constant
since 1998 (versus slowing of the trend in global warming). For example, Kosaka and Xie [2013] state
that “Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-
mean global temperature has not risen in the twenty-first century”, while Tollefson [2014] states
that “Average global temperatures hit a record high in 1998 – and then the warming stalled.” This
claim can also be precisely formulated as a testable statistical hypothesis. The statistical model
can be written as xt = µt + εt, where t denotes time (in years), xt is the 1998-2013 global mean
temperature anomalies series, µt is the mean parameter and εt is the random noise component(with
E(εt) = 0,Var(εt) = σ2). The corresponding null hypothesis and alternative are given as H0 :
E(x1998) = E(x1998+t) for t = 1, 2, · · · , 15 versus HA : E(x1998) 6= E(x1998+t).

Specific details of the methodology are provided in Supplementary Section 3.3. Hypothesis III is
tested in four different ways. There are two options for determining the value of E[x1998] = µ1998 : to
directly use the observed 1998 temperature record x1998 as a substitute for µ1998, or to alternatively
estimate µ1998 from the regression line from the period 1950-1997. Figure 3 (top panel) illustrates
this concept. As the two approaches for specifying µ1998 yield fixed values, the inherent variability
therein can be explicitly accounted for by using the bootstrap. Doing so propagates the variability
in a rigorous manner. The table in Figure 3 (bottom panel) summarizes the results of testing
hypothesis III.

For Method A, when x1998 is used as a substitute for µ1998, the statistical test concludes that
the mean has decreased during the hiatus, and thus strongly favors the hiatus claim. However, since
this one single observed value is not a consistent estimate of µ1998, the conclusion is not reliable.
In Method B when µ1998 is estimated from the 1950-1997 regression line, the null hypothesis is
rejected in the opposite direction, suggesting that the mean temperature has actually increased
during the hiatus period. Thus, the selection effect from choosing 1998 as the reference cut-off year
has a tremendous impact on the statistical conclusion. Method C, which specifically incorporates
the variability inherent in estimating µ1998 as x1998 leads to a different conclusion than in Method
A. In particular, as soon as the variability in estimating µ1998 to be x1998 is incorporated, one can
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Figure 2: Top panel (left): Plot of the global mean land-ocean temperature index, from 1950 to
2013, with the base period of 1951-1980. The regression fits for the two time periods (1950-1997
and 1998-2013) are superimposed. Top panel (right): Summary table of results for Hypothesis II
Bottom panel (left): Time series plot of 16-year observed trends. Bottom panel (right): Histogram
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no longer reject the null hypothesis that the mean has remained constant - even when the high value
x1998 is used. Method D uses a value for µ1998 which is estimated from the 1950-1997 regression
and also incorporates the variability of this estimate. Here the assertion that the mean is either
zero, or has decreased, is rejected.

Given the results of this nuanced analysis, we conclude that claims that the global mean tem-
perature has not changed in recent decades are not supported by evidence. In addition, our nuanced
analysis gives much needed rigor to the claim that using 1998 as a reference year amounts to “cherry
picking” [Leber, 2014, Stover, 2014], see also Supplemental Section for detailed discussions). The
results are further validated when the analysis is repeated with 1999 and 2000 as the starts of the
hiatus period (see Supplemental Section 3.3). Note furthermore that since 2014 was the warmest
year on record, the results of our analysis can be viewed as being even more conservative, similar
to using 1998 as the starting point.

3.4 Hypothesis IV: Difference in year-to-year temperature changes

It is also instructive to extend the analysis above without relying on a linear model to understand
trends or means. One such approach is to assess whether the distribution of year-to-year tempera-
ture changes is markedly different between the hiatus period and the prior periods. Such analysis
is inherently less reliant on a statistical model of temperature on time, and hence makes fewer
assumptions. The scientific assertion here is that year-to-year changes in global mean temperature
during 1998-2013 are different from those during 1950-1997. Under the null hypothesis, these year-
to-year changes are assumed to come from a common underlying distribution, though we do not
assume that the observations of differences are independent. This framework also allows for testing
of specific features of the distribution, including changes in the mean, median and variance. The
empirical distribution of annual changes in the global temperature can be constructed by taking
first differences: the global mean temperature during a given year is subtracted from the global
mean temperature in the previous year. The first differences during 1998-2013 give rise to a 15-year
times series of temperature changes. Differences in distribution (using the Kolmogorov-Smirnov
(K-S) statistic), in means, medians and variances are tested using the block bootstrap and subsam-
pling, thus taking temporal dependency fully into account. Specific details of the methodology are
provided in Supplementary Section 3.4.

The results of this analysis are given in Figure 4. Using either bootstrap or subsampling there
is no evidence at the 5% significance level to suggest that the distribution of changes during the
hiatus period is different from the previous period 1950-1997. The same applies to the mean and
variance of the distributions. The difference in medians is not statistically significant at the 5%
level using the block bootstrap approach, but is significant when using subsampling. However this
difference in medians completely disappears when the starting year of the hiatus is changed to
either 1999 or 2000, hence the result is not robust (see Table 8). Given these results, we conclude
that the distribution of annual changes in global temperature has not been different in the past 15
years than earlier in the global temperature record.

3.5 Re-analyzing recently-updated global temperature observations

We have also implemented our methodology on the recently released ERSSTv4 dataset to compare
our results to the results obtained in a recent paper by Karl et al. [2015]. Unlike the study by
Karl et al. [2015], we do not directly or indirectly impose Gaussianity on the temperature data
(in the most general approach that we propose for each hypothesis). We also do not impose
an autoregressive structure for modeling the temporal dependence. Instead we account for the
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temporal dependency more flexibly and non-parametrically using the circular block bootstrap and
related methods. The increased sophistication allows one to have more confidence in the results’
general validity as our approach makes fewer assumptions. The end result is also compelling. First,
the results in Karl et al. [2015] show a positive slope during the hiatus period (Hypothesis I) only at
the 10% significance level. Our analysis shows however that removing the arbitrary and parametric
autoregressive structure on the residuals and using the block bootstrap yields significance at the
0.1% level. The p-value stemming from our approach is less than 0.0005. The implication of the
much stronger conclusion is that the warming trend observed during 1998-2014 1 arising from a
model of no warming is less than 1 in 2000 (as compared to less than 1 in 20 from Karl et al.
(2015)). Thus the conclusion is made stronger by a factor of 100 using the methodology we have
developed.

Now consider hypothesis II which compares the warming trend during the hiatus period to that
in the previous period (1950-1997). Karl et al. [2015] asserts that the analysis on the corrected
NOAA global temperature shows that the 90% confidence interval for the trend in the hiatus period
encompasses that of the previous period. Note that this confidence interval is based on the period
1998-2012 and is thus calculated on only 15 years of data. Since the theoretical justification of such
confidence intervals is valid for large sample sizes, it is not clear how reliable the conclusion really
is. On the other hand, our subsampling methodology for comparing the trends in the two periods is
applicable even when the sample size in the hiatus period is small. In particular, the validity of the
subsampling approach here does not rely on asymptotic arguments (i.e., increasing sample sizes)
during the hiatus period. Details of the analysis are given in Tables 11 and 12 in Supplementary
Section 6.

Recall that the analysis by Karl et al. [2015] requires the use of the corrected NOAA dataset
to reject the claim of a hiatus. We note that our analysis rejects the hiatus claim even when using
the older NOAA temperature dataset (that is even without correcting for the data biases). The
use of methodology with far fewer restrictive assumptions appears to be more robust to errors in
the data. This may not be unexpected since biases in the data tend to violate basic parametric
assumptions, whereas the less restrictive techniques, such as the ones we develop, can handle a
variety of data generating mechanisms simply by their very non-parametric nature. Note that, by
and large, the conclusions reached by Karl et al. [2015] and our conclusions agree. However, it is
important to mention that an approach based on stringent or unrealistic assumptions which agrees
with our conclusions for this dataset may fail to do so on another dataset.

3.6 Summary

We summarize the overall results from all four hypothesis tests I, II, III and IV in Tables 5 and
6 in Supplementary Section 4. These two tables also analyze the sensitivity of the results to two
important factors: first when the cut-off year is changed from 1998 to either 1999 or 2000; and
second when the NOAA or HadCRUT4 datasets are used instead of the NASA-GISS dataset. As
there are four hypotheses being tested, using a battery of rigorous test procedures, the number
of hypothesis being tested are numerous. Hence the issue of multiple hypothesis testing surfaces.
In particular, a certain number of these hypotheses are expected to be falsely rejected by chance
alone, casting further doubt on any of the hiatus claims.

Our rigorous statistical framework yields strong evidence against the presence of a global warm-
ing hiatus. Accounting for temporal dependence and selection effects rejects - with overwhelming
evidence - the hypothesis that there has been no trend in global surface temperature over the past

1Though we consider the hiatus period as 1998-2013 elsewhere in the analysis, we consider the hiatus period as
1998-2014 here in order to compare directly with Karl et al. [2015]
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≈15 years. This analysis also highlights the potential for improper statistical assumptions to yield
improper scientific conclusions. Our statistical framework also clearly rejects the hypothesis that
the trend in global surface temperature has been smaller over the recent ≈ 15 year period than
over the prior period. Further, our framework also rejects the hypothesis that there has been no
change in global mean surface temperature over the recent ≈15 years, and the hypothesis that
the distribution of annual changes in global surface temperature has been different in the past
≈15 years than earlier in the record. Taken together, these results clearly reject the presence of a
hiatus, pause, or slowdown in global warming. In rejecting all four hiatus hypotheses, our results
instead demonstrate that the evolution of global surface temperature over the past 1-2 decades is
not abnormal or unexpected within the context of the long-term record of variability and change.

Without empirical evidence in support of the hiatus claims, the assumption that there has
been a hiatus/pause/slow-down in global warming should be called into question. That being said,
recent work investigating the geophysical causes of the recent temperature time series have provided
valuable insights into the processes that create decadal-scale variability in global temperature within
a long-term trend of global warming. Moreover, it is also useful that errors in data aggregation
have been corrected in the recent work of Karl et al. [2015].
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2 Supplementary Section: Datasets and temporal dependence

2.1 Datasets used in analysis

The NASA GISTEMP dataset uses the 1951-1980 average as the baseline period and estimates
anomalies up to 1200 km from the nearest measurement station, allowing for broad spatial coverage.
The NOAA data reconstructs land data for unobserved regions using a method called “empirical
orthogonal teleconnections.” The HadCRUT4 data does not use any spatial infilling and thus has
gaps in grid squares with very sparse (or no) data. The HadCRUT4 data therefore does not account
for warming in the Arctic and Antarctic regions, leading to documented coverage bias [Cowtan and
Way, 2014].

We primarily present in the main text the results from analysis of the NASA GISS data set, as
it provides the largest spatial coverage of the three datasets. The NASA GISS data is also plotted
in Figure 5. However, the NOAA and HadCRU datasets are also thoroughly analyzed to ensure
that our results are not biased by any particular dataset. See Summary Tables 1 and 2. It is clear
from these summary tables that analyzing a restricted spatial domain can lead to different scientific
conclusions.
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(a) NASA GISS data
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(b) NASA GISS data with 5-year moving average

Figure 5: Plots of (a) the global mean land-ocean temperature index, from 1880 to 2013, with the
base period 1951-1980 and (b) with a 5-year simple moving average superimposed.
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2.2 Serial Dependence in the global temperature record

Residual plots from a standard least squares fit and corresponding PACF and ACF plots are given
below. These clearly illustrate the presence of serial correlation in the global temperature record,
and thus the need to properly account for it.

OLS 1950−1997 Residuals
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(a) Plot of the 1950-1997 OLS residuals

OLS 1950−2013 Residuals
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(b) Plot of the 1950-2013 OLS residuals

Residuals
from separate OLS for 1950−1997 and 1998−2013
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(c) Plot of the residuals from separate 1950-1997 and
1998-2013 OLS fits

Figure 6: Plots of the residuals from 1950-2013.
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(b) ACF and PACF plots for the 1950-2013 OLS resid-
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Figure 7: ACF and PACF plots for residuals from 1950-2013.
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3 Supplementary Section: Details of Methodology and Additional
Results

3.1 Hypothesis I

Consider the model where the global temperature series xt for the 1998-2013 period follows a linear
model, given by

xt = α1 + β1t+ εt,

where E(εt) = 0 and Var(εt) = σ2. The claim that the linear rate of change in global temperature
has stalled can be restated as saying there is no linear trend in global temperature during the period
1998-2013. The corresponding statistical hypothesis can be stated as

H0 : β1 = 0 versus HA : β1 6= 0.

Three methods with increasing levels of generality and sophistication are employed in order to
test Hypothesis I: Three methods (with increasing levels of generality/sophistication) are used to
test this hypothesis:

• Method IA: No temporal dependence

• Method IB: Temporal dependence: using an AR(1) model

• Method IC: Temporal dependence: using the bootstrap only

3.1.1 Method IA: No temporal dependence

Under the assumption of independently and identically distributed errors, ordinary least squares is
used to estimate the slope β1, and is given as β̂1 = 0.0090 with the standard error se(β̂1) = 0.0052.
The Wald statistic is constructed as

W =
β̂1 − 0

se(β̂1)
= 1.7510.

Under the null hypothesis that β1 = 0, W approximately follows a tn−2 distribution, where n is
the number of observations. We compute the p-value to be

p = P [|tn−2| > |W |] = 2F (−|W |) = 0.1018,

where F is the cdf of tn−2 = t14.
It is important to recognize that the observed temperature time series are potentially subject to

errors due instrumental errors and other reasons. A more sophisticated formulation of the standard
regression model could also be formulated. A key assumption that has been made in our analysis
in this regard is that the observational errors can be absorbed into the residuals of the regression
model.

3.1.2 Method IB: Temporal dependence: Autoregressive structure in the residuals

Assume that the global temperature series xt for the 1998-2013 period follows a linear model, given
by

xt = α1 + β1t+ εt,
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where εt follows an AR(1) model, namely

εt = φεt−1 + δt,

where δt are iid innovations with E(δt) = 0 and Var(δt) = σ2.
The β̂1 now denotes the estimate of β1 using the iterative Cochrane-Orcutt procedure [Cochrane

and Orcutt, 1949]. A semiparametric block bootstrap is implemented in order to approximate
Var(β̂1). The algorithm is given below:

1. Fit the model x̂t = α̂1 + β̂1t + φ̂εt−1 using the iterative Cochrane-Orcutt procedure and
compute the sample innovations δ̂t = xt − x̂t.

2. Use the circular block bootstrap with block size b to generate a bootstrap series of innovations
δ∗t of length equal to the original data series.

3. Construct bootstrap observations x∗t = x̂t + δ∗t , on which we rerun the regression analysis to
yield a bootstrap replication β̂∗1 .

4. To approximate the sampling distribution of β̂1, repeat Steps 2 and 3, B times, to get
β̂∗1,1, . . . , β̂

∗
1,B.

Approximate two-sided p-values are calculated in three ways. First, we compute the bootstrap
estimate of Var(β̂1) by

V̂arb(β̂1) =
1

B − 1

B∑
j=1

(
β̂∗1,j −

1

B

B∑
k=1

β̂∗1,k

)2

and construct the Wald statistic

W =
β̂1 − 0√
V̂arb(β̂1)

.

Under the null hypothesis that β1 = 0, W approximately has a tn−3 distribution, where n is the
number of observations. We thus compute the p-value by

p̂ ≈ P [|tn−3| > |W |] = 2F (−|W |),

where F is the cdf of tn−3.
Asymptotically, W converges in distribution to N (0, 1), so we can also approximate the p-value

by
p̂ ≈ P [|Z| > |W |] = 2Φ(−|W |),

where Z ∼ N (0, 1) and Φ is the CDF of Z.
We also compute bootstrap p-values by computing

p̂ =
1

B

B∑
k=1

I
(∣∣∣β̂∗1,k − β̂1

∣∣∣ > ∣∣∣β̂1

∣∣∣) .
We report the bootstrap standard errors and p-values below for various block sizes b and B = 1000.

The p-values become significant (at the 10% level) for block sizes of b = 3 or larger. Accounting
for the temporal dependence in the data, there is sufficient evidence at the 10% significance level
to reject the hiatus claim.
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Table 3: Bootstrap standard errors for β̂ at various bootstrap block sizes and the corresponding
p-values computed using the t13 and N (0, 1) distributions and the bootstrap approximation for the
1998-2013 time period when assuming an AR(1) model in the residuals.

Block Size Std.Error t13 N (0, 1) Bootstrap

b = 1 0.0111 0.2704 0.2497 0.241
b = 2 0.0083 0.1463 0.1223 0.116
b = 3 0.0069 0.0853 0.0626 0.071
b = 4 0.0046 0.0161 0.0057 0.005
b = 5 0.0067 0.0778 0.0555 0.075
b = 6 0.0037 0.0045 0.0006 0.000

No AR(1)/Bootstrap 0.0052 0.1018 0.0799

A counterintuitive result emerges from the analysis above since we reject the null hypothe-
sis when accounting for the influence of temporal dependence (using a simple AR(1) dependence
model), but cannot reject the null hypothesis when assuming independence. This is unexpected
given the greater uncertainty in the slope estimates given the weak persistence in the global mean
temperature. In order to understand this issue better, the ACF and PACF plots of the residuals
for the period 1998-2013 were calculated (see Figure 8). It is clear from the PACF plot that there
is non-negligible negative autocorrelation in the 1998-2013 residual time series. This negative au-
tocorrelation explains the apparent contradiction. It is important to note that the counterintuitive
PACF estimate could be due to sampling variability. The PACF plot for the 1999-2013 residual
time series, that is without the 1998 temperature data point, reveals interesting points. The neg-
ative lag 1 autocorrelation and partial autocorrelation in the 1998-2013 series is no longer present
when year 1998 is removed from the analysis, underscoring the effect of this one time point on the
entire analysis. Furthermore, non-negligible positive partial autocorrelation starts to emerge when
year 1998 is removed.

3.1.3 Method IC: Temporal dependence: The nonparametric block bootstrap

A very general method to assess the uncertainty in the estimates of β1 is to use the block bootstrap.
Let β̂1 denote the ordinary least squares estimate of β1. To approximate Var(β̂1), consider the
following algorithm:

1. Fit the model x̂t = α̂1 + β̂1t using ordinary least squares and compute the sample residuals
ε̂t = xt − x̂t.

2. Use the circular block bootstrap with block size b to generate a bootstrap series of residuals
ε∗t of length equal to the original data series.

3. Construct bootstrap observations x∗t = α̂1 + β̂1t + ε∗t on which the regression analysis is
repeated to yield a bootstrap replication β̂∗1 .

4. To approximate the sampling distribution of β̂1, repeat Steps 2 and 3, B times, to get
β̂∗1,1, . . . , β̂

∗
1,B.
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Figure 8: Top: ACF plots of residuals time series 1998-2013 (left) and 1999-2013 (right). Bottom:
PACF plots of residuals time series 1998-2013 (left) and 1999-2013 (right).

As in Method IB, approximate p-values are calculated in three ways. First, the bootstrap
estimate of Var(β̂1) is computed by

V̂arb(β̂1) =
1

B − 1

B∑
j=1

(
β̂∗1,j −

1

B

B∑
k=1

β̂∗1,k

)2

and construct the Wald statistic

W =
β̂1 − 0√
V̂arb(β̂1)

.

Under the null hypothesis that β1 = 0, W approximately has a tn−2 distribution, where n is the
number of observations. The corresponding p-value is computed by

p̂ = P [|tn−2| > |W |] = 2F (−|W |),

where F is the CDF of tn−2.
Asymptotically, W converges in distribution to N (0, 1), so one can also approximate the p-value

by
p̂ = P [|Z| > |W |] = 2Φ(−|W |),

where Z ∼ N (0, 1) and Φ is the CDF of Z.
The bootstrap p-values can be computed by evaluating

p̂ =
1

B

B∑
k=1

I
(∣∣∣β̂∗1,k − β̂1

∣∣∣ > ∣∣∣β̂1

∣∣∣) .
The bootstrap standard errors and p-values for various block sizes b and B = 1000 are reported

in Table 4. For the 1998-2013 period, n = 16, so W ∼ t16−2 = t14. Since n is small, the p-values
computed using the t14 distribution are more reliable.
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Table 4: Bootstrap standard errors for β̂ at various bootstrap block sizes and the corresponding
p-values computed using the t14 and N (0, 1) distributions and the bootstrap approximation for the
1998-2013 time period.

Block Size Std.Error t14 N (0, 1) Bootstrap

b = 1 0.0048 0.0818 0.0607 0.046
b = 2 0.0044 0.0610 0.0416 0.05
b = 3 0.0037 0.0288 0.0149 0.019
b = 4 0.0032 0.0145 0.0053 0.001
b = 5 0.0035 0.0224 0.0102 0.006
b = 6 0.0032 0.0127 0.0043 0.001

No Bootstrap 0.0052 0.1018 0.0799

From Table 4 the p-values are both significant (at the 5% level) and stable from block size b = 3
and larger.

3.2 Hypothesis II

The second hypothesis test is set up in the context of two linear models, and is given by

xt = α0 + β0t+ εt

ys = α1 + β1s+ εs,

where xt and ys are the 1950-1997 and 1998-2013 global mean temperature anomalies series respec-
tively, and εt is random noise, so E(εt) = 0,Var(εt) = σ2. The claim is that the linear trend during
the 1998-2013 hiatus period is lower than the trend during the previous period 1950-1997 2. The
corresponding statistical hypothesis is then given as

H0 : β0 − β1 ≤ 0 versus HA : β0 − β1 > 0.

Three methods (with increasing levels of generality/sophistication) are used to test this hypoth-
esis:

• Method IIA: No temporal dependence

• Method IIB: Temporal dependence: using the nonparametric block bootstrap

• Method IIC: Temporal dependence: using subsampling

3.2.1 Method IIA: No temporal dependence

First, temporal dependence in the observations is ignored and errors are assumed to be independent.
The hypothesis test is based on the standard Wald statistic

W =
β̂0 − β̂1√

σ̂2
0∑n0

j=1 t
2
j

+
σ̂2
1∑n1

k=1 s
2
k

,

2Changing the reference period from 1950-1997 to 1880-1997 only strengthens the null hypothesis of no difference
between the hiatus period and before. This follows from the fact that the trend during 1880-1997 is more similar to
the trend in the hiatus period. Thus the selected period 1950-1997 can be regarded as a lower bound on p-values for
tests of difference in slopes.
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where β̂0, β̂1 are the respective ordinary least squares estimates for β0 and β1, σ̂2
0, σ̂

2
1 are the

estimates for the residual variances, and tj and sk denote standardized time units within each
time interval.

The estimates obtained are β̂0 = 0.0134, β̂1 = 0.0090, yielding the Wald statistic W = 0.8063.
Assuming independent observations, the distribution of W can be approximated by N (0, 1). The
one-sided p-value is given by

p = P [Z > W ] = P [Z > 0.8063] = 0.2100,

where Z ∼ N (0, 1). The observed difference in slopes is not statistically significant at the 5%
significance level. Hence there is no compelling evidence to suggest that the slopes are significantly
different.

3.2.2 Method IIB: Temporal dependence: The nonparametric block bootstrap

Method IIB tests the hypotheses while accounting for the temporal dependence in the observations.
Specifically, the block bootstrap regression method is employed in order to approximate Var(β̂0 −
β̂1). The implementation of the block bootstrap is described below.

1. Fit the models x̂t = α̂0 + β̂0t and ŷs = α̂1 + β̂1s using ordinary least squares and compute
the sample residuals series

ε̂t =

{
xt − x̂t if 1950 ≤ t ≤ 1997

yt − ŷt if 1998 ≤ t ≤ 2013.

2. The circular block bootstrap is used with block size b to generate a bootstrap series of residuals
ε∗t of length equal to the original data series.

3. The bootstrap observations are constructed as follows:

x∗t = α̂0 + β̂0t+ ε∗t , if 1950 ≤ t ≤ 1997

y∗t = α̂1 + β̂1t+ ε∗t , if 1998 ≤ t ≤ 2013

on which the regression analysis is rerun to yield bootstrap replications β̂∗0 and β̂∗1 .

4. To approximate the sampling distribution of β̂0− β̂1, Steps 2 and 3 are repeated, B times, to
get β̂∗0,1, . . . , β̂

∗
0,B, β̂∗1,1, . . . , β̂

∗
1,B and compute β̂∗0,1 − β̂∗1,1, . . . , β̂∗0,B − β̂∗1,B.

The approximate p-values are calculated in two ways. First, the bootstrap estimate of Var(β̂0−
β̂1) is computed by

V̂arb(β̂0 − β̂1) =
1

B − 1

B∑
j=1

[(
β̂∗0,j − β̂∗1,j

)
− 1

B

B∑
k=1

(
β̂∗0,k − β̂∗k

)]2

as an ingredient in the Wald statistic

W =
(β̂0 − β̂1)− 0√
V̂arb(β̂0 − β̂1)

.
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Under the null hypothesis that β0−β1 = 0, W converges in distribution to N (0, 1), so the one-sided
p-value is approximated by

p̂ = P [Z > W ] = 1− Φ(W ),

where Z ∼ N (0, 1) and Φ is the CDF of Z.
The one-sided bootstrap p-value is obtained by computing

p̂ =
1

B

B∑
k=1

I
[(
β̂∗0,k − β̂∗1,k

)
−
(
β̂0 − β̂1

)
>
(
β̂0 − β̂1

)]
.

The bootstrap standard errors and p-values are reported for various block sizes b and B = 1000
in Table 5. Even after taking temporal dependence into account, the observed difference is not
statistically significant. The p-values are fairly stable, since they do not vary much by block size.
Note that after accounting for temporal dependence, the p-values change from 0.2 to around 0.3.

Table 5: Bootstrap standard errors for β̂0−β̂1 at various bootstrap block sizes and the corresponding
one-sided p-values computing using the N (0, 1) distribution and the bootstrap approximation to
test for a difference in slopes between the global temperatures in the 1950-1997 and 1998-2013
periods.

Block Size Std.Error N (0, 1) Bootstrap

b = 1 0.0075 0.2838 0.257
b = 2 0.0078 0.2908 0.297
b = 3 0.0086 0.3085 0.306
b = 4 0.0085 0.3054 0.323
b = 5 0.0085 0.3068 0.299
b = 6 0.0086 0.3079 0.323

No bootstrap 0.0053 0.2100

3.2.3 Method IIC: Temporal dependence using subsampling

The third method employs the technique of subsampling [Politis et al., 1999] as a means to quantify
the uncertainty around the difference in the two observed regression slopes. Here the 16-year
regression slope obtained when fitting a regression analysis on data from 1998-2013 is compared
against all contiguous 16-year trends during the period 1950-1997. Note that this distribution
does not overlap with the 1998-2013 period. A p-value is computed based on the quantile of the
distribution of 16-year trends, that corresponds to the observed (1998-2013) trend. This approach
yields a valid statistical method that approximates the null distribution of the test statistic β̂1,
and falls within the overall framework of subsampling - see Rajaratnam et al. [2014] for theoretical
details.

The observed trend during the hiatus period, β̂1 = 0.0091, yields a p-value of 0.3939. As in the
previous two methods, the p-value is not significant at the nominal 5% level. Having said this, from
Figure 2 there is a clear pattern in the distribution of 16 year linear trends over time: all 16 year
trends starting at 1950 all the way to 1961 are lower than the trend during hiatus period, and all
16 year linear trends starting at years 1962 all the way to 1982 are higher than the trend during
the hiatus period, with the exception of the 1979-1994 trend.
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3.3 Hypothesis III

As mentioned in the main text of the paper, Hypothesis III is tested in four ways.

1. Method IIIA: E(x1998) = x1998 and variability of x1998 is not modeled. First E(x1998)
is estimated by the observed value x1998 = 0.84. This value is assumed to be fixed as the
variability associated with this estimate is not modeled. The stationary and circular block
bootstraps are used to sample from the 1999-2013 series to generate a sampling distribution
for µ̂∗after − x1998. It turns out that the entire bootstrap sampling distribution, regardless of
block bootstrap method and block size, is negative. Hence one can reject the null hypothesis
and conclude that the post-1998 mean is statistically significantly different from the 1998
mean.

2. Method IIIB: E(x1998) = µ̂1998 and variability of µ̂1998 is not modeled. The value for
E(x1998) is estimated by the fitted value µ̂1998 = α̂ + β̂(1998) = 0.4844, where α̂ and β̂ are
estimated using ordinary least squares on the 1950-1998 series. This estimated value is once
more assumed to be fixed, as the variability associated with this estimate is not modeled.Note
that using the observed 1998 as a substitute for the true underlying mean µ1998 can be viewed
as “cherry picking” a reference year which favors the hiatus claim. Thus estimating µ1998 from
the regression line from the period 1950-1997 provides a statistically rigorous way to avoid this
pitfall. The stationary and circular block bootstraps are used to sample from the 1999-2013
series and generate a sampling distribution for µ̂∗after− µ̂1998. In this case, the entire bootstrap
sampling distribution, regardless of block bootstrap method and block size, is positive. That
is, the sign of the difference is reversed. One can thus reject the null hypothesis and conclude
that the post-1998 mean is statistically significantly different from the 1998 mean.

3. Method IIIC: E(x1998) = x1998 and variability of x1998 is modeled. The value for
E(x1998) is estimated by the observed value x1998 = 0.84. We now explicitly model both the
variability of the E(x1998) estimate and the E(x1998+t) estimate of µ̂after = 1

15

∑15
t=1 x1998+t =

0.7573 by using the circular block bootstrap. The 1950-1998 and 1999-2013 series are sampled
separately. For each bootstrap series, we again estimate E(x1998) by the 1998 observation x∗1998

in the bootstrap series. We estimate E(x1998+t) by µ̂∗after = 1
15

∑15
t=1 x

∗
1998+t. The bootstrap

sampling distributions of (µ̂∗after−x∗1998)− (µ̂after−x1998) for various block sizes are obtained.
The observed difference in mean estimates µ̂after−x1998 = −0.0827 is in the far left tail of the
bootstrap sampling distributions, regardless of block size. However when using a two-sided
test, unlike in Method IIIA, we retain the null hypothesis and conclude that sufficient evidence
is not available to deduce that the post-1998 mean is statistically significantly different from
the 1998 mean.

4. Method IIID: E(x1998) = µ̂1998 and variability of µ̂1998 is modeled. The value for
E(x1998) is estimated by the fitted value µ̂1998 = α̂ + β̂(1998) = 0.4844, where α̂ and β̂ are
estimated using ordinary least squares on the 1950-1998 series. Both the variability of the
E(x1998) estimate and the E(x1998+t) estimate of µ̂after = 0.7573 are explicitly modeled by
using the circular block bootstrap. For each bootstrap series, we estimate E(x1998) by the
fitted value µ̂∗1998 = α̂∗+β̂∗(1998), where α̂∗ and β̂∗ are estimated using ordinary least squares
on the 1950-1998 bootstrap series. We estimate E(x1998+t) by µ̂∗after = 1

15

∑15
t=1 x

∗
1998+t. The

bootstrap sampling distributions of (µ̂∗after − µ̂∗1998) − (µ̂after − µ̂1998) for various block sizes
are obtained. The observed difference in mean estimates µ̂after − µ̂1998 = 0.2729 is in the far
right tail of the bootstrap sampling distributions, regardless of block size. Thus, as in Method
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Table 6: Summary table of results for Hypothesis III with 1999 cutoff

Method E(x1999) Variability of x1999 Result Remark

IIIA x1999 Assume fixed Reject H0 increase in mean

IIIB µ̂1999 Assume fixed Reject H0 increase in mean

IIIC x1999 Simulate by bootstrap Retain H0 no change in mean

IIID µ̂1999 Simulate by bootstrap Reject H0 increase in mean

Table 7: Summary table of results for Hypothesis III with 2000 cutoff

Method E(x2000) Variability of x2000 Result Remark

IIIA x2000 Assume fixed Reject H0 increase in mean

IIIB µ̂2000 Assume fixed Reject H0 increase in mean

IIIC x2000 Simulate by bootstrap Retain H0 no change in mean

IIID µ̂2000 Simulate by bootstrap Reject H0 increase in mean

IIIB, one can reject the null hypothesis and conclude that the post-1998 mean is statistically
significantly different from the 1998 mean.

Effect of varying the start of the hiatus period to 1999 and 2000:
Explanation of the differences between Hypotheses I and III: Recall that in the linear

model in hypothesis I, setting the population slope coefficient to zero corresponds to a constant
mean global temperature during the hiatus period. In this sense hypothesis I and III coincide.
There are however some not-so-subtle differences. First, the class of linear models considered in
hypothesis I is a sub-model of the more general model considered in hypothesis III. This difference
leads to different test statistics that guard against Type I error in the context of that particular
model. Second, the class of alternatives are also different between hypothesis I and hypothesis III.
Thus the statistical power, which guards against Type II error, associated with the two tests is also
different.

Further discussion of the choice of 1998 as the start of the hiatus period:
The results of the detailed statistical analysis presented above is quite nuanced. The four statis-

tical tests together give compelling evidence to refute the assertion that global mean temperature
has stalled during the hiatus period. In fact the increase in global mean temperature appears to
continue unabated during the hiatus period. This warming trend appears to be masked by the
global mean temperature record for 1998. The analysis also suggests that the observed global mean
temperature record for 1998 is extreme in the sense that if the associate variability is accounted
for, then ensuing years do not reflect a significant decrease in temperature.

The robustness of the above results are examined by varying the starting year of the hiatus from
1998 to 1999 and 2000. The results from this sensitivity analysis are given in Tables 6 and 7. The
decrease in mean suggested by method IIIA when x1998 is used as a substitute for µ1998 no longer
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holds true when the cut-off year 1999 or 2000 is used. In fact, the recorded temperature for 1999 is
relatively lower than those recorded in the period 2000-2013 and leads to the conclusion that global
mean temperatures have actually increased during the purported hiatus period. This sensitivity
analysis once more underscores our earlier point that a selection effect occurs when picking 1998
as the start of the hiatus period. The result above can also be interpreted against the backdrop
of hypothesis I which (essentially) tested for the slope after 1998. In that analysis the slope was
found to be positive and significantly different from zero.

There are two additional ways to see how the conclusion in the testing of the global mean
temperature is sensitive to the single observed value in year 1998. One approach is to pick the year
2000 as the start of the hiatus period. Just as 1998 is hand-picked, one can also hand-pick 2000.
When year 2000 is picked however, the conclusion of a stalling in mean global warming is completely
reversed, and the opposite conclusion from the 1998 case is reached. So it is clear from just this
experiment that data snooping can strongly influence the final conclusion. A second approach is
to look at the largest temperature value before 1998. Note that the 1998 value (anomaly) is 0.84
vs. the previous high of only 0.56 in 1995. A simple analysis shows than any value for 1998 which
is lower than 0.81 would not lead to a conclusion that would suggest that the mean has stalled.
Hence it is clear that the 1998 value is very high compared to any of the previous values by a large
margin. Thus, any hiatus claims after the fact of observing an exceptionally warm year as a means
of comparing amounts to cherry-picking.

3.4 Hypothesis IV

Formally, consider the hypotheses

H0 : F∆X(·) = F∆Y (·) versus HA : F∆X(·) 6= F∆Y (·),
where ∆X denotes the year-to-year increase in annual temperatures during 1950-1998 and ∆Y
denote the year-on-year increase between 1998-2013. This corresponds to a null hypothesis that
within a long term period of increases (as witnessed by the general increase between 1950-1998),
shorter periods of zero or negative trends (as observed in the period 1998-2013) are not unusual.

The empirical changes in annual temperatures are computed by taking the first differences of
the observed global mean annual temperatures series. That is,

∆Xt = xt − xt−1 for 1881 ≤ t ≤ 1998

∆Ys = ys − ys−1 for 1999 ≤ s ≤ 2013.

The following five tests are implemented in the above framework:

• Hypothesis IVA: Test for a difference in distributions

• Hypothesis IVB: Test for a difference in means

• Hypothesis IVC: Test for a difference in medians

• Hypothesis IVD: Test for a difference in variances

• Hypothesis IVE: Test for a difference in log variances

The implementation of hypothesis IVA using the Kolmogorov-Smirnov test in conjunction with
the block bootstrap is outlined below. Implementation of hypotheses IVB, C, D, E follow similarly.

Consider now using the Kolmogorov-Smirnov test for hypothesis IVA:
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H0 : F∆X(·) = F∆Y (·) versus HA : F∆X(·) 6= F∆Y (·),

where ∆X denotes the change in annual temperatures between 1894-1998 and ∆Y denote the
change between 1998-2013. The Kolmogorov-Smirnov statistic is given by

D = Dm,n = sup
x
|F∆X,m(x)− F∆Y,n(x)| ,

where F∆X,m and F∆Y,n(x) are the empirical distribution functions of ∆X and ∆Y , respectively.
The block bootstrap is used to approximate the sampling distribution of the usual test statistic

Dm,n. Details of the algorithm are given below:

1. Use the stationary block bootstrap with block sizes drawn from a geometric distribution
with probability p of success (i.e., expected block size of 1/p) to ∆Xt and ∆Ys to generate
bootstrap series ∆X∗

t and ∆Y ∗
s for 1950 ≤ t ≤ 1998 and 1999 ≤ s ≤ 2013.

2. Compute the bootstrap Kolmogorov-Smirnov statistic

D∗ = sup
x
|F∆X∗,m(x)− F∆Y ∗,n(x)| .

3. To approximate the sampling distribution of D, repeat Steps 1 and 2 above, B times, to get
D∗

1, D
∗
2, . . . , D

∗
B.

The entire 1950-2013 series is used to generate the bootstrapped series, and the bootstrap
p-values are computed by

p̂ =
1

B

B∑
i=1

I (D∗ > D) .

The subsampling results are also illustrated in Figures 9, 10, 11, 12 and 13. These figures
illustrate how the Kolmogorov-Smirnov statistic, mean, median and variance of the year-to-year
temperature increases recorded during the hiatus compare to the distribution of these quantities
during the 1950-1997 period. It is clear that the recorded statistics during the hiatus period are
rendered non-significant in the subsampling context because of differences observed further back in
the past, and not in the recent past.
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(c) Time series plot of 15-year observed median differ-
ences
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Figure 9: Time series plots of 15-year difference estimates observed between 1950 to 2013.
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Figure 10: Plots of 15-year KS difference estimates observed between 1950 to 2013. The dashed
lines in (a) and (b) indicate the observed 15-year KS value for the period 1998–2013.
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Figure 11: Plots of 15-year mean difference estimates observed between 1950 to 2013. The dashed
lines in (a) and (b) indicate the observed 15-year mean value for the period 1998–2013.
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Figure 12: Plots of 15-year median difference estimates observed between 1950 to 2013. The dashed
lines in (a) and (b) indicate the observed 15-year median value for the period 1998–2013.
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Figure 13: Plots of 15-year variance estimates in the differences observed between 1950 to 2013.
The dashed lines in (a) and (b) indicate the observed variance for the period 1998–2013.
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The analysis described above was also repeated when the starting year of 1998 was varied to
1999 or 2000 - see Table 8. The K-S bootstrap based test for difference in distributions is not
significant at the nominal 5% level when the later cut-off years of 1999 or 2000 are used. In fact
the p-value which was lower than the 5% level in the 1998 analysis is no longer less than 0.05. The
sensitivity analysis once more reveals that hiatus claims can be linked to the reference year of 1998.

Table 8: Summary Table of results for Hypothesis IV using starting years 1999 and 2000

Test
Bootstrap Subsampling

1999 2000 1999 2000

Difference in distribution = 0.611 = 0.578 = 0.250 = 0.237
Difference in mean = 0.995 ≈ 0.906 = 0.583 = 0.579

Difference in median = 0.434 ≈ 0.515 = 0.194 = 0.974
Difference in variance = 0.251 ≈ 0.378 = 0.056 = 0.132

Difference in log variance = 0.175 ≈ 0.335 − −

4 Supplementary Section: Incorporating Observational Uncertain-
ties

Note that there are two distinct questions that can be asked regarding the “trend” in the tempera-
ture series. The first is whether the observed temperature record exhibits an upward or downward
trend that is greater than variations which can be attributed to observational error alone. This
questions aims to characterize the observed record. The second question aims to understand if
there is a deterministic component in the underlying stochastic process which generates the data.
These two questions are distinct and understanding if a trend is significant requires examining both
the observational uncertainties and also assessing the variability that is inherent in the underlying
model.

One of the datasets of global surface temperature anomalies used in our analysis is the Had-
CRUT4 data, produced from the Met Office Hadley Centre in collaboration with the University
of East Anglia Climatic Research Unit (CRU). The HadCRUT4 data is “an ensemble data set in
which the 100 constituent ensemble members sample the distribution of likely surface temperature
anomalies given our current understanding of these uncertainties.” [Morice et al., 2012]

The primary HadCRUT4 series that was analyzed is the median of the 100 ensemble member
time series. In order to account for the observational uncertainties in the data, all of the analyses
was rerun on “the lower and upper bounds of the 95% confidence interval of the combined effects
of all the uncertainties described in the HadCRUT4 error model (measurement and sampling, bias
and coverage uncertainties).” [Morice et al., 2012]

The results from all three analyses are shown in Tables 9 and 10. Most of the conclusions are
robust to the choice of HadCRUT4 series we use. The main difference is appears in the results for
Hypothesis I. There does not appear to be a significant linear trend during the hiatus period in
the median series for the HadCRUT4 dataset, whereas there is a significant linear trend at the 5%
significance level in the lower and upper series. The conclusion of a significant linear trend during
the hiatus period is consistent with the results that was found using the NASA GISS temperature
anomalies dataset.
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5 Supplementary Section: Scientific Claims & corresponding Sta-
tistical Hypotheses

Group I: The rate of change (linear increase) from 1998 onwards

• “Global mean surface temperature over the past 20 years (1993-2012) rose at a rate of 0.14±
0.06 ◦C per decade (95% confidence interval). This rate of warming is significantly slower
than that simulated by the climate models...” (Fyfe, J. et al., Nature Climate Change, 2013)

• “...many governments are demanding a clearer explanation of the slowdown in temperature
increases since 1998.” (McGrath, M., BBC News, 2013)

• “Climate sceptics have seized on the temperature trends as evidence that global warming has
ground to a halt.” (Tollefson, J., Nature, 2014)

• “...despite a marked warming over the course of the 20th century, temperatures have not
really risen over the past ten years.” (The Economist, 2013)

Group II: Comparing the rates of change between the 1998-present period and
before

• “The rate of global mean warming has been lower over the past decade than previously.”
(Otto et. al, Nature Geoscience, 2013)

• “The rise in the surface temperature of earth has been markedly slower over the last 15 years
than in the 20 years before that.” (Gillis, J., The New York Times, 2013)

• “...it is now clear that the rate of warming has slowed substantially over the past 15 years or
so...” (Smith, D., Nature Climate Change, 2013)

Group III: Stalling of the global mean from 1998 onwards

• “Global warming first became evident beyond the bounds of natural variability in the 1970s,
but increase in global mean surface temperatures have stalled in the 2000s.” (Trenberth, K.
and Fasullo, J., Earth’s Future, 2013)

• “...average atmospheric temperatures have risen little since 1998...” (Tollefson, J., Nature,
2014)

• “Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-
mean global temperature has not risen in the twenty-first century...” (Kosaka and Xie, Nature,
2013)

• “...the Earth’s mean near-surface temperature paused its rise during the 2000-2010 period.”
(Guemas et al., Nature Climate Change, 2013)

• “Average global temperatures hit a record high in 1998 – and then the warming stalled.”
(Tollefson, J., Nature, 2014)

Group IV: Difference in year-to-year temperature increases

• “...many governments are demanding a clearer explanation of the slowdown in temperature
increases since 1998.” (McGrath, M., BBC News, 2013)

• “...despite a marked warming over the course of the 20th century, temperatures have not
really risen over the past ten years.” (The Economist, 2013)
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